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Theories of the two-photon couplings of I'-wave positronium and qq systems are reviewed and a
relationship is found between field-theoretic calculations of qq ~yy and the vector-meson-
dominance model for both heavy- and light-quark systems. Relativistic corrections to the two-
photon decay rates are evaluated and are found to be very important for the light-quark system. We
find that the widely quoted ratio of 15/4 between the yy widths of heavy-quark scalar and tensor
mesons is significantly modified in the light-qq sector. We find however that the helicity-zero ampli-
tude for the yy coupling of tensor mesons, which vanishes in the nonrelativistic limit, remains small
for light quarks, in accord with experimental observation.

I. INTRODUCTION

The two-photon couplings of qq systems can play a
very important role in the interpretation of hadron spec-
troscopy. The cases of scalar and tensor resonances are
of particular interest because the photons couple directly
to the charged quarks in the resonances, so that experi-
ments may provide us with clear signatures of their Aavor
content. Both improved data and a deeper theoretical
understanding of yy couplings could be crucial in estab-
lishing or refuting candidate gluonic mesons. In this pa-
per we address some theoretical aspects of two-photon
couplings and indicate some incomplete or inconsistent
features of existing models.

We shall concentrate on two particular approaches in
the quark model, first a field-theoretic calculation based
on the yy decays of P-wave positronium and second a
vector-meson-dominance (VMD) model, and show how
these superficially very different approaches can be relat-
ed.

The field-theoretic calculation generalizes the work of
Alekseev' and Tumanov, who derived the yy decay
widths of positronium in the nonrelativistic limit of
QED. In particular they have shown that the ratio of the
yy widths of the J=0++ and J =2++ Po and P2 states
is 15/4 in this limit, which is a widely quoted result for
the yy couplings of qq resonances. Insofar as the total
hadronic widths of P-wave charmonium can be modeled
by transitions to gg intermediate states, the I, „,of 2++
and 0++ charmonium y states should satisfy this relation

as well. The ratio of these hadronic widths is in fact
consistent with this value, but the yy couplings of char-
monium P-wave levels are not yet accurately measured.
Recent experimental work has motivated the suggestion
that such a relationship might not be well satisfied in the
hght-quark sector. If one extends these positronium cal-
culations to qq resonances, relativistic effects should be
incorporated; this is one motivation for the present pa-
per.

In the VMD model, a vector meson replaces one of
the final photons and the yy decay is then treated as a
trivial modification of a radiative transition between two
qq states, the initial P-wave qq meson and a final qq vec-
tor state. Because two real photons are identical parti-
cles, special care is required in applying the VMD model
to yy final states; this has not always been handled con-
sistently in the literature.

We shall show how the nonrelativistic ratio of 15/4 be-
tween scalar and tensor yy widths arises in field theory
and how the transition operators in the VMD model can
be derived from the positronium calculations of Alekseev
and Tumanov. A clear connection between these two ap-
proaches is thereby established, and this connection will
show that relativistic effects are especially important in
the light-quark systems and how the nonrelativistic ratio
of 15/4 is modified.

In the next section we shall investigate relativistic
effects by extending the original nonrelativistic positroni-
um calculation of Alekseev' to order (v /c) . Our calcula-
tion will give correct results to O(v /c ) for the decay
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rate of a pure qq state to y'y. The physical mesons actu-
ally have qqg components with amplitude 0 (Qa, )

[0 (u/c) in the nonrelativistic limit], and these give addi-
tional 0(a, ) [0(u /c )] corrections to the yy decay
rate. The effect of these higher Fock-space components
is not considered in this paper. A numerical estimate of
the sensitivity of the decay rates to relativistic effects is
given in a harmonic-oscillator model. The two-photon
coupling in the VMD model and its relation to the field-
theoretic approach is discussed in Sec. III. In Sec. IV the
helicity structure of the relativistic correction will be ana-
lyzed, and we shall show that the contribution of the
helicity-zero amplitude in the tensor decay, which is zero
in the nonrelativistic limit, remains small even for light
quarks.

K, F,

K2 C2

FIG. 1. Assumed two-photon coupling of a qq system.

II. FIELD-THEORETIC APPROACH

We assume that the two-photon decay amplitude is
well described by the Feynman diagrams in Fig. 1. The
transition matrix element can be written as

1/2
d3

u(P, s ) ( ie f'—2) ( ie, f'—1)
P, —k, —m,

+( ie 8*, —)
gf

—k'2 —m
(
—ie, e2*) u(p„s, )g(p) (2.1)

and the yy partial width of the qq initial state is

&(qq yy)= f d&k &
g g64~ (2.2)

Following the procedure of Alekseev, we rewrite (2.1) in terms of Pauli matrices and nonrelativistic Pauli spinors g; the
spinors in Eq. (2.1) can be written as

Q(p, s )= E +m
2&l cT 'pq

E +m

(2.3)

and
1/2

u(p, s )=

(2.5)

E +I —o'p
(2.4)2m E +m

q

In the qq rest frame we have E =E =(p +m )'~, p = —p, p=p —p, k1=k2, and k1= —k2, so that (2.1) becomes

m Ek] k, .p
V'2 ' E (Ek )

—(k p)' (Ek )' —(k. )

where

F =ik1 (E1 XE2) ( 'Eo* E2 1p+o"e2E1.p)+ t 2cr 'P&1 'P&2 'P P (o'el e'2 'P+o"e2el 'P)]
m Eq+mq

(2.6)

is symmetric under exchange of e& and e2, and

F = CT'k)E( 'E2 + e, e2(o"pk, p —p o k, )
1 s e . . 2 .

m E+m (2.7)

is antisymmetric under e1, ez exchange. The terms in large parentheses in (2.6) and (2.7) were neglected in Alekseev's
calculation; positronium is sufticiently nonrelativistic for this to be a good approximation. This is not necessarily the
case in the qq system, however, especially for light quarks; the magnitude of the photon momentum ~k, ~

equals M /2,
qq

and E and ~k, ~
are comparable, so we should keep terms to higher order in (u/c). For simplicity we call the expres-

sion in large parentheses in (2.5) F; expanding the denominators in this expression to 0((u /c) ), we find the result
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(ki p)F= — 1+
(Eqkol)z

o ~;ez p+~r. eze,* p —ik. (~f Xez)+ rr k,ef ~zk, p
(Ic, )

+ 2cr pe*, .pez p p—(o"e*,ez p+cr eze*, p)+ 0 z e,' ez(o"pk, p —p cr k, ) (2.8)

and the corresponding transition matrix element is

Mf, =
3 z OX o.zFXQ(p) .

(2vr) Eqk i

(2.9)

Because oz is an antisymmetric matrix the term k& (e& Xez ) in (2.6) only contributes to the yy decay of pseudoscalar
states (which are S =0 and L =even), and the remaining terms containing o' contribute to the yy decays of scalar and
tensor states (S =1 and L =odd), as was shown by Alekseev. On summing over polarizations and integrating over the
dOk of the two outgoing photons, the total width to order (u Ic) for P wave q-q systems becomes

2

I = QI 118„"„8 +68„*(8 „+8 „)+2Re[118„"„8' +68„*(8' „+8' „)]
1 p, v

+—,'Re[158„* „8 ' +108„(B'„+8 ', „)+168„„8, 48„* (—8 „+8 „)][,
(2.10)

where

BO
P, V

B'
P, V

B21
iM, V

f , X ~z~~.XWP),
(2qr) Eq

X ~2(P oIJpv ~ P pid v)XP(P) r

d p 1

(2qr)' E,'(E, +m, )

d3p mqP
X o'zo pP.XP(p),

(2qr) Eq

(2.11)

(2.12)

(2.13)

B„=
3 4 y 020'PP~Pvy P(2' ) Eq

and the matrices ozo„(@=1,0, —1) are

0 0 0 1 1 0
crzo„= ' —. i&2 0 l, i

1 O, i&2 0 0

(2.14)

(2.15)

The P-wave qq spatial wave function is of the form

g(p) =
&& (&~)P(p ), (2.16)

where P(p) is the radial wave function of the qq system, normalized to J 0 p IP(p)l dp =1. The total qq wave function
for a PJ qq initial state is given by

PJM g(1M —m, 1 mlJM&q, M 1, (&p)P(p) (2.17)

The spin wave function y, M in (2.17) is coupled through X and X in Eqs. (2.11)—(2.14). We may then evaluate the
tensors 8„ in (2.10) for a VJ M state:

d3
IJM=y (1 m, lM —mlJM)( —,'X, —,'m —slim)X,'uzi~, f p 1'&M y(p) .

m, A, (2qr) Eq

In general it can be shown that

B„,.IMAM= i&1 —v, 1 —plJ M &( —1—) "'

where

(2.18)

(2.19)

IIB'IIJ =f,p.1'i-.P(p)(2') Eq
(2.20)
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and

G
2 d3

II&,'.,IIJ f p Ep E + Pv~l —vW P f i Ep E + [P~1'ir]J[PpPv]J4'P

II&"IIJ= f (2n. ) Eq"

d3
II&"IIJ=f, ', [pi. ~Iy]J[p„p.]JP(p»)

(2qr) Eq

(2.21)

(2.22)

(2.23)

are reduced matrix elements and are independent of p and v. The square brackets in (2.21) and (2.23) define a Clebsch-
Gordan product of two vectors, [p„p ]+M —=g„,& 1 p, 1 vl JM )p~„. The result in (2.21) and (2.23) is independent of
M so we have suppressed that label. Using these results, we find

2&„, „I~M=-X& 1—vl —vlJ~&( —»"i' 2II~IIJ= '4, ops, oi 611&IIJ (2.24)

and

X&„*,.I&M(& „, .IJM+& . „I,M)=&& 1 p»IJM)'[1+( —1)']2llall,'
P, V P, V

=['+( 1)'»ll&IIJ . (2.25)

On substituting (2.24) and (2.25) into (2.10), we find for the yy width

45[11&'IIJ+2ll&'lie(II&'IIJ+ —,", II& "lip+ —,', ll& "IIJ)] (J=0),
15(k')' 12[11&'IIJ+211&'III(II&'Ill+—,', ll&" II

—
—,', ll& "II)] (J=» . (2.26)

(2.27)

This calculation also gives a zero decay width for the J= 1 state, which follows from the transformation law (2.19) for
the [8„,I. This of course follows from the proof by Landau and Yang that there is no J =1 state for two physical
(transverse) photons.

The reduced matrix elements in (2.26) are explicitly
1/2

II&'ll~=o= II&'IIJ =i=2
3 f, 17 q

0 (J=0),
~ 1/2

s
( ) (J=2)

5 3 0 Q(2qr) E (E +mq)

(2.28)

and
' I/2

q

(2.29)

so that the ratios of the widths with and without relativistic corrections [keeping only 0(u /c ) corrections] are

rel~J=o 2= I+-
pllr 3

8p 4p p
q

f dp, p'P(p)
q

(2.30)

rel~J=2 6= I+-
~J'=2

f p .. .p4p

f dp p P(p)

f dp p 'P(p)
+—

5 mqf dp ', p'4(p)
q

(2.31)
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For completeness we note that our absolute nonrelativistic rate I "'(2++—+
Y Y), which is given by

2 2

I "'(2++ YY)= f dpp p(p) l(2++I IO&l

q

(2.32)

equals the result given by godfrey and Isgur in their
Table VII(b), except for a factor of (ko/m ), which is
unity in the nonrelativistic limit. There is also a
difference in the absolute rates due to their insertion of a
(Mz /Mz ) "mock-meson" factor.

In a harmonic-oscillator model, P(p) is

p
2 /2p2

P(p) =Npe (2.33)

where N is the normalization constant, and PsHo is the
momentum scale determined by the quark mass and the
spring constant of the simple-harmonic-oscillator (SHO)
qq potential. In Fig. 2 we show the ratios (2.30) and
(2.31) as a function of PsHo/m~. Assuming that m~ is the
"constituent" quark mass implies PsHo/m =1 for light
quarks. Note that the relativistic correction is significant
for yy decays of both J=0++ and J=2++ states, and
even becomes dominant for the J=2++ state as the
quark mass decreases. The ratio of the relativistic 0++
and 2++ partial widths is shown in Fig. 3. As expected,
this ratio is very close to 15/4 for heavy quarks, where
PsHo/m~ is small, and falls to approximately 2.0 for light
quarks, if the parameters of Hayne and Isgur are used.
Thus, we find a reduction of the ratio I (0++
~YY)/I (2+ ~YY) by about a factor of 2 for light
quarks if the relativistic effects are included.

III. THE VMD MODEL AND ITS RELATION TO
THE FIELD-THEORETIC APPROACH

H' =j(1)™ef+j(2)™ez, (3.1)

where the j(i)' may be written' in terms of its spin and
orbital properties as

j(i)'+ = AL(i)++Bo(i)++Ccr, L~ . (3.2)

In the nonrelativistic limit C =0 (we retain it here for
later use and for comparison with other calculations), and
the 3 term corresponds to the electric and B the magnet-
ic multipole transition. The wave function for the
vector-meson state is

(3.3)

An alternative approach is to consider the sequential
decay S, T—+ Vy —+yy, where S, T, and V refer to scalar,
tensor, and vector mesons, respectively, and the vector
meson is transversely polarized (J,=+1) and subsequent-
ly transforms into a real photon, as shown in Fig. 4.

For our initial example, we restrict the vector meson to
a S, state as distinct from D„the motivation being that
in the nonrelativistic limit the vanishing D& wave func-
tion at contact suppresses the V~y transition. The
most general single-quark radiative transition operator
then has the form

where
~ Pz, M ) is a spin-1 qq wave function and

o) is the S-wave spatial wave function. The fiavor
wave function is implicit and is a trivial modification.

0.0 0.5
I

2.0 2.5

FICs. 2. The ratio R„~= I I"/I z' versus PsHQ/m~, where I"1"
(1 J') is the decay width with (without) relativistic corrections.
The dashed line represents the tensor-meson partial width ratio
and the solid line the scalar ratio.

0.0 0.5
I

1.0 1.5
(P/m)

FIG. 3. The ratio R I J—0/I J—2 (15/4 1n the IloIllelat1vlst1c
limit).
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FIG. 4. A two-photon decay in the vector-meson-dominance
model.

In terms of helicity amplitudes the decay width is

I(J++ yy) (~A
~

+ 2 =
~ ), (34)1

2J+1
where, in the VMD model,

gk J =A, y +k U —(y (2)~ (1) . s~y )

photons, as these are identical bosons. It should be noted
that this was not done consistently in an earlier VMD cal-
culation, which omitted the 1+( —1) factor in (3.7) and
forced the amplitude for J= 1 to vanish by imposing the
constraint 3 =C. Some results of earlier VMD model
calculations may therefore require revision due to this in-
correct constraint.

Equation (3.9) is consistent with the nonrelativistic
part of the transition operator in (2.8). In order to estab-
lish the relationship between field theory and the single-
quark-transition (VMD) model, the two-photon decay
process is divided into two steps, first, a radiative transi-
tion from the initial scalar or tensor meson to an inter-
mediate, virtual vector meson, and second the conversion
of the vector meson into a final photon. The nonrelativis-
tic transition operator from a S, vector meson to a pho-
ton is of the form

+(%,(1) j(2)' e*~% „). (3.5) (3.10)

The radiated y can have J, =+1;we need only consid-
er vector mesons with J, =+1 because the J, =0 state
cannot convert into a real photon. The helicity-zero am-
plitude arises either from (Jr=+ I,J, = —1) or from
(J,r= —1,J, =+1), and it is important to include both
terms in order to symmetrize the final yy state correctly.
Thus we obtain

(0''e) 6p 'p+0 e'pE( 'p'+6) E2cr k k''p)

H(1)™cr—ez+H(2)' o"ef (3.1 1)

To show the relation of the field-theoretic transition
operator (2.8) in the nonrelativistic limit to the radiative
transition (H' ) and vector-dominance (H r) operators
we rewrite (2.8) as

A J~= =2( A +C) (3.6)
The operator H (i)' in (3.11) is

(3.12)

+2B (10,10'J0);
A J

' vanishes trivially.
This leads to

(3.7)

2—(2 —C+2B) (J =2),v'6
g A,=0,0 (J =1),

2—(A —C B) (J=0) .—v'3

(3.8)

The ratio of the scalar and tensor decay widths has the
value 15/4 if we impose C =0, as expected in a nonrela-
tivistic model, and if in addition

2= —2B. (3.9)

An interesting consequence of this constraint is that the
helicity-zero decay amplitude for the J =2 state vanishes,
in agreement with the conclusion of Krammer and Krase-
man. " This shows that the ratio 15/4 and the vanishing
of the helicity-zero amplitude are closely related, and that
the VMD model leads rather naturally to this connection.

Furthermore, our calculation shows that the amplitude
for J=1 to yy vanishes as required by Yang's theorem.
The physical reason for this in the VMD model is the
symmetrization of the state of two transversely polarized

F=H(1)s o"ez+H(2)s o e*, +H(1)P& o"pp e2

+H(2)sa o"pp ef

where Hs has the general form

~s js '~ Js+ = AL++BS++CS,L+

(3.13)

(3.14)

for transitions to the S& vector meson, where the re-
duced matrix elements A, B, and C are explicitly

Comparing (3.12) and (3.2), we see immediately that we
recover the results of (3.9), namely, that 3 = 2B,C =0, —
because the reduced matrix elements for p+ and p, are
identical. Thus we have related the radiative transition
amplitude in a quark model supplemented by VMD to
the explicit field-theoretic result in the nonrelativistic
limit. In particular, this highlights the fact that the ratio
15/4 of scalar and tensor yy widths requires C =0 and is
a nonrelativistic result.

The incorporation of relativistic effects in the VMD
model is rather more complicated. Intermediate vector
mesons in a D

&
state are allowed by the transition opera-

tor (3.2), in addition to the previously assumed S& vec-
tors. When one projects the full expression (2.8) onto the
VMD model, one finds that the D& component is present
at O(U /c ). Taking our earlier nonrelativistic example
(3.11) as a guide, we rewrite the full transition operator
(2.8) as



43 RELATIVISTIC EFFECTS IN yy DECAYS OF P-WAVE. . . 2167

A = —% „p+ 1+ p' —-'p,' + p,' (3.15)

8=%, p, 1+ 1 2 2 +(E ~ )Ip p*~ ~p* ~++)
mq q mq E

(3.16)

pzC= —C„p+ q, ,
mq Eq+m

(3.17)

At O(v /c ) there is another contribution to the V~y
transition, namely the o"p p e' piece in Eq. (3.13). The
S, T~ Vy transition in this case involves only the electric
dipole transition operator H&D.

mesons may be written as

'p„& =g&L M —M„1M, l1 M & p~=), M &lfi., M —M, &

M

IISD =LSD &'JSD+ = ~'L+

where the reduced matrix element is

(3.18)
where the spatial wave function i/i ~ & is

(3.20)

1
P+ E+ v (3.19)

The full wave functions for the S, and D
&

vector

(3.21)
l y+, M & I'1.,~(&,)p'f Jv, ~(p),

with the normalization j0"p + f (p ) dp = 1, and the or-

bital angular momentum L can be 0 or 2. The matrix ele-
ments for the vector-meson-to-photon couplings are

d pG =&yl~ ~*l+..&=&2f f~,i(J) io M, g+(2m. )
(3.22)

3

G(L4D=&yltr pp. &*l P. & =&2f p f~, i.(p)((p„yI. M ]g&(2~)'
(3.23)

where A, labels the photon polarization. The resulting selection rule for the operator o'e* is that only the transition
from the S-wave vector meson to the photon is allowed, whereas the cr.p p.e* terms allow the transition from both S-
and D-wave vector mesons. The quantum number M of the intermediate vector meson is determined by the polariza-
tion of the photon.

The complete helicity amplitude may be written as

&yl~ ~) I+(g). &&+(g). g(~)s ~,*l+,++&+g&yl~ pp ~,*l+(g). &&+(g). lg(~) gg ~,*l+,++ &

S,D
(3.24)

Following the same procedure as in (3.5) to (3.8), (3.24) leads to

AJ~~~=2(A =C)Gs+ g 6 W(211L; 11)A'G(L)sp,
L =0,2

(3.25)

and

A. =O ( A —C +2B)Gs+ g 3 8'(2 1 1 L; 1 1)A 'G (L)sD
2

6 L =0,2

(3.26)

Aq 0
= — (A —C B)Gs+ g —A'G(L)5D (3.27)

i. =O, Z

where the I W(211L; 11)j are SO(3) Racah coefficients. In the VMD model Gz and G(L)zD could be treated as
e8'ective coupling parameters, but here we can identify these amplitudes explicitly with results of the field-theory calcu-
lation by expressing the helicity amplitudes in terms of qq wave-function integrals. We find that (3.25), (3.26), and (3.27)
become (with all integrals implicitly over [0, ~ ] )
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x=2 =
&qq

— I PP 0(p)fw, l. =o(P
(2qr) 3

2 2
p + p

m (E+m ) 5E~ I dPP fJq, l. =o(p)

1 P 4(p)fx, L, =o(P)
dp

3 mq(Eq+mq )

p'4(p)f~, i =~(p)
dp

15 mq(E +m )

dPP NL=O P

I dp p fx, i. =z(p) (3.28)

15(27r)' ' " ' m (E +m )
+p

5 P 4(p)fx, L, =o(P)f dp E + f dpp fx, l. =o(p)6 m E+m

1 P 0(p)fx, r. =z(p)f dp E + I dpp'f~, i=~(p)6 m E+m

I dPP fx, l. =o(P)

(3.29)

and

~~=o = „, I dp p'0(p)f~, i =o(p) —+
3(2m. ) 2

2 2
p

m(E+m ) j dP P fN, L =o(p)

2
3 J dp p'f~, i=~(p)

P 4(p )fx, l. =o(P )f dp
' f dp p'f~, L=o(p»)

m E+m
p'4(p)f~, i =~(p)

dp
m (Eq+m )

(3.30)

Xp'fx, I.(P)p'fw, i. (p') =
N p

(3.31)

Using (3.28), (3.29), and (3.30), one may show that the ra-
tio of the scalar-to-tensor decay widths to order (u/c) is
equal to (2.30). Of course this is expected, and primarily
serves as an algebra check and again establishes the con-
nection between the VMD model and Geld-theoretic ap-

In the VMD model, fz I (p) is the radial wave function of
the intermediate vector mesons p and m, and the quan-
tum number X in the potential model is 0 for L =0 and 2
for L =2. In a more complete "generalized VMD"
scheme, one could sum over all quantum numbers N and
use the completeness relation

proach. The results of the two approaches are thus found
to be consistent to 0 ( u /c ).

IV. THE HELICITY STRUCTURE
OF THK RELATIVISTIC CORRECTIONS

The VMD calculation has shown that the ratio of the
scalar to tensor widths is consistent with (2.30) to order
(u/c), and has also shown that the A. =O,J =2 amplitude
vanishes in the nonrelativistic limit. As the relativistic
corrections significantly modify the 15/4 width ratio, it is
important to investigate the size of the relativistic contri-
butions to the helicity-zero decay amplitude of the tensor
state. Experimental data' suggests that helicity-zero am-
plitude in the tensor decay is in fact very small.

We can extract the various amplitudes directly from
(2.5); taking k =z, the helicity amplitudes are

1/2

g J=2
2~

dp d Q mqp sin20

V'(2qr)3 Eqk 1 —P cos 8

2

1+ (1—
—,'sin 0) P(p),m(E+m )

(4.1)

and

d dA nqp

V(2' )
3 E k 1 —P cos 8

(4.2)

~J=o 1 dpdQ qP 1

&2' V (2qr)3 E k 1 —P cos 8
(4.3)
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where p=p/E~ =u/c. The angular integrals can be carried out exactly, and we find

3 2

g J=2 ~6 dp mqp
~( )

2 + p —1
1

1+p
V'(2~)' E'k' p' p' 1 p—

p 1 + 1 P' —1 1+P
m, (E, +m, ) 3p' p4 2p' 1 —p

(4.4)
3

V'(2~)' E'k'
6+3—P

1
1+P

p' p' 1 P— (4.5)

and

3
J=o ~ ~ dp mqP 1 1+P

o Q(2~)3 Ek p 1 —p
(4.6)

[Note that only A &=2 is nonzero in the m~ =0 liniit, in agreement with the result of massless QCD. Our general ex-
pression [Eqs. (4.4)—(4.6)] shows however that the approach to this limit is very gradual (see Fig. 3, for example), so
comparison of m =0 results to experiment must be treated with caution. ]

On expanding these amplitudes to 0 (p ), (4.4)—(4.6) give the same expression for the decay width we found in Sec. II.
Furthermore, these expressions are consistent with the helicity amplitudes obtained in Sec. III. This angular decompo-
sition shows the source of the A i o =0 nonrelativistic selection rule and its violation at 0 (u /c ). In the nonrelativis-
tic limit p —+0, the vanishing J=2, helicity-zero amplitude follows from the angular integration in (4.2); when p) 0 this
cancellation no longer occurs. Note however that this amplitude remains relatively small; specifically, at order (u/c),
the ratio between helicity-0 and -2 amplitudes for the tensor (J =2) state is

X=2

' 1/2
1 2
5 3

5

I, dp, 0(p)
q

3 3 2 1
2

dp
P 1+— +— P(p)

o g 5m(E+m) 5E~

(4.7)
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FIG. 5. The ratio R h, l
= I J=2 /1 J =2 of helicity-zero to

helicity-two amplitudes for qq(2++ ) yy.

and the corresponding partial width ratio [the square of
(4.7)] is shown in Fig. 5 for harmonic-oscillator wave
functions (2.33). Note that this ratio is quite small even
for light-quark masses, so that the A, =2 amplitude dom-
inates the yy width of the tensor state.

V. SUMMARY

These calculations have shown that relativistic effects
are indeed important in quark model calculations of the
yy decays of scalar and tensor mesons. In the nonrela-
tivistic limit we showed how the field theory qq ~yy am-
plitude and the quark model with VMD are related,
which establishes the VMD model on a more fundamen-
tal level. %'e have also found that the familiar nonrela-
tivistic ratio 15/4 of scalar-to-tensor meson yy widths is
changed markedly by relativistic corrections in light-
quark systems. We have also shown that, at least in this
example, both S, and D& vector meson contributions
appear at O(u /c ) in the VMD model of yy decays
when applied to light-quark systems.

It is not immediately evident why relativistic effects
dominate the yy total width of the tensor state [recall
that relativistic corrections play a relatively minor role in
N'~Ay (Ref. 13) and in the helicity-zero selection rule
for T~yy]. A better understanding of this result may
reveal why nonrelativistic calculations of the yy cou-
plings of radially excited mesons appear to be overes-
timated in the quark model (specifically, the model pre-
dicts significant yy widths, whereas there are no radially
excited states observed in the data' ). In a nonrelativistic
calculation the partial width of a P-wave qq state to yy is
proportional to the square of the derivative of the wave
function at the origin. This is very sensitive to the large-p
behavior of the wave function in momentum space, and
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relativistic effects may be important in these decays for
this reason. Matrix elements of other processes, for ex-
ample electroweak transitions which nonrelativistically
involve the wave function at the origin, may be similarly
sensitive to relativistic corrections.

Our present work is largely pedagogical since there
remain 0 ( a, ) QCD wave-function-mixing elfects, includ-
ing the contribution to the decay from the qqg com-
ponent of the initial meson, which enter at the same or-
der in v/c as the relativistic effects considered here.
These corrections will affect the 2++ decay rate due to
mixing with the Fz configuration, and both 0++ and
2++ will mix with their SHO basis radially excited coun-
terparts. These relativistic and QCD mixing eFects have
not yet been thoroughly investigated in studies of the yy
decays of radially excited mesons. A complete study
should be carried out within the framework of a quark
model which gives a good description of meson spectros-
copy, for example the model of Godfrey and Isgur. As
noted in Ref. 12, the gauge-invariant electromagnetic
transition operator depends on the binding potential be-
tween the quarks at this order in v /c, and this complica-
tion has also not yet been investigated in qq ~yy.

Finally, we have found a connection between the field-
theoretic and VMD model descriptions of the decay
qq~yy and the Landau-Yang theorem [through the
vanishing of the amplitude for qq(1++)~yy]. We have
shown that symmetries in the VMD approach automati-
cally satisfy the Landau- Yang theorem without requiring

the constraint A =C, as was suggested previously;
indeed, for heavy quarks, consistency of the field-
theoretic and VMD approaches implies a different result:
3 = —28 and C =0. In consequence, a previous calcula-
tion' of y~yP which unnecessarily imposed the con-
straint A =C for the (heavy-quark) charmonium systeni
in order to force y&~yy now merits reconsideration.
(We note in passing that the relation A =C may still be
correct for relating pion production amplitudes of the
form M~mp and Marry, although this should be re-
garded as an open question. )

Note added. After completing this work we learned
that Ref. 16 has also considered the quark-mass depen-
dence of the ratio I (0++~@@)/1(2++~yy ) using a
nonrelativistic reduction of the Bethe-Salpeter equation.
They also found important relativistic effects which
suppress the overall decay rate, and conclude the
&(0+ ~yy)/l (2++~yy) is reduced from 15/4 to
about 2 for light quarks, consistent with our results.
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