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Fragmentation of color strings

H. J. Schulze and J. Aichelin
Institut fur Theoretische Physik der Universitat Heidelberg, and Max Pla-nck Ins-titut fiir Kernphysik, D 690-0Heidelberg, Germany

(Received 26 June 1990)

The fragmentation of a color string, formed in e e, pp, and pp collisions, is assumed to be a se-
quence of phase-space-dominated binary decays: string~string+hadron. This model requires only
one parameter, the average transverse momentum, and describes a wealth of recently measured
e e, pp, and pp data, such as multiplicity and momentum distributions, the number of created res-
onances, and the scale breaking of the momentum distribution at low Feynman x. To avoid ambi-
guities for the string formation in pp collisions we develop a method to calculate the transverse-
momentum distribution of partons from the longitudinal-momentum distribution which is based on
symmetry arguments only.

I. INTRODUCTION

When highly accelerated particles such as protons,
muons, or electrons co11ide one observes that many had-
rons are produced. What do these particles reveal about
their production mechanism? Can we learn something
about the underlying QCD, for example, by realizing that
the process is governed by counting rules? Are there
similarities between the production of hadrons in e+e
collisions, where all the energy is stored in the virtual
photon, deep-inelastic pp collisions, where the momen-
tum transfer is large, and pp collisions, where in the ma-
jority of the events the momentum transfer is rather
small and therefore the strong coupling constant a, is
large?

These questions have first been investigated by compar-
ing experiments with the longitudinal-phase-space mod-
el In the oldest uncorrelated-jet models it is assumed
that the particles which emerge from the particle produc-
tion process are uniformly distributed in longitudinal
phase space, i.e., the relativistically invariant momentum
space weighted with some empirical function which re-
stricts transverse momenta. Thus in a phenomenological
way these models take the longitudinal structure of the
experimentally observed events into account. Because of
the multitude of different channels the final distribution
of hadrons is hard to calculate in this approach and
therefore usually only approximate solutions were ob-
tained. Restricted to production of only one kind of par-
ticles (pions) these models yield asymptotic scaling behav-
ior of the inclusive momentum distributions and a loga-
rithmic rise of mean multiplicity with event energy, but
fail to reproduce other results such as the absolute value
of the number of produced hadrons. Recently, the pre-
dictions of the model were compared in detail with data
employing a grand canonical approximation and allowing
the production of pions, kaons, protons, and A' s.

More refined models assume that the production of
hadrons is a two-step process: A first initial step in
which color strings are formed is followed by the decay of
the strings into hadrons. The string formation in proton
induced reactions is determined by the measured struc-

ture functions; the fragmentation, by fragmentation func-
tions. The latest and most frequently used models of this
kind are the LUND, and the dual-parton model.
Whereas in e+e and pp collisions the formation of the
color string is the same in both models, the formation of
strings in pp collisions requires assumptions about the
soft interactions between the partons of the different pro-
tons. In the LUND model, momentum but no color is ex-
changed; the dual parton model assumes just the oppo-
site. However, the practical differences of the formation
process are of minor importance because it turns out that
independent of the assumed process for the string forma-
tion the distribution of the invariant masses of the strings
is almost identical.

Of more importance is the physics of the fragmentation
process. All these models assume that the string decay
reveals some information about the underlying QCD, i.e.,
is not completely phase-space dominated. Originally,
Field and Feynman introduced the idea of quark-
antiquark pair production in the color string and recom-
bination t.'o the observed mesons, obtaining a sequential
decay of the string. In the models used nowadays,
higher-mass mesons and baryons are produced also. Pa-
rameters determine whether a meson or baryon is pro-
duced, the flavor of the produced qq pair(s), and the spin
of the produced hadron. These parameters are adjusted
to reproduce data. In the LUND model, this sequential
structure of the decay is related to the space-time evolu-
tion of the fragmentation via the relation p+=~x+,
where ~ is the string constant and x+ and p are the
light-cone position and momentum. Fragmentation func-
tions f (p+/p+, „) are used to generate the light-cone
momentum fraction of the created hadrons. Thus for a
given transverse mass mT of the hadron, x =mT/K x+
and therefore the space-time point of the creation is
determined. The fragmentation functions are based on
counting rules, i.e., the momentum distribution of the
produced hadrons is determined by the number of specta-
tor quarks. In addition there is a low-momentum
suppression for diquark and heavy-quark fragmentation.
The Aavor of the produced quark-antiquark pair is
governed by a strangeness-suppression factor and a
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vector-meson-dominance factor is included also.
With about 6 to 8 parameters which are independent of

the entrance channel, both models describe beautifully
the momentum distributions of different species and the
multiplicity distributions of e e, pp, and pp data.
These models are easily extended to hadron-nucleus and
nucleus-nucleus collisions, however at the price of intro-
ducing further parameters. Additional parameters are
also required if one would like to study the production of
heavier resonances.

Our aim is different. Instead of trying to fit the data by
introducing a lot of parameters we want to study to
which degree a simple and well-defined, but not necessari-
ly quite realistic, model describes the data. Our model is
based on the assumption that the distribution of particles
is completely determined by the longitudinal phase space.
In view of Fermi's golden rule this assumption implies
that the transition matrix between initial and final state,
which contains all the QCD implications, is constant.
This is of course a strong assumption, which however
was quite successful in other field of physics where one
faced the same problem, namely that the transition ma-
trix is too complicated to be calculated. It can be viewed
as a minimal-information ansatz.

Usually it is assumed that phase-space dominance
specifies the model completely. This, however, is not true
because one has to specify the initial and final state.
There are two alternatives. Either the n-body final state
is produced instantaneously, which is assumed in the so-
called longitudinal-phase-space models, or the n-body
final state is produced by the sequential decay of the
source, where in between the decay steps the system
equilibrizes, i.e., loses its memory on previous steps. We
will adopt the second alternative. Thus our model differs
from the usual longitudinal-phase-space model and it is
bound to give different results, as we will see in the
second section. To be more specific: We start from the
one assumption that a color string hadronizes in a se-
quence of binary decays string —+string+hadron. Each
decay step is determined by the longitudinal phase space
and an assumed Gaussian distribution of the transverse
momentum. This distribution requires one input parame-
ter (pT).

This approach has immediately two implications. (a)
Because of the constant transition matrix element gluons
do not appear explicitly in this approach. As particles
which cause the interaction they are only responsible for
the equilibration. (b) The observed short-range charge
correlation is mainly due to heavy-meson decay (only less
than 50% of the observed final particles do not come
from the decay of heavy resonances). Only a smaller
fraction comes from correlations between subsequent de-
cay steps (the latest produced meson must have correct
quantum numbers, which implies constraints on the pre-
vious decay steps).

If our model reproduces the measured quantities such
as multiplicity distributions, momentum distributions,
and the dependence of all these quantities on the string
energy, then this means that the data are compatible with
the assumption that the transition matrix elements are
constant, thus questioning conclusions of other models

that the hadronization of strings reveals something about
QCD. Only if it disagrees is there room for undoubtable
QCD effects. Originally our intention was to search for
these discrepancies.

To our big surprise the agreement of this simple model
with data goes much beyond what we expected. The lev-
el of agreement with data is as good as that of the so-
called event generators such as VENUS or HIJET. ' Only
the LUND model, following the strategy to force agree-
ment by fit parameters, gives better results. Even more,
experimental observation such as scale breaking of the
momentum distribution of the produced mesons at low
energy or the ratio of strange to nonstrange particles can
be shown to be enforced by phase space only.

Unfortunately there are some obstacles to carry
through this approach in practice. In principle we have
to know the masses, the degeneracy, and the decay chan-
nels of all possible hadrons. These are not known for
hadrons with the mass of the lightest baryon. This re-
quires one additional parameter for actual calculations,
the baryon-to-meson ratio. This parameter is the same
for e+e, pp, and pp reactions.

For comparison with experiments we employ a Monte
Carlo procedure. However, a slightly simplified version
of the string decay model can be calculated analytically.
The analytical solution makes the essential features quite
transparent; in particular it shows the origin of the scal-
ing violation at low hadron energies and the inAuence of
the resonances on the final momentum spectra.

This model has been successfully applied to the e+e
data in the range from 14 to 34.S GeV. It reproduced
experimental multiplicity distributions, the momentum
distributions of different hadrons and the production of
resonances such as p, K', and g. Thus it allowed us the
conclusion that the combination of a vector-dominance
parameter, the strangeness-suppression factor, and the
fragmentation function produces the same distributions
as a phase-space-dominated sequential decay. The only
discrepancies between experiment and calculation
showed up at the expected places, where the experimen-
tally observed three-jet events are important which are
neglected in our approach.

In this article we continue our investigation. We com-
pare our results with data of the European Muon Colla-
boration (EMC) and with pp data. The article is organ-
ized as follows.

In Sec. II we investigate the differences between an in-
stantaneous and a sequential decay of a color string, both
governed by longitudinal phase space. For this purpose
we introduce a toy model which allows us to investigate
analytically the differences in the number of produced
particles and the momentum distributions which can be
observed in the much more elaborate exact calculations.

In Sec. III we introduce our model. We display in de-
tail the formalism and give analytical approximations.
We briefly repeat the main results for the e+e annihila-
tion of Ref. 6.

In Sec. IV we derive a method of calculating the
transverse-momentum distribution of partons from a
given longitudinal-momentum distribution. This relation
between transverse and longitudinal momentum enables
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us to avoid ambiguities in the formation of strings creat-
ed in pp and pp collisions.

In Secs. V and VI we apply our model to deep-inelastic
muon-proton scattering and soft proton-proton collisions
and compare the results with experimental data. We
treat the string formation processes in lowest order, using
the impulse approximation for deep-inelastic pp scatter-
ing and the dual-parton model for inelastic pp collisions.

In Sec. VII we draw our conclusions.

STEP

II. SEQUENTIAL VERSUS INSTANTANEOUS DECAY

The longitudinal-phase-space model assumes that the
hadrons created in a highly energetic reaction are pro-
duced simultaneously. All many-particle final states
which are compatible with the conservation laws are al-
lowed. The single-particle distributions of hadrons are
obtained by summing over all possible many-hadron final
states with a weight that limits the transverse momenta
of the particles. In practice there are infinitely many final
states and one has to make approximations for calculat-
ing the spectra. One approximation which allows even
analytical results is the discretization of the longitudinal
momentum in bins of fixed hy.

There is, however, a second process which can also be
completely phase-space dominated: the sequential decay
of a highly excited object. Between the different decay
steps the system equilibrates completely, i.e., populates
all states which are compatible with the conserved quan-
tities. Thus it has lost its memory of having a predeces-
sor. In nuclear physics this sequential-decay mechanism
(compound nucleus model) was introduced by Weisskopf
already in the 1930's and has been proven to describe
moderately excited nuclei which decay by emission of
light particles and photons. We assume that also a color
string decays sequentially and each decay step is dom-
inated by the longitudinal phase space.

At first sight it is not obvious whether the spectra of
the produced particles depend on being emitted in an in-
stantaneous or in a sequential decay. To point out the
difference we employ a toy model which bears, however,
all the essential physics. In this toy model we neglect the
momentum completely and assume that the energy is
quantized in units of 1. Furthermore we allow only one
kind of particle. The particles are assumed to be indistin-
guishable.

If we have initially X =4 units of energy which can be
carried away by a unlimited number of particles, the fol-
lowing decay channels are possible in an instantaneous
decay: (4),(3,1),(2,2),(2,1,1),(1,1,1,1). Each channel has
the same weight. The relative ratio of particles with 1, 2,
3, and 4 units of energy is 7:3:1:1.The probability of
finding a particle which carries all the energy is one over
the number of different decay channels [i.e.,
1/P(N), P(N) being the number of ordered partitions of
the number Nj

Let us now investigate the sequential decay. We as-
sume that the emission probability is independent of the
number of energy units the particle carries away. The
possible decay sequences are shown in Fig. 1. Collecting
now all the decay channels we find that the relative prob-

FIG. 1. Sequential decay paths in the toy model. We start
with four units of energy. The number in the box marks the
number of energy units left after each decay step. The numbers
close to the lines mark the probabilities.

ability of particles with 1, 2, 3, and 4 units of energy is
12:6:4:3. The probability of finding a particle which car-
ries all 4 energy units is 1/X.

P (N) increases much faster than linear. Hence a
sequential decay on the average produces more particles
with less average energy than an instantaneous decay. In
Ref. 2 it has been found that the number of particles ob-
tained in an instantaneous decay is too low and the
longitudinal-momentum distribution too Aat. Both
features can be expected to be improved in a sequential-
decay model.

III. THE MODEL

Our phase-space-dominated sequential-decay model
has two steps: an initial formation step in which a string
of a given energy is formed and the decay step in which
the decaying string produces a sequence of hadrons. The
formation step depends on the reaction investigated. In
e+e annihilation the quark-antiquark strings are pro-
duced with the relative probability uu:dd:ss:cc:bb
=1:4:1:4:1.The decay of strings with heavy leading
quarks starts with the decay into a heavy B or D meson.
In pp and pp collisions quark-diquark strings are formed.
The way they are produced will be explained in the next
section. The diquark string is assumed to emit a baryon
first. Hence after the first emission step the strings do not
carry information on the production process anymore.
The subsequent steps are identical for all strings.

We assume that the string with the initial mass
M0=&s decays in a sequence of binary decays. In each
decay step an on-shell hadron is produced and a string
with less energy and a recoil momentum is left:

string(M, , ) ~ string(M;)+hadron(m;)
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The probability for the decay of the string M with
momentum P into a string with momentum Q and a had-
ron m with momentum p is given by Fermi's golden rule:

d'rM (P~Q+p)=~MM ~'d'Q d'p . (2)

Defining

—=2f (y, p )& (P —Q —p)&(p ™),
we obtain

Q+p) =fM (y pT)dy d'pT .

(3)

Here the CM is a normalization constant,
S =(2J +1)(2I +1) is a statistical factor (J and I
are spin and isospin of the hadron m), the 6 function
expresses energy conservation, and the Gaussian restricts
the transverse momenta. The parameter A, is fixed to 0.8
(GeV/c) . In our phase-space approach the fragmenta-
tion function is independent of the rapidity y. This is also
a result of the (1+1)-dimensional Schwinger model, giv-

ing our assumption a better founded theoretical basis.
Neglecting the kinematical boundary p T (y ), the

max

probability for emission of a hadron m from the string M
is then given by the available longitudinal phase space:

I M
= f dy d pTCMS exp( pz- k/) 6( M2/——mTcoshy)

=CMS y, „(M,m),

where

My, „(M,m) =arccosh
2m

1

g S y,„(M,m)

Hence mesons and baryons fragment in the same way in
this approach. The larger the mass of a hadron, the
smaller is the probability that it is produced. Therefore
baryons are less copiously created than mesons and the
lower production rates of strange, charmed, and beauty

Here the fragmentation function f~ (y, pT) gives the
probability for the emission of a hadron m with rapidity y
and transverse momentum pT from the string M. If the
string decay were completely dominated by phase space,
fM would be constant in the allowed kinematical region
and zero otherwise. Experiments show that the observed
events have a longitudinal structure. We take this obser-
vation into account by limiting the transverse momentum
of the produced hadron. We assume a Gaussian form of
the transverse-momentum distribution which requires the
average squared transverse momentum as an input pa-
rameter. This parameter is kept constant for all pro-
duced particles and for all different reactions. Thus our
fragmentation function has the form

fM (y, pT)=C~S exp( pT/A. )6(—M/2 mTcoshy—) .

particles are only due to their higher mass. The conser-
vation of baryon number, Aavor, and charge is ensured by
producing baryon and antibaryon and meson and its
flavor partner in pairs.

We still have to specify the hadrons I which are pro-
duced in our model. As an extreme, all resonances and
all baryons up to I (M/2 should be allowed. For prac-
tical reasons this is not possible: the resonance density
p(m) rises exponentially and decay channels and frac-
tions of the high-lying states are not known. Therefore in
our calculation we take into account the primary produc-
tion of pseudoscalar and vector mesons and the baryon
octet, i.e.,

rr, rI, r)', K,D, D„B,B„p,g, co, K*,D*,D,*,B*,B,*

( meson ), (9)
X,A, X, :- (baryon) .

In agreement with the experimental observation the
mean multiplicity increases in between:

M 2
0

const X ln
2mT

M
& (X ) (Mo ) & const X ln

2mT

(12)
In this simplified model we obtain also the Feynman scal-

The final-state particles are obtained by letting the direct-
ly produced resonances decay according to the Particle
Data Group tables. We checked in which way the limita-
tion of resonances influences the results. For this pur-
pose we included the tensor mesons in our calculation.
We found that the resulting distributions of observed par-
ticles [charged pions, kaons, and (anti)protonsj are rather
insensitive to their inclusion. The main inAuence of the
resonance decay is a slight depopulation of the large-
Feynman-x region, because the momentum of the reso-
nance is divided among its decay particles and spread in
transverse direction. There is, however, an observable
which is influenced by the limitation of the resonances:
The baryon-to-meson ratio depends of course on the
number of resonances taken into account. With our
choice of resonances we obtain the correct meson-to-
baryon ratio. Thus this ratio is not predicted by our
model but is an input.

A simplified version of the model allows for analytical
calculation. Here we assume that only one kind of parti-
cle (pion) is produced with a fixed transverse mass
mT=(mr). The energy is conserved in the mean and
the recoil is neglected. The average energy the produced
hadron carries away in the ith fragmentation step is given
by

M,. /2 M;( —,
' —mT/M, )

(aM, )=f P(E)EdE=
mT 1n(M~ /mT )

where M; is the mass of the string prior to the ith frag-
mentation step. This relation can be cast into a
differential equation with the solution

ln(M/mr )

mr M( —,
' —mr/M )
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ing of the longitudinal-momentum distribution for large
Feynman x =2pl /Mo and the breakdown of the scaling
at low x:

de, h 2 Mo ~o(x)=- ln
dx 3 2E (x) 2E (x)

2 In 1/ x +(2mT/&s )

x +(2mT/&s )2
(13)

IV. CORRELATIONS BETWEEN LONGITUDINAL-
AND TRANSVERSE-PARTON-MOMENTUM

DISTRIBUTIONS

The simulation of the pp and the pp scattering events
requires the knowledge of the longitudinal- and
transverse-momentum distributions of the partons inside
the proton. In pp collisions a finite transverse momen-
tum of the parton causes the jet axis not to be identical
with the photon direction. In pp collisions the inhuence
is even bigger. Most of the partons have very small longi-
tudinal momenta. Hence the mass of a formed string de-
pends decisively on the transverse momentum of the par-

Not only in its functional dependence but also in the ab-
solute values, the approximate solution comes very close
to the Monte Carlo result and to the data. This means
that resonance decay as well as the distribution of the
transverse momenta are only of Ininor importance and
only necessary for a careful comparison with data. The
bulk properties like the form of inclusive momentum dis-
tributions and multiplicity distribution are almost com-
pletely fixed by the fundamental ansatz of a sequential
phase-space-dominated decay of the string.

The results of our model have been compared with the
published data of the TASSO group in the energy range
between 14 and 34.5 GeV. Here we repeat the main re-
sults only.

(1) The pion-to-kaon ratio was exactly obtained and the
experimental mean multiplicities of higher resonances
g, po, K* were fairly well described, which means that the
strangeness suppression is a consequence alone of the
higher mass of strange hadrons.

(2) Although the momentum distribution of protons
was well reproduced, we obtained a proton-to-A ratio of
1:1 in contrast with the experimental value of 3:1.

(3) All inclusive momentum distributions and the mul-

tiplicity distribution were in perfect agreement with ex-
periment at &s =14 CxeV. In particular, the "seagull"
shape of the (pz )(x) plot was shown to be a consequence
of the sphericity analysis, which considerably lowers the
transverse momenta of the observed charged particles.

(4) At 34.5 GeV we saw first discrepancies between
theory and experiment; namely, the transverse momenta
(with respect to the sphericity axis) of the produced parti-
cles were too small, which led to a pT distribution tliat
fell too steeply, and a too low (pT )(x). This is supposed-
ly a consequence of neglecting three-jet events, the in-
clusion of which should modify the mentioned observ-
ables in the right way. Nevertheless, the longitudinal-
momentum distributions were hardly influenced by this.

ton. Therefore a reliable way of obtaining information on
the transverse-momentum distribution as a function of
xL is needed. We will show in this section that the as-
sumption of an isotropic momentum distribution of the
partons in the rest system of the proton produces correla-
tions between the longitudinal- and the transverse-
momentum distributions, and in particular that it is
sufficient to know the longitudinal-momentum distribu-
tion in order to reconstruct the required distribution

We assume that on a "resolution scale" 1/Q the
momentum distribution of a certain kind of parton is
spherically symmetric in the rest system of the proton:

d3
, (k)= ", (k), k=—lk .dk 4~k dk

(14)

Note that the scale Q is treated as an external parameter
of the distribution function and is always suppressed in
the following. We do not consider a proportionality be-
tween Q and the maximum resolved transverse momen-
turn of the partons. Rather, we investigate the conse-
quences of the assumption of an isotropic momentum dis-
tribution in the rest system of the proton.

The partons are treated as massless. Because of four-
momentum conservation the parton momentum is then
limited to

and the distribution function transforms as

dn dn
dk+d k dk d k 8k+

n

dk+dkT
dn

2kk+ dk

, kT ,
kT

M
2

kL

FIG. 2. Transformation from momenta to light-cone momen-
ta. The circles mark constant parton energy.

proton
kmax =

2

The symmetry of the distribution function is now
translated to light-cone coordinates:

k
k+—=k +k — -k

k+

With this transformation, spheres of constant parton en-
ergy ko in (kL, kT) coordinates are mapped to shifted
spheres in (k, kz. ) coordinates as indicated in Fig. 2.
Therefore the kinematical boundary for parton transverse
momenta dependent on their light-cone momentum is

k (k+) =V'k+(M k+)—
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For convenience, we introduce dimensionless, boost-
invariant variables

0.25
I I I

i

I I I

)
I I I

I

I I i

[
i i i

+=X=X (19)
0.20

and obtain 0.15

(x,y) = (E(x,y) }, E(x,y) =

(20)

This result relates the double-differential momentum dis-
tribution and the energy distribution of the partons. The
longitudinal parton density is then

dn ym»' '= " d nf(x): (x)=—I dy (x,y)dx 0 dx dy

max $ dndE (E)
min(

~2f '(x) = — (x/2) (21)1 dn

2E dE

(E)= 4Ef'(2—E) .dn
dE

(22)

Now the double-differential momentum distribution can
be expressed as a functional of the (known) longitudinal-
momentum distribution of the partons:

d2 2 2 x +d n
( ) 2yf(2E) 2yf x +y

dxdy ' x X X

d X +y
(23)

This result in the form of a derivative is particularly con-
venient for the Monte Carlo generation of the transverse
momentum y for a given light-cone momentum x; name-
ly, it reduces to the task of ending the zero of the func-
tion

X +y

where z is distributed randomly in [0,f (x) ]. Employing
partial integration and the experimentally known fact
that

0.05

0.00
0.0 0.2 0.4 0. 6 0.8 1.0

FIG. 3. The dependence of mean parton transverse momen-
tum y = ~kr~/M on light-cone momentum x =k+/P+ for
valence quarks, sea quarks, and gluons.

( )=+"(' ") d'f (x)(yz)(x)= f dy (x,y)y
0 dx dy

=x f dx'f (x'),
X

(y&= I dx f(x)&y &(x)=—(x &,
0 4

&y') = J dx f(x)&y'&(x)=-,'&x') .

For illustration we show in Fig. 3 the dependence of the
mean transverse momentum (y) on light-cone momen-
tum x for the different parton species, using the parame-
trizations of Duke and Owens' at Q =4 (GeV/c ):

fv(x) = 1.88x (1—x) (1+4.4x),

(28)

(30)

fs(x) =1.27x '(1 —x) ' (31}

fG(x) =1.56x '(1 —x) (1+9.0x) .

We remark that similar results for (y )(x) [Eq. (27)] were
once obtained by Gluck and Reya. "

V. APPLICATION TO MUON-PROTON SCATTERING

The scattering event is treated in the impulse approxi-
mation (Fig. 4): the incoming muon of energy E ex-

x f(x), o=0 (24)

for all kinds of partons, we can calculate moments of the
distributions:

&E&=f dE (E)E=&x &,
o dE

(25)

(E2)=j dE (E)E2=3(x2)
o dE 4

P

y „(x)=+x(1—x) d2f (x)(y )(x)=I dy (x,y)y
0 dx dy

v'x(i —x) X Z+y 2

dy
0 x

(27) FIG. 4. Muon-proton scattering in the impulse approxima-
tion.
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changes a virtual photon of mass q = —Q with a parton
p of the target nucleon P. The parton is kicked out of the
nucleon and a string of mass W =(P+q) is formed. It
connects the parton and the target remnant, called the di-
quark.

The differential cross section for this process is

2 xB Q2 yg+Q /E
=4~a I'2 1 —

y&
— +

dW&dQ& Q6 4~~ 2(1+R)

(32)

nal parton density,

(x+, Q )—:f (x+, Q')
dx+

ef[qf(x+, Q )+qf(x+, Q )]
flavors

F~(x+, Q )

the parton momentum distribution [Eq. (23)]

(37)

with

( Wz Qz)
2q P

y (W Q)=

Q2

W —M +Q
W —M +Q

2ME

(33)

(34)

d 2+ 2y, x+y
dx dy

PT
where x =x+,y =

M
(38)

(Wz Qz)
M

W —M +Q
2M

(35)

2

(Q' W')= qP = —' ++
2q P 2 X+M

2
1 + pT+—X
2 x+M

2
1/2

1+
Q

2

(36)

which for v)) Q (well satisfied for the treated kinematical
region) reduces to the well-known x~ =x +. Here x + and
pT are light-cone momentum fraction and transverse
momentum of the parton relative to the axis of the in-
coming photon. Because of the transverse momentum
the string axis is rotated against the (experimentally
known) photon axis by y =arcsin(2pT / W) (Fig. 5). We
generate the transverse momentum of the struck parton
in the way described in the preceding section. Assuming
a spherically symmetric momentum distribution in the
rest system of the proton we can get, from the longitudi-

and Fz(Q, W ) and R (Q, W ) are structure functions.
These have been measured and parametrized by' the
EMC at E =280 GeV. We use their parametrization to
generate events in the Q, W plane, restricted by the
same kinematical cuts as were done experimentally.

The relation between the kinematical variables Q, W
and the momentum p of the struck parton is given in the
naive parton model through the mass-shell condition
p =(p+q) =0 as

Therefore the knowledge of Fz(x, Q ) is sufficient to gen-
erate the parton transverse momentum for an event
characterized by xz(Q, W ).

In contradistinction to an e+e collision in which a
quark-antiquark string is formed in deep-inelastic lepton
scattering we produce a quark-diquark string. Baryon-
number conservation requires that at least one baryon
has to be produced in the fragmentation. Two simple
fragmentation scenarios are possible. Either the color
string connects the struck parton with the diquark or the
struck particle drags along an antiquark leaving behind
an excited color neutral object with the baryon number 1.
Both together are color neutral and an only mildly excit-
ed baryon is left. The latter process would explain why
the kinetic energy of the proton in the laboratory system
is of the order of some tens of MeV as compared to the
total string energy of more than 10 GeV. A detailed in-
vestigation which process is most probable would require
proton data with exact Q and W values which are not
available.

The second process requires the knowledge of a two-
parton distribution function which is not known. The
erst process alone, which requires only the one-parton
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FIG. 5. Rotation of the string axis against the axis of the vir-
tual photon.

FICx. 6. Scatter plot of the generated events for the 280-CxeV
muon-proton scattering.
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FIG. 7. (a) Multiplicity distribution of charged particles for all generated events (4 & W & 20 GeV) and (b) dependence of the mean
multiplicity on the string energy W, separately for forward, backward, and total jet. Data from Ref. 13.

distribution function, does not allow us to describe the
final baryon (proton) distribution with the same quality of
agreement with data as we have obtained in e+e frag-
mentation. Also the diquark string likes to emit mesons
due to the larger phase space available for this process.

Thus most baryons would be produced in the last emis-
sion step (by enforcing baryon-number conservation) and
consequently would have low momentum in the string
rest system. We did not And a way to overcome this
problem without introducing further phenomenological
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F&G 8 The parameters (N) and l/k of the multiplicity distributions in diFerent rapidity windows [p,y,„],[y,„,p]. The experi
mental values are obtained by fitting negative-binomial distributions to the experimental distributions. Data from Ref. 14
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MULTIPLICITY DISTRIBUTIONS IN RAPIDITY W'INDOW'S
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FIG. 9. The multiplicity distributions in different rapidity windows [O,y,„],[y;„,0]. Consecutive plots are multiplied by factors
of 0 1. The experimental values are obtained by f tting negative-binominal distributions to the experimental distributions in forward
and backward direction. Data from Ref. 14.

parameters. As already mentioned this would require the
possibility to investigate which values of Q and W
cause the disagreement. The inclusive data are dominat-
ed by small W values, i.e., small string energies, where
the applicability of the string models may be question-
able. Therefore we renounce the description of the
baryon spectrum and treat the diquark fragmentation in
a very simple way. In the first fragmentation step a pro-
ton or A (with equal probability) is emitted backwards
with a constant rapidity distribution

=[1/y, „(W)]e( —y,„&y &0)
Gfp

z -exp[ —pz/0. 2(oeV/c) ] .
PT

This method cannot reproduce the measured proton
spectra and related observables, but leads to a fairly good
description of all other data. It also shows in which way
the treatment of the proton fragmentation influences the
other observables.

GeV . The projection on the 8'axis is rather Oat for 100
GeV ( 8' (400 GeV . All following theoretical distri-
butions are obtained from these events by applying the
same kinematical cuts as done experimentally.

Figure 7 shows the multiplicity distribution of charged
particles for the whole kinematic range 4 GeV( W(20
GeV as well as the variation of the mean multiplicity
with string energy. The energy dependence of both mean
values and the multiplicity distribution are well de-
scribed. This is also true for the multiplicity distributions
in restricted rapidity intervals as can be seen from Fig. 8,
where we display the mean value (N) and the "width"
1/k=a I(N) —1/(N) of those distributions for
dift'erent string energies W. %'e compare with experimen-
tal values which are obtained by fitting negative-
binominal distributions

—kP(p)N(1+p}k

A. Results

%'e start with the display of a scatter plot of the gen-
erated events in the (Q, W ) plane (Fig. 6). Projecting
these events on the Q axis we see a strong peak at Q = 15

N+k —1 ((N)/k)&
with p = (N ) lk(1+ N /kg+'
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to the data. The comparison with the whole distribution
is displayed in Fig. 9. For the distribution in the limited
rapidity interval the uncertainties due to incomplete par-
ticle identification are of the same order as the discrepan-
cies between the data and the calculation. In all cases the
mean values are well reproduced. In forward direction

FIG. 10. Inclusive momentum distributions (relative to the
virtual-photon axis) of charged particles from all generated
events (4& 8' &20 GeV): (a) Feynman xL =2pL/8 distribu-
tions; (b) rapidity distribution; (c) distribution of squared trans-
verse momentum, separately for forward (solid line) and back-
ward (dashed line) jet; (d) seagull plots (pz. )(xl ). Data from
Ref. 15.

we overpredict the k value for large 8'. This parameter,
however, is extremely sensitive to small changes of the
distribution, especially to slight changes of the mean
value, and may be also inAuenced by the experimental
selection of the distribution.

We come now to the momentum distributions. In Fig.
10 we display the longitudinal- and the transverse-
rnomentum distribution of charged particles. The
x =2pL /8'distribution is quite nicely reproduced in for-
ward and backward directions. It is therefore astonishing
that we miss the integral of the rapidity distribution.
This is due to the fact that the integral of the experimen-
tal distribution is not compatible with the mean multipli-
city: f (dN ldy)dye ( N ). Since experimentally only
part of the particles are identified (which cannot be
modeled theoretically) we display two extremes: the dis-
tribution under the assumption that we have complete
identification and under the assumption that all particles
are pions. The transverse-momentum distribution is well
reproduced in forward direction but gives values too
large in backward direction. The seagull plot (pz )(x) is
nearly symmetric and does not show the asymmetric rise
in the forward jet. Sometimes this asymmetry is associat-
ed with stronger gluon radiation in the forward jet, which
is not taken into account in our simple method of string
formation.

As noted already, the important dynamical feature of
the reaction is the fate of the proton remnant, i.e., the
fragmentation of the diquark. A suitable observable to
study this is the distribution of protons, shown in Fig. 11.
Experimentally a characteristic maximum at xL = —0.5,
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and y = —2 is seen. Our simple method of proton frag-
mentation would yield a nearly constant rapidity distri-
bution in the backward jet at fixed string energy, but due
to the contribution of string energies 4 & 8 & 20 GeV a
decreasing distribution results. In forward direction,
where the creation of protons is given by the relative
phase space, we are in good agreement with the data.

In spite of the insufficient treatment of the diquark
fragmentation, the characteristics of pion production are
very well described, as noted already for the multiplicity
distributions. In Fig. 12 we show the Q and W depen-
dence of the pion fragmentation functions. In our model
string formation and fragmentation are treated indepen-
dently and therefore the fragmentation functions are Q
independent [apart from the negligible infiuence of the
Q-dependent intrinsic parton transverse momenta, Eq.
(38)]. The W dependence is more complex. For large
momenta (large xI ) the distribution is independent of W;
i.e., we observe scaling. At low momenta we observe the
breakdown of the scaling. Our calculation is in almost
perfect agreement with data. For the low values of xl
the scaling violation is already well described in the
simplified analytical calculation [Eq. (13)]. For large x&

the formation of resonances becomes important as ex-
plained in Sec. III.

(& s PT&)
(X 2~ PT2)

has already been shown in Ref. 4 that soft proton-proton
collisions and deep-inelastic lepton scattering can be de-
scribed by the same model, based on the dual-parton
model. We concentrate here on CERN ISR energies 31
and 62 GeV. For the formation of strings we follow the
dual-parton model. In the simplest version of this model
in a proton-proton collision a color exchange between
two valence quarks of the protons takes place, leading to
the formation of two (quark-diquark) strings identical to
those in pp scattering (Fig. 13). At higher energies &s
color exchanges between sea quarks and gluons have to
be taken into account. Because of the form of their struc-
ture function the created strings have a lower invariant
mass. At ISR energies they can be neglected as well as
hard parton-parton scattering processes.

For a quantitative calculation of the string formation

VI. APPLICATION TO
PROTON-PROTON COLLISIONS

Motivated by the nice agreement with deep-inelastic
lepton scattering data we proceed now to pp collisions. It

FICx. 13. An inelastic, nondiffractive proton-proton collision
in the dual-parton model: By a color exchange between valence
quarks two quark-diquark strings are formed.
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fi (x )=1.88(x+) "(1—x+) (1+4 4x+) (40)

and generate transverse momenta by the method ex-
plained in Sec. IV.

This well-defined procedure avoids the problem of a
cutoff: Taking the light cone x+ as longitudi. nal momen-
tum fraction of the parton we would have, for a given

(pT ), the rather unphysical situation that infinitely many
partons have almost zero longitudinal momentum but a
finite transverse momentum. Taking the light cone x+ as
an energy fraction we are left with the problem of how to
divide the total momentum into transverse and longitudi-
nal momentum. Both assumptions yield quite different
results.

Having determined the longitudinal and transverse
momenta of the partons we can calculate the mass of a
string with "end points" (mi, x„pT ) and (mz, x~, pT ) as

1 2

2 + +~ (m, , m„x „x „pT,pT )
1 2

=(s'i+p2)'

process the momentum distribution f (x+,pT) of the
valence quarks in the proton is needed. We use the pa-
rametrization of Duke and Owens at the lowest possible
Q =4 (GeV/c) for the longitudinal parton density,

where P+ is the proton light-cone momentum. We use
quark and diquark masses of 0, M, , „,but the final re-
sults are insensitive to this choice. The string formation
process is now completely specified and the fragmenta-
tion of the two generated strings is treated independently
as described in Sec. V.

A. Results

We generated events at &s =31 GeV and &s =62
GeV to compare with ISR data for multiplicity and rapi-
dity distributions of charged particles. Figure 14 shows
multiplicity distributions for both energies. At 31 GeV
the theoretical mean multiplicity is about one particle too
low; at 62 GeV the agreement between theory and data is
perfect. For higher collision energies the distribution
widens up too strongly and cannot be described by 2-
string formation alone.

Figure 15 shows rapidity distributions, for all events
and also for selected "windows" of low and high multipli-
city. The experimental data should taken with some
care, since the acceptance of the detector reaches only up
to ~i)~ (4, as can be seen. Unfortunately we are not
aware of more detailed investigations of the pp system at
this energy.

2 2PlT ~T=x +,x + p+2+
+ + p+2ix

2pg pT +vl i +Eye 2 (41)

VII. CONCLUSIONS

We developed a model for string fragmentation, based
on the assumption that the color string decays sequential-
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nances in the mass regions of the baryons one additional
parameter, the meson-to-baryon ratio, is introduced by
limiting the number of mesonic and baryonic species
which we allow to be produced.

With this input we can describe a wealth of data mea-
sured in e+e, pp, and pp collisions. This includes mul-
tiplicity distributions (total, in restricted rapidity and/or
energy bins), the momentum distributions of different
hadrons, the scale breaking of the pion momentum distri-
bution at low Feynman x, and the production of higher
resonances such as the g or the p meson.

From a physical point of view the result is rather
disappointing. If phase space dominates the result, one
can hardly learn anything about the transition matrix ele-
ments [Eq. (2)]. The agreement between our calculation
and the data means that most inclusive single-particle
data are insensitive to details of the fragmentation pro-
cess, but rather sometimes biased by the experimental
data analysis (as shown for the seagull plots in e+e an-
nihilation). Exceptions were the inliuence of three-jet
events at higher energies in e+e annihilation and the
proton fragmentation in deep-inelastic scattering. There-
fore it is certainly premature to conclude from an agree-
ment between experimental data and models which em-
ploy QCD-inspired inputs such as counting rules that
clear-cut information about the QCD is revealed.

The next step is an extension of this approach to
proton-nucleus and nucleus-nucleus collisions. This re-
quires additional parameters to describe the formation of
strings in second and further collisions. Independently of
that, a detailed investigation of two-particle correlation
data is planned, in order to see whether two-body correla-
tions such as the Hanbury-Brown —Twiss effect or
strangeness compensation as a function of rapidity
difference are equally well predicted in diA'erent fragmen-
tation models or whether discrepancies with correlation
data discard one or more of these approaches.

ly and in each decay step a hadron is produced. Its
momentum distribution is completely determined by the
longitudinal phase space and one further parameter, the
average transverse momentum of the produced hadrons.
Because of the lack of knowledge of the meson reso-
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