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Equivalence between the covariant, Weyl, and Coulomb gauges of scalar electrodynamics is
shown by using the functional Schrodinger-picture formulation.

I. INTRODUCTION

The functional Schrodinger-picture formulation of
quantum field theories has been found convenient for
nonperturbative variational studies of various quantum
field theories. ' It has recently been found that the
equivalence between the Weyl (temporal), Coulomb, and
unitary gauges of the Abelian Higgs model can be shown
almost trivially in the functional Schrodinger-picture for-
mulation.

In this Brief Report we will extend the method ex-
plored in Ref. 2 to show the equivalence between the co-
variant, Coulomb, and Weyl gauges of the Abelian Higgs
model. In Sec. II the Schrodinger-picture formulation of
scalar quantum electrodynamics in the covariant gauge is
presented, and in Sec. III the equivalence between the co-
variant, Weyl, and Coulomb gauges is shown. In the last
section we discuss some related problems.
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where the conjugate momenta are defined as
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We denote the spatial indices 1, 2, 3 by i, j, k and the sca-
lar field components 1 and 2 by a, b, c.

In the Schrodinger picture, the wave functional of the
physical system satisfies the Schrodinger equation

II. THE ABELIAN HIGGS MODEL
IN THE COVARIANT GAUGE
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dt

where the Hamiltonian operator is given by

(2.5)

The Abelian Higgs model in the covariant gauge is de-
scribed by the Lagrangian density
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where a is a gauge parameter, P, are real scalar fields,
and q and g are real ghost fields. The potential V is a
function of (Pi+/&), and the covariant derivative D„' is
defined as

H= J'd'xm

and the conjugate momenta in the Hamiltonian are
represented by functional derivatives with respect to the
corresponding field variables in such a way that they are
consistent with the equal-time (anti)commutation rela-
tions. Since the Hamiltonian of the system is invariant
under Becchi-Rouet-Stora (BRS) transformation, howev-
er, one must require that the physical states be invariant
under the BRS transformation

D ab gaby e &ab
P P p& 0 7 (2.2)

Qe+(Q„A", ri, rl;t) =0, (2.6)

where e'" is the usual antisymmetric real matrix. The
corresponding Hamiltonian density is given by

where the BRS charge operator Qz is given by

Qtt =Id'x(ilBkvrk+erle' P, Pb+itr„tr ) . (2.7)
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In order to find the physical wave functionals that
satisfy the Schrodinger equation (2.5) and the constraint
equation (2.6), it is convenient to use the polar coordi-
nates for the scalar fields:

Then the BRS condition (2.6) becomes

' 5A;(x) 58(x)

$1—p cos8,
(2.8)

6 5

5q(x) 5A (x)
(2.9)

Pz=p sin8 . By factorizing the ghost part of the wave functional as

+(P„'A",rt, g;t)=exp f d x d y q(x)D(x —y, t)g(y) @(P„A";t), (2.10)

the BRS condition can be expressed in terms of only the matter and gauge field variables:

4(P„A";t)=0, (2.1 1)

where D(x y, t) =D—(y x, t). —
We can further simplify the constraint equation by

splitting the vector potential to the transverse part A
and the longitudinal part A as

(2.13). As in the case of the Weyl gauge, the different
choice of the parameter corresponds to the different
gauge-fixing conditions. We will show two interesting ex-
amples (the Weyl and Coulomb gauges) explicitly.

(2.12)
III. EQUIVALENCE BETWEEN THE COVARIANT,

WEYL, AND COULOMB GAUGES

Then the wave functional N is expressed as a functional
of gauge-independent variables (p, A ) and gauge-
dependent variables (8, A, A ), and the BRS condition
(2.11) is expressed in terms of only the gauge-dependent
variables. Equation (2.11) implies that there are only two
independent variables among the three gauge-dependent
ones. This fact can be seen more clearly by introducing
the following transformat;on of variables:

r(x)=V A(x) —D '(x —x', t)V A (x'),

In the Weyl gauge it is well known that the gauge-
fixing condition

=0 (3.1)

fixes only a part of the gauge degrees of freedom. The
remaining spatial gauge degree of freedom is eliminated
by the Gauss-law constraint

1s(x) =V. A(x) ——V 8(x),
e

(2.13)
(3.2)

which is realized as a constraint on the wave functional

u(x)=aV A(x) — V8(x) cD —'(x —x', t—)V A (x'),
e

where a, b, and c are arbitrary constants with
a b —c&0, and t—he integration convention is used for
the repeated arguments. Using the new variables r, s, and
u, the BRS condition becomes

4(P„A~;t)=0,6
5u x

(2.14)

which implies that the wave functional is independent of
the variable u(x).

The problem of obtaining physical information from
the covariant gauge Higgs model in the functional
Schrodinger picture is now expressed as the problem of
solving the functional Schrodinger equation (2.5) such
that the wave functional satisfies the constraint equation
(2.14). There exist many different ways of realizing this
problem depending on the parameters a, b, and c in Eq.

(3.3)

in the functional Schrodinger picture.
It is easy to show that, when (a, b, c)=(0,0, 1) in Eq.

(2.13), the BRS condition (2.14) implies that the wave
functional is independent of A (x). Since the matrix ele-
ments of any quantum operators in the Schrodinger pic-
ture are defined by

(@,lo(P„A",g, g)lqI &

DA"DgDq6 ~ %*, 0%'

the BRS condition (2.14) with the choice of
(a, b, c ) = (0,0, 1 ) is equivalent to the Weyl gauge condi-
tion (3.1). In Eq. (3.4) qI* represents the dual state of V.
The Gauss-law constraint (3.3) can be obtained from one
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of the field equations in the covariant gauge:

8;E, =ej =Ops (3.5)
&e, lax, —ej'~e, &= —ia, q, , e,),5

(3.6)

which is expressed in the Heisenberg picture. In the
Schrodinger picture the matrix elements of Eq. (3.5) are
given by

where +, and %'2 are the covariant gauge wave function-
als that satisfy the constraint (2.14). The matrix elements
of ~ in the covariant gauge can be written as

%2 = 1 Dp, DA "DgDg5(u)%", 0 +6 5s 6 5r 5
5A 5A' » 5A' 5r

= JDP, DA "Di) Dr)5(u )4*, D 'V c + + D (3.7)

With the choice of (a, b, c)=(0,0, 1), therefore, one can
easily show that the field equation (3.6) becomes the
differential equation

&p I&3;E, —ej Iq' &= —
&)OD '&'p I&);&; ej I+ &

(3.8)

the covariant gauge formulation with the choice of
(a, b, c)=(0,0, 1) becomes that of the Weyl gauge.

Similarly one can show the equivalence between the co-
variant and Coulomb gauges. With the choice of the pa-
rameters (a, b, c)=(1,0,0) in Eq. (2.13), the constraint
equation (2.14) becomes

& ~, l&, ~, —~'I~, & =0, (3.9)

which is just the Gauss-law constraint (3.3).
It can be easily shown that, when condition (3.9) is

satisfied, the ghost field part of the Hamiltonian (2.3)
decouples from the rest, and the Schrodinger equation
(2.5) becomes that for the Weyl gauge. This implies that

I

for the matrix elements of the generator of the spatial
gauge transformations. The simplest solution of Eq. (3.8)
1s

(3.10)

V. A=O . (3.11)

Since the matrix elements of the operator 5/68; 3, in the
covariant gauge are given by

This implies that the wave functionals are independent of
the longitudinal part of 3". Together with the fact that
the matrix elements of quantum operators are given by
Eq. (3.4), Eq. (3.10) implies the Coulomb gauge condition

= J DP, DA "Di)Dg5(u)%," +(
6 6s 5 6r 5

' 5a, ~,

= J DP, DA "DgDr15(u)+f (b+c) +, +,D'a —b —c (3.12)

the matrix elements of d, E, in Eq. (3.6) must be expressed as

&e, la;E; e, &. . .=i(e, e +8, e,
)

6 — 6
5ap ' b=p=,

(3.13)

D%, , %, = —B, %, (3.14)

1S

The simplest solution of the differential equation (3.14)

when (a, b, c)=(1,0,0). Thus the field equation (3.6) be-
comes, in this case,

Using the condition (3.15), one can easily show that the
ghost part of the Hamiltonian (2.3) decouples from the
rest, and thus the Schrodinger equation (2.5) becomes
equivalent to the Coulomb gauge equation. One can also
show that the longitudinal part of the Hamiltonian (2.3),
2E; E;, becomes the Coulomb interaction term because
of relations (3.13) and (3.15).

IV. DISCUSSION

(3.15) We have shown that the Schrodinger-picture formula-
tion of covariant gauge scalar quantum electrodynamics
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can be realized in infinitely many ways parametrized by
the parameters (a, b, c) in Eq. (2. 13). Some special choices
of these parameters correspond to the known gauge-
fixing procedures, as shown in Sec. III. This procedure
can easily be generalized to non-Abelian gauge theories.
The freedom in the choice of the parameters (a, b, c) may
help simplify some practical computations.

In showing the equivalence between the covariant,
Weyl, and Coulomb gauges in Sec. III, we have chosen
the simplest solutions for the differential equations (3.8)
and (3.14). Other nonvanishing solutions of these equa-
tions correspond to adding gauge-dependent parts to the
gauge-fixing constraint equations to make them Lorentz

covariant. Thus the Schrodinger-picture formulation or
gauge theories clearly shows the relations between
different gauge-fixing conditions.
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