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We consider the eff'ects of sphaleronlike transitions in the high-temperature QCD plasma. Be-
cause of the chiral anomaly, these imply rapid chirality change, and strongly influence the dynamics
of any axionic fields that may couple to the topological winding number of QCD. We derive a cou-

pled set of equations describing the evolution of the axion field and chiral fermion density at high
temperatures. The unsuppressed sphaleronlike transitions result in the damping of coherent axionic
oscillations. The implications of this phenomenon for axion fields in early Universe cosmology is

discussed.

I. INTRODUCTION

Non-Abelian gauge theories have a nontrivial vacuum
structure. ' In addition to the usual perturbative vacuum
configuration 3;= T'A =0, there are an infinite number
of pure gauge configurations,

A = —QBA ', AFG

labeled by an integer Chem-Simons number

Yang-Mills-Higgs classical field equations, called a
sphaleron. In the Weinberg-Salam theory this energy
barrier is of order M~/a~, or 10 TeV.

Associated with the twisting of the gauge field from
one vacuum state to another is the violation of chiral fer-
mion number through the chiral anomaly and the
Atiyah-Singer index theorem. For example, in a parity-
violating theory such as the Weinberg-Salam model there
is an anomaly in the lepton- and baryon-number
currents;

(2)

all with zero energy.
In order to change from a vacuum configuration with

one integer value of Ncs to that with another integer
value, it is necessary to pass through a nonvacuum, i.e.,
finite energy field co-nfigurations: Fig. l. In a spontane-
ously broken gauge theory, such as the Weinberg-Salam
model, it is possible to find the magnitude of the potential
barrier between adjacent vacua by purely classical
methods. This is because an energy scale is inserted into
the theory at the tree level by means of the vacuum ex-
pectation value of the Higgs field. The gauge bosons ac-
quire masses, and the barrier height in question is given

by the energy of a certain static solution of the coupled

Ncs

FI&. 1. The periodic vacuum structure of non-Abelian gauge
theory in the absence of fermions.

71f
[ 2g tr(F„F"—') +g

' F„'g '""],,

where F„and F„' are the field-strength tensors for the
SU(2) and U(1) hypercharge gauge fields of the
Weinberg-Salam theory, g and g' are the corresponding
coupling constants, and nf is the number of sequential
generations (families) of quarks and leptons. Since
F„F"=

—,'e" ~F„F & may be expressed as the total
divergence of a four-vector whose time component is just
that appearing in the definition of Ncs, the nonconserva-
tion of 8 and L is related to the change in Ncs of the
SU(2) gauge vacuum.

At zero temperature such transitions and concomitant
B and L violations are very severely suppressed, since
they require a quantum tunneling through the energy
barrier between two degenerate vacua with difterent Xcs.
The semiclassical treatment of this tunneling problem by
means of the Euclidean instanton solution indicates that
the process is suppressed by a factor of
exp( —4~sin Ou, /ct)-10 ', and hence is entirely negli-
gible at zero temperature. '

At high temperatures (T )Mii, ), the situation is quite
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different. Because the energy barrier represented by the
classical sphaleron solution is finite, the rate of classical
real-time thermal transitions changing Ncs and therefore,
the baryon and lepton number has no such exponential
suppression in electroweak theory. The rate of such
B- and I.-violating processes has been computed in the
Weinberg-Salam theory by semiclassical methods for the
temperature range Mii (T) « T «Mii, (T)/aii. At
temperatures greater than Mii, (T)/alai„ the semiclassical
analysis fails because perturbation theory around the
zero-temperature ground state is unreliable. Equivalently,
the breakdown of weak-coupling expansions for tempera-
tures T)Mii (T)/aii comes about because of infrared
divergences in the effective three-dimensional gauge
theory at high temperatures with massless gauge bosons.

The failure of the semiclassical approximation for the
rate does not mean that the rate is small. On the con-
trary, it is possible to argue from general properties of
scaling in the high-temperature phase that the rate of
such transitions per unit volume is of order
I /V —u~T . ' Study of two-dimensional models with
features analogous to the (3+ 1)-dimensional electroweak
theory leads to similar conclusions. ' '

A high rate of baryon- and lepton-number nonconser-
vation at T)M~ has a number of important cosmologi-
cal implications. Any preexisting (8 +I.) asymmetry
would be eliminated by the time of the electroweak phase
transition. ' '" This excludes some grand unified models,
such as the minimal SU(5) model for generating the ob-
served baryon excess in the Universe. That the observed
baryon excess might be generated at the electroweak
phase transition is a tempting speculation, requiring fur-
ther elaboration. '

The aim of the present paper is to extend the study of
topological number change to finite-temperature QCD.
Since there is neither symmetry breaking of the color
group nor an energy scale in the bosonic sector at the
tree level, QCD at any temperature is rather analogous to
the electro weak theory for temperatures above the
symmetry-restoration temperature. Like the electroweak
theory above symmetry restoration, there is no finite-
energy classical sphaleron solution in QCD and semiclas-
sical weak-coupling methods are useless. However, draw-
ing our lesson from the electroweak theory above the
phase transition leads us to the conclusion that the transi-
tion rate per unit volume in Ncs for finite-temperature
QCD must be at least of the order of a, T, and quite un-
suppressed.

In QCD the nontrivial vacuum structure leads to the
introduction of the 0 parameter, a nonzero value of
which implies strong CP violation. To solve this strong
CP problem a light pseudoscalar particle, the axion, was
proposed. ' Since the standard analysis of the generation
of mass for the axion field relies on instanton tunneling
transitions between neighboring vacuum states, it is in-
teresting to ask whether the same analysis continues to be
valid in light of the newer understanding of topology-
changing transitions in non-Abelian gauge theories at
finite temperature. In this paper we shall show that the
original semiclassical analysis of the axion mass remains
valid even at high temperatures, and in the process dis-

cover a new effect that has been overlooked in previous
work, viz. , the damping of coherent axionic oscillations
in the thermal QCD plasma. This could be important for
the dynamics of the axion field in the early Universe. The
axion damping constant is not given by instanton
methods, but is more closely related to the analogs of
sphalerons in thermal QCD, in that unsuppressed, real-
time processes are involved. The formalism we present is
very general and should prove useful for discussing other
processes as well, such as kinetic equilibration of fireballs
in heavy-ion-collision experiments presently being
planned.

II. SPHALERONLIKE CONFIGURATIONS IN QCD

where the gauge function 0 carries unit topological
charge Xcs = 1. Because the Lagrangian of pure QCD is
conformally invariant at the classical level, the maximal
static classical energy of this family of configurations can
be made arbitrarily small. A particular example of such a
noncontractible loop in configuration space is the Eu-
clidean instanton configuration with an arbitrary scale
size A, , where Euclidean time ~ may be regarded as the
parameter along the loop:

1 'Qp&
P g 2+ 2+ g2

(6)

If transformed to the Ho=0 gauge, this configuration
will satisfy the boundary conditions of Eqs. (4) and (5).
The maximal energy along the path of Eq. (6) is given by

3m 1
max

Ns

It corresponds to the configuration of Eq. (6) at r=0. It
is clear from (7) that for infinitely large A, the barrier is
absent.

Notice that this scaling argument relies on the scale in-
variance of the classical Lagrangian far into the infrared,
precisely where the running coupling becomes strong and
the quantum (scale-noninvariant) structure of the physi-
cal QCD vacuum becomes important. At finite tempera-
tures the infrared behavior of correlation functions in the
QCD plasma remains nonperturbative in character. Al-
though the Debye screening length for electric correla-
tion functions appears in one-loop perturbation theory,
the magnetic screening length, presumed to be of order
(a, T) ' cannot be calculated perturbatively. '

If we fix the scale size k at a typical QCD length scale
(such as 1/o., T) by the method of constrained instan-
tons, ' then the field configuration (6) at &=0 in Ho=0
gauge has many properties in common with that of the
sphaleron in electroweak theory. Like the classical

Consider a one-parameter family of gauge fields begin-
ning with

3;=20=0,
and ending with
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1

CXsA, T

sphaleron solution this configuration has Xcs= —,', one
negative mode, and lies atop of the potential energy bar-
rier separating different gauge sectors. Moreover, there is
a normalizable zero mode of Dirac operator in this back-
ground. ' Hence, we can estimate the rate of topological
transitions in QCD at high temperatures treating this
configuration as "sphaleronlike. " The calculation is
essentially the same as in Ref. 4 where the estimate of the
rate for T)Mii, (T)jail, was performed. The result of
this estimate in the present case is

15/2
~s g dk —3~/4a, AT

sph

q(x) =B„K~,

where

(12)

2IK"= e" tr
8 2 v a P 3 v a /3

the time component of which is related to the Chern-
Simons number:

field a =f8, where 0 is a field periodic under
0" —+0" +2~.

The Pontryagin density may be written as the total
divergence of a topological current:

~ a4T4
s (9) Ncs= —f d xK (14)

where JVV is the normalization and volume factor for the
translational and rotational zero modes. There is some
indication from Ref. 4 that the proportionality constant
in (9) is a number of order several thousand, because of
the large factors involved in both the zero mode and Auc-
tuating mode contributions. If this is the case, the rate of
barrier hopping could well be as large or even larger than
the rates of conventional perturbative processes in the
hot QCD plasma, but we shall make no assumption of the
size of this numerical constant in what follows.

Some progress has been made in understanding the
nonperturbative dynamics of sphalerons using an
effective Lagrangian which describes many of the features
of confining gauge theories. ' In this paper we shall not
need any details of such sphaleronlike configurations in
QCD, nor make use of any semiclassical expansion. We
assume only that a crude estimate for the transition rate
over the potential energy barrier separating vacua of
diff'erent Ncs, such as (9) is valid.

III. AXION DYNAMICS IN THE HOT PLASMA

In this section we consider the response of a thermal
system to the presence of an axion field which is varying
in space and time on a scale large compared to (ct, T) ', a
typical mean free path for particle scattering. The action
is

S =So—
—,
' f d x(B"a)+—f d x aq(x),1

(10)

where

2 2

q(x)—= e" PF'g'&= tr(F F" )p exp
16 2 pv

O's
EQ Bo

277

is the density of Pontryagin number and So is the QCD
action in the absence of axions. The metric here is
Lorentzian (

—+++) and the action S real. The axion

The minus sign enters here because of our convention
that E =

E();~k
= E;~k.

The equation of motion for the thermal average of the
axion field follows from the action (10):

B„B"(a (x) ) +—(q (x) ) =0 .
1

Here (0) denotes the thermal average of the operator 6
in the presence of the axion background field:

(0)= P:——TrpO,TrpO 1

Trp Z

where p is the density matrix, obeying

dp
dt

i [H,p]—

(16)

(17)

and H is the Hamiltonian corresponding to the action S.
This is given by

2
2

2 1 2H= d x tr II+ aB +tr B +—II,
8~ f a

where

+Hfermion

II= —E—
2

aB= —E—a, B
g~2f ' 2m

(19)

is the momentum conjugate to the gauge field A and H,
is the momentum conjugate to the axion field. In the
remainder of this section we shall ignore the fermionic
part of the action, and discuss the influence of fermions
on the axion dynamics in the next section.

Let us impose the initial conditions

a (t, x)~0, t ~ —ao,

p( t )~po =exp( Ho /T), — (20)

and calculate the statistical averages in Eq. (15) to linear
order in a. We find

lo! 1(q(x)) = (q(x) )o— ' f dt' f d x'TrI [tr(II.B)a (t', x'), po]q(x)] +6(a ),~f z,
where the zero subscript denotes the average with respect to po. Using Eqs. (11) and (19) we have

(21)
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(q)O=—
2

a(tr(B) )o, (22)

where a will denote the expectation value of the axion field in all of the following.
The first term of Eq. (22) vanishes by the CP invariance of po. Therefore the linear response equation for the axion

field in the QCD plasma is
2

1 1 0's 1 ~s0= —t3 c)~a+ — a(tr(B) ) i—
2 f m f~ f dt' f d x'([tr(II B)(x),tr(II.B)(x')])oa(x') . (23)

All averages are now with respect to the QCD thermal ensemble po=exp( Ho/T—) in which the axion field has been set
to zero.

Let us introduce the retarded response function
2

G~ ( t —t ', x —x' )—:—i 8( t t '
) (—[tr ( II B)( t, x ), tr( II B)( t ', x' ) ] )o

d ~d~ f k eitn(t —t )eik '(x —x')G
( k)

2vr (2' )3

whose Fourier transform G~ is analytic in the upper half complex co plane:

'k
GR(co, k) = f dco'

N N +lO

(24)

(25)

The spectral density p (not to be confused with the density matrix of which we have no further use) is determined by the
matrix elements of the topological charge density:

2 3 —E /T
p(co, k)= g (n ~q(0)~m ) e " (1 —e " )5(co E+E„)—6 (k —p +p„),

n, m

(26)

where the state
~
n ) is an eigenstate of the full Hamiltoni-

an.
If we focus now on spatially homogeneous axion fields,

a =a (t) that are slowly varying with time, and assume
that there are no infrared divergences in QCD at finite
temperature, then G~ is analytic at co=0 and may be ex-
panded in a Taylor series there:

1 1 &s
M, =—

2 f

and

2

(«(B)') —,ff —oo CO

(31)

Gi, (co, k)=Gi, (O, k)+co GR(O, k)+. . . (27)

l oo d COy= f j—oo co lO

p(co, 0)

Substituting (27) into (23) and (24) yields the linear
response equation for the axion field:

r

p(co, O)

CO
co —0

d a(t) da(t) + 2+y +M, a t =0, (28)
'tr dp

to=k=0 (32)

where higher derivatives of a have been neglected. The
axion mass M, is given by

Despite appearances M, is positive and equal to the
standard expression in terms of a Euclidean path integral

1 1
M, =—

2 f
2

(29)
M~= f dr f d'x f [2)A ]e qz(0)qz(r, x),tt

0

while the friction term

y = Gi, (co, O)
~f dco

(30)

gives rise to the damping of the coherent axionic field os-
cillations.

Using the fact that p(co, k) is an odd function of co when
k =0, and therefore vanishes at co =0, we may write these
two quantities in the form M, txf e (34)

where qE is the Euclidean continuation of (11). The ex-
pression (33) for the axion mass is derived in the Appen-
dix. If we are in the weak-coupling regime, such as is ob-
tained at extremely high temperatures, then (33) may be
treated by semiclassical instanton methods, with the usu-
al result, viz. ,
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This demonstrates that the leading contribution to the
axion mass at finite temperature arises from quantum
tunneling effects, just as at zero temperature, and receives
no contributions from the classically allowed real-time
sphaleronlike transitions.

This important result is a direct consequence of the
fact that the classically allowed thermal transitions we
are considering have no effect on the 0 dependence of the
free energy of pure QCD. The reason is that the 0 pa-
rameter multiplies a total derivative in the action and
does not enter the classical equations. It may be rotated
away entirely and neglected in the classical theory applic-
able in the high-temperature limit. Therefore the free en-

ergy cannot receive any L9 dependence from classically al-
lowed thermal transitions, no matter how rapidly these
occur in the hot QCD plasma. Since M, is proportional

to the second derivative of the free energy with respect to
0, it too receives no contributions from the sphaleronlike
transitions taking place in the hot QCD plasma. The re-
sult of Eq. (33) has been found by efFective potential
methods using instantons. ' Our results confirm this
analysis, and show that Euclidean effective potential tech-
niques are not invalidated by real time topological transi-
tions.

In contrast with M„ the damping constant y cannot be
expressed simply in terms of Euclidean path integrals.
Accordingly, it may and does receive contributions from
classically allowed real time transitions, and is not instan-
ton suppressed. This will be plain if we evaluate the last
expression for y, Eq. (32), by substituting the definition of
the spectral density function (26). Proceeding in this
manner we obtain

8y=, Zo 'g l(n ~q(0)~m ) ~'e " 5'(p —p„)5(E E„) . —
f27

This we recognize as the spectral decomposition for
4

f dt f d x(q(t, x) q( 0)) o
oo

(36)

I

Taylor expansion

p(co, 0)=co +. . . =Tdp dp

w =k=0 co=k=odc'
(40)

lim, „(Q (t)) =lim, ([Ncs(t) —Ncs(0)] )

=2VtI, „, (38)

where the three-dimensional volume is denoted by V.
This last relation is that of a random walk in the one-
dimensional coordinate of field space parametrized by
Ncs. On the other hand, if we evaluate the average in

Eq. (38) directly in terms of the density function of Eq.
(26) we find

in the high-temperature limit. Since the matrix elements
( n

~ q (0)
~
m ) are nonzero in ordinary perturbation

theory, there is no instanton suppression of the damping
rate in the high-temperature plasma. This is in contrast
with the zero temperature limit, where the spectral func-
tion and all of its derivatives vanish at co=0 because of
the existence of a mass gap in the theory.

The representation for y in Eq. (36) shows the connec-
tion between the axion damping and the real-time Auc-

tuations of the topological charge,

Q(t)= f dt f d xq(t, x) . (37)
0

Indeed, in the absence of fermions we expect

Comparing Eq. (32) or (36) with (38)—(40) we find

@=I,„/f T~a", T /f (41)

which is valid for all temperatures high enough for the
classical thermal activation over the barrier in Fig. 1 to
dominate over quantum tunneling (instanton) processes.
In QCD we expect the temperature at which this first
occurs to be when the inverse magnetic coherence length
o., T becomes of order NQCD or at temperatures of a few
GeV. This analysis, and in particular, Eq. (38) neglects
the presence of dynamical fermions, a shortcoming we
address in the next section.

IV. AXION DYNAMICS IN THE PRESENCE
OF FERMIONS

Fermions play a crucial role in the topology-changing
transitions of the hot QCD plasma because of the chiral
anomaly. Since QCD has only parity-conserving vector
couplings, there is no fermion-number violation induced
by these transitions. Only violations of chiral fermion
number are generated. Let Q,„be the total chiral charge
of all quarks with mass m &(T. For massless quarks the
chiral anomaly informs us that

2

(Q (t)) =2Vf damp(co, 0)
(

dQ.h =2nf V(q ), b, Q,h
= —2nf VANcs .

dt
(42)

~2' Vtp(ta, 0), (39)

as t ~ ~. In order to arrive at this last form we have re-
moved p(co) from the integral and placed it with its value
at some typical co- T, by assuming that it is slowly vary-
ing compared to sin (cot) in the limit that t is very large.
Furthermore, for long-time scales only the value of this
function near co=0 is important, so that we may use the

It should be remarked at this point that the minima of
Fig. 1 are forced to be degenerate, since all integer N&s
are equivalent to each other by a (topologically nontrivi-
al) gauge transformation. Unlike the Chem-Simons num-
ber, Q,„ is gauge inuariant, so that states of different
chiral fermion number may (and do) have different ener-
gies. Thus we should not expect a periodic potential with



2032 McLERRAN, MOTTOLA, AND SHAPOSHNIKOV 43

H ~H —p, Q,h, (43)

then it becomes energetically favorable to create a net
chiral fermion number in the plasma. Near Q,h

=0 we
have a negative linear term in the energy superimposed
on the periodic potential of Fig. 1, because of the chemi-
cal potential term in (43). This leads to a washboard po-
tential, which implies that Q,h

=0 is not the ground state
of the system. If we evaluate the average value of the
chiral fermion number in the Fermi-Dirac distribution
with the Hamiltonian modified by the replacement (43),
we find, to linear order in p,

strictly degenerate minima in terms of Q,h when the fer-
mionic contribution to the energy is included.

If we introduce a nonzero average value of chirality
into the plasma by the device of adding a chemical poten-
tial to the Hamiltonian,

I.I h
2nyp (45)

is shifted suddenly to Q,„=O. Now the initial overpopu-
lation of states with Q,h )0 is not the equilibrium
configuration, and there will be a net decrease of (Q,h );
i.e., the net chirality will relax to zero. We may calculate
the rate of relaxation if we assume that (44) continues to
hold for t )0 as well, effectively de+ning a p(t) in terms of
the decreasing chirality as a function of time. This is val-
id only if the relaxation is slow enough so that the system
is close to equilibrium during the relaxation, with an

effective time-dependent chemical potential. This adiaba-
ticity assumption permits us to use detailed balance and
equate (dQ, „Idt ) for t) 0 to the negative of the transi-
tion rate to the right with the Hamiltonian of (43):

d&cs(q(x))= —— = —(r —r )
V dt

VT
&Q.h&=v (44)

to linear order in p, since

This implies that the decreasing washboard potential
cannot continue indefinitely for arbitrarily large Q,h.
The reason that the potential must turn upward for large

Q,„, and therefore possess a minimum, consistent with
Eq. (44) is Fermi-Dirac statistics. Even if the fermions
are treated as massless, it costs energy to create a
fermion-antifermion pair with net chirality, since the pair
must be created in an unoccupied momentum state.
Since the spacing between states (and hence this energy
cost) goes to zero in the infinite-volume limit, the value of
Q,„at which the potential begins to turn upward is of or-
der V, which is consistent with the volume factor in Eq.
(44).

Thus the potential with fermions included looks quali-
tatively like that sketched in Fig. 2. Stable dynamic equi-
librium is maintained by the larger population of states
with Q,h )0 diffusing to lower Q,h, and compensating for
the linear skewing of the Hamiltonian in (43). Hence
there is detailed balance, and the net rate of change of
chirality is zero in equilibrium„(dQ, „Idt ) =0, with the
average value given by (44).

Suppose now that the external chemical potential p is
removed suddenly (at t=0). Then the minimum of Fig. 2

pnyI +=I, &exp + (46)

Then we may eliminate p from Eqs. (42), (44), and (45) to
secure

(Q,„)= —12n& ',
"

(Q,„),T3
(47)

which determines the decay time of the net fermion
chirality in the thermal plasma.

In spite of the fact that the rate I, h is proportional to
n, while the rates of usual kinetic processes such as

qq~gg, etc. , are of order I k;„-a„I, h could be bigger
than I k,„ if the numerical coefficient in (9) is sufficiently
large. In that case chirality-changing reactions may be
the fastest reactions in the plasma, and the adiabaticity
assumption used in deriving (47) may not be reliable
enough for quantitative analysis. Even in this case we
would expect the rate of chirality-changing reactions to
be roughly given by Eq. (47) on dimensional grounds.
Whether such rapid chirality Aipping may be responsible
in whole or in part for the restoration of chiral symmetry
in high-temperature QCD is an interesting issue in itself
that merits a more careful study.

In deriving Eq. (47) we have ignored the axion field, as
well as explicit chirality violation in the theory (such as
fermion masses). If we compare Eq. (15), the equation of
motion of the axion field, and the chiral anomaly equa-
tion (42), it is clear that it is inconsistent to put the chiral
density to zero when the time derivative of the axion field
is nonzero, a&0. Explicitly, rewrite the above equation
for Q,„ in terms of the chiral chemical potential p, keep-
ing also the term in the energy proportional to a:

1 .
AEgauge

= a KEcs (48)

FICx. 2. The potential energy of a gauge field plus massless
ferrnion system as a function of chiral charge. The potential is
concave for large Q,„ in a finite volume, due to Fermi-Dirac
statistics, as explained in the text.

Then the equation for p becomes

dp 6I.,h i da
T3 (49)
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The factor I, h is the rate of sphaleron-induced transi-
tions as before, I",h is the rate of chirality-flipping transi-
tions due to fermion masses and Higgs-boson exchanges,
which were neglected previously. I,h is determined by
the cross sections of kinetic reactions such as qLq~ ~gH
where g is a gluon and H is a Higgs boson, as well as by
the explicit violation due to a mass term.

The equation for the axion field in the presence of a
nonzero chiral fermion density becomes

d+y(a+2pfnf )+M, a =0 . (50)

The second term which multiplies the coefficient y above
arises from Eqs. (41)—(47).

If the explicit chirality-breaking term can be neglected,
we must have 2nfp~ —(da/dt)1/f. The chiral chemi-
cal potential therefore becomes proportional to the time
derivative of the axion field. This may also be derived
from the anomaly equation for chiral charge and the
equation of motion of the axion field. In this case we ar-
rive at an interesting situation. Suppose, that we started
with some initial state with nonzero density of the chiral
charge, corresponding to an initial po but zero a. Then
the large-time asymptotics of solution to Eqs. (49) and
(50) is

a~— 2nf f,po

1+12f,nf /T
(51)

p~ —a /2f, nf, (52)

provided that I, is exponentially small. In other words,
the axion field will rotate with constant speed around the
point a=0.

In real QCD, I,„WO. This gives rise to a friction term
for the axion equations of motion which is proportional
to I,h at asymptotically late times:

r,„
Yea= 3' 3

~

2y+ 24I,~hnf /T
(53)

There is a complicated interplay between the axion field
damping and the fermion chirality flipping in high-
temperature QCD.

V. CONCLUSION

Sphaleronlike transitions at high-temperature QCD re-
sult in strong nonconservation of chirality. The rate of
chirality-changing transitions could conceivably be com-
petitive, or even larger than the rate of usual kinetic reac-
tions. If this is the case, this effect can change the tradi-
tional treatment of thermalization processes in heavy-ion
collisions. It may also be important for understanding

I

the chiral phase transition of high-temperature QCD.
We have found that there is a damping of the axion os-

cillations in a hot plasma. In the expanding Universe,
there is also a contribution due to the Hubble expansion.
The sphaleron contribution, in order to be ignored, must
satisfy

y= " &T'/I, .
I.ph

fzT (54)

If f —10' GeV, as seems to be required for the invisible-
axion hypothesis to be tenable at all, ' we find that the
sphaleron-induced damping of the axion field dominates
over that due to the expansion of the Universe at all tem-
peratures above a few hundred GeV. However, this extra
damping coefficient does not affect the coherent axionic
oscillations which do not begin until H-M„when the
plasma has already cooled sufficiently for y already to
have turned off.

It is clear that the sphaleron damping of axion oscilla-
tions is general in character. The results of this paper
can easily be extended to any gauge theory with an axion-
like field. One of the examples includes the pseudo-
Goldstone-boson field of broken baryon number intro-
duced in Ref. 21 for baryogenesis. If this field couples to
the exactly conserved charge in electroweak theory
8 —L, then the effects discussed here can be ignored.
However, if the field couples to the charge aB PL with—
a&P then the results of Ref. 21 have to be reconsidered
in light of the sphaleron-induced damping found in this
paper.
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APPENDIX

In this appendix we derive Eq. (33), which proves that
the axion mass can be represented simply in terms of a
Euclidean path integral. We begin by considering the
quantity

B„B,'[0(t —t')[K"(x),K (x')]] =8(t t')[q (x),q (—x')]+6(t —t')[K (x),q (x')]

—5(t t')[q(x), K (x')]+—, 5(t —t')[K (x),K (x')] .at'
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Since we eventually wish to integrate this expression with
respect to I' and t', we may transfer the derivative on the
5 function in the last term onto K (x'), by integrating by
parts. Then the equal-time commutators may be evalu-
ated by using Eq. (11)of the text, the expression for K,

Imt

-': '/T=P
']I

Ret

KP ~ ijkga g ga+Lfabcgbgc
4

& I'
g k (A2)

FIG. 3. The integration in the complex time plane for the
time-ordered product of fields in Eq. (A9).

and the canonical commutation relation for the gauge
fields,

[A (t, x), II (t, x')]=i5 (x —x')5' 6,

The result of this calculation is

a„a'.Ie(t —t )[K~(x),K (x )]]
= 0( t t ') [ q(—x), q (x') ]

r 2
a,+i5(t t') —6 (x—x')B B
2K

(A3)

where the last equality follows provided the integrand is
analytic in the interior of the rectangular region enclosed
by the full contour C, as illustrated in Fig. 3. If the in-
tegrand falls off at t = —~ the integral over the piece of
the contour there, C4 may be neglected as well. Chang-
ing variables in the remaining integral yields

This relationship between Wick ordering and Dyson or-
dering has been noted previously. Integrating this re-
sult over x' and t' and comparing to Eq. (29) of the text
yields

f dt' f d xa„a.

XIO(t —t')([K"(x),K (x')])pI .

(A5)

We shall make use of this result momentarily.
Consider now a generic integral of the form

f dt'9(t —t')([ X(t), Y(t')])

f dt'8(t —t')([ X(t), Y(t')])
p

i f —d~(X(t)Y(t +ir) )

= —i f dr(T, tXF(0)YF(r)I ), (A9)
0

where T, denotes Euclidean time ordering.
This time-ordered product is precisely what is obtained

by means of Euclidean path integration. Applying this
general result to the specific integral related to M, by Eq.
(A5) gives

M, = f d~ f d x'a„d.(K"(t,x)K"(t +ir, x ) ),p

f2 p

= f dt'(X(t)Y(t') Y(t')X(t)) —. (A6)

By using the definition of the thermal average in terms of
the density matrix equation (16) of the text, we may
rewrite the second integral in the form

dt' XtFt' (A7)
I+i p

Therefore the original integral, (A6) may be written as
sum of contour integrals in the complex t' plane:

f dt'0(t —t')([ X(t), Y(t')])

=f dt'(X(t)Y(t'))

= —f dt'(X(t) Y(t') ), (A8)

2 f dr f d x f [X)A„]e qz(0)qz(z, x),f2 p Zp

(A 10)

since the Euclidean continuation of the Pontryagin densi-
ty is pure imaginary, and the Euclidean path integral ex-
actly reproduces the correct Euclidean time-ordered
product given by the line above. This proves Eq. (33) of
the text.
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