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We present results for the spectrum of QCD in the quenched approximation using staggered fer-
mions at p= 5.7, 6.0, and 6.2. We use extended wall sources, which give a better projection onto the
ground state, and allow us to study many nonlocal pion and p states, as well as the 6 baryon. Stag-
gered fiavor-symmetry breaking reduces dramatically from p=5. 7 to 6.2. For p=6, the ratio
m~/m lies significantly below 1.5 for m, &m, . At /3=6 we study finite-volume effects using
16 X40 and 24 X40 lattices. We reanalyze our old data at P=6.2 and resolve the problem of the
anomalously light scalar state.

I. INTRODUCTION

In this paper we present results for the hadron spec-
trum in the quenched approximation using staggered fer-
mions. Pinning down the quenched spectrum is an im-
portant step in the program of using lattice calculations
to extract physically useful quantities. If we cannot ex-
tract the masses of the lightest few states with small er-
rors, and make reliable extrapolations to zero quark
mass, then calculations of more complicated quantities
are suspect. Furthermore, we would like to know how
well the quenched approximation reproduces the physical
spectrum, for this gives us some indication of the
trustworthiness of other quenched calculations.

We are keenly aware of these points because our spec-
trum calculation is being done as part of a project to
evaluate weak matrix elements. ' We have tried, there-
fore, to understand the errors due to (a) finite lattice spac-
ing, (b) finite lattice size, (c) extrapolations from large
quark masses, and (d) the lack of an asymptotic signal in
hadron correlators due to a poor choice of operators.
These are the major problems afflicting quenched calcula-
tions, including our previous work. We can address
these points since (a) we have results at three lattice spac-
ings (P=5.7, 6.0, 6.2), (b) we have lattices of sizes
16 X40 and 24 X40 at p=6, (c) we work with very low
quark masses at P=5.7, and (d) at P=6.2 we can com-
pare our present results using extended operators with
those of our previous work which used point sources.
Through a combination of better methods and greater
computer resources we are able to improve our under-
standing of these issues. We are, however, far from pro-
viding definitive answers.

The major technical innovation of this work lies in the
nature of our extended sources and operators. In the first

part of this paper (Secs. II—IV) we explain these sources,
the states that they create, and the operators we use to
destroy the states.

Following this we turn to numerical details. In Sec. V
we explain our fitting procedure. This is much improved
over our previous methods, and brings us up to the state
of the art. We now use the full covariance matrix to do
fits, and make extensive use of eAective mass plots to
determine their reliability. We have reanalyzed our old
data, finding substantial changes for the baryon masses,
and that the previously claimed signals in positive-parity
meson channels are unreliable.

Section VI gives the parameters of the simulations, and
is followed in Secs. VII—IX by our results for the spec-
trum, together with a comparison with previous work.
We discuss, in turn, results from 16 X 32 lattices at
P=5.7, 16 X40 and 24 X40 lattices at P=6.0, and
18 X42 lattices at p=6. 2. Section X discusses chiral
quantities ((Iy), f ) and the lattice spacing. Finally,
Sec. XI gives an overview of all our results, and our con-
clusions.

We have concentrated entirely on staggered fermions
in this project. Results with Wilson fermions have also
improved substantially over the last year or so. For a
comprehensive review of the present status of all
quenched spectrum calculations, see Ref. 4.

Preliminary accounts of part of this work have also
been given in Refs. 5 and 6.

II. REPRESENTATION OF STAGGERED STATES
AT ZERO SPATIAL MOMENTUM

For staggered fermions, the SU(4)-fiavor symmetry is
only recovered in the continuum limit; the symmetry
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1~(r51) .

In the first line, i = 1,2, 3, so the representations are three
dimensional. The other representations are one dimen-
sional. The continuum p's become

»-(r, ~r, )(r, r, r4)(r, r, r~)(r, r, r4r&)

+(rir, )(r, r, r4)+(r;r, r~)+(r, r, r.r~)

(r, ~r4)+(r, r5)+(r, r4r»,
(2.2)

(r;el) .

On the first line, i', so the representations are six di-
mensional, while all others are three dimensional.

To construct operators which create states in these
various representations, we use extended quark fields

q(t, 7))= gy[( y,2t) +]7). (2.3)

group for finite lattice spacing is smaller. In the con-
tinuum limit, mesons lie in the SU(4) representations 1

and 15, while on the lattice these representations break
into many smaller ones. For example, the continuum
15-piet of pions breaks into seven lattice representations
[four three dimensional (3D) and three 1D], and the p
15-piet (times three spin components) breaks into eleven
representations (four 6D and seven 3D). For baryons,
the two ground-state 20's break into combinations of the
three lattice representations, the 8, 8', and 16. In these
examples we have assumed, as is the case throughout this
paper, that the states are at zero spatial momentum. We
would like to calculate the masses of as many of these lat-
tice representations as possible in order to test the ap-
proach to the continuum limit. Almost all previous cal-
culations, however, have studied only those states that
can be created with completely local operators. This al-
lows one to study two of the 1D pion representations, two
of the 3D p representations, and only one baryon repre-
sentation (the 8). The exceptions are Ref. 10, which stud-
ied, in SU(2) gauge theory, the same set of pion represen-
tations as we consider in this paper, and our previous
work, which considered a few nonlocal pion and p repre-
sentations.

To label the states we use the notation of Ref. 11,
which is less precise than that of Ref. 7, but is simpler.
We comment on the lack of precision at the end of this
section. Particles are denoted by I"z(3)I F, where the first
I matrix labels the spin of the bilinear which creates the
state, and the second labels the SU(4) flavor. I s and I F
are elements of the Euclidean Clifford algebra, and are la-
beled by four-vectors (S and F) whose elements are
defined mod2. For example, if S= (Si$2$&$4 ), then

SI S2 S3 S4r, =y, y2 y3 y4 In this notation, the continuum pion
representations break down as

(r5r;)+(r5r;r4)(r5r;r5)(r5e r;r4r5)
(r5r4)(r5r5)(r5r4r5)

(2.1)

In this equation, and in the following, g is a four-vector
whose components are defined mod2, and which thus
points to a position in a 2 hypercube. The extended
quark fields are labeled by g, and by the time t. In fact,
the time plays no role in the following discussion, and we
will drop it henceforth. We do not include gauge links in
our definition of extended fields, but assume that the lat-
tice has been fixed to either the Coulomb or Landau
gauge, as discussed in the following section.

In terms of these extended fields, the operator which
creates the state I &(3I z is

8+F= g q(g)q(7)')Tr(l I sl, l tF) .
tI 7

(2.4)

The trace picks out terms in which there is definite dis-
tance between the quark and antiquark field. If
S=2F+5, where 6 is another hypercube vector, then all
nonzero terms in Eq. (2.4) have r)=zr)'+5. We call the
number of links between q and q' the "distance" of the
operator. Clearly operators of distances zero to four are
possible. The standard local operators pick out the dis-
tance zero states, i.e., those in which S=F.

It might be helpful to list the local states in the nota-
tion we are using, and compare to the traditional nota-
tion. The latter is collected in Appendix A of Ref. 12.
The Goldstone pion, which we call the m. , is in the 1D
representation y5(3y5, which is labeled PS in Ref. 12.
The other local pion is the 5., which is in the 1D repre-
sentation y4y5y4y5, and is in the SC channel. Relative
to the local pion, the operator which creates it has the
phase (

—1)'+»+'. The two local p's are in the 3D repre-
sentations y;y; and y4y, y4y, -. The former lie in the
VT channel [with phases ( —1) ' relative to the m. ], the
latter in the PV channel [with phases (

—1) ' " where j
and k are different from i ].

As mentioned above, the description we have given is
slightly incorrect. There are two related problems. The
first is a trivial over-counting: the states y41 z(3I F and
I zg 1 F are the same. The corresponding operators cou-
ple to the same states. This is clearly true in the continu-
um limit, but also holds at finite lattice spacing. it means
that we can always take 54 (the Euclidean time com-
ponent of 5) to vanish, though in actual calculations
operators with 54=1 often give better signals. We refer
to operators with 54=1 as nonlocal in time (NLT), and
use LT to denote operators with 54=0.

The second problem is more important. It is not, in
fact, possible to make an operator which projects onto a
single state. The operator Gs F couples to both I z I F
and y4y5I z(3)y4y5I +. The point is that the operators
corresponding to these two states have the same relative
phase on a given time slice, but different relative phases
between adjacent time slices. One state is "oscillating" in
time [ ~( —1)'exp( —M~t

~ )] while the other is smooth.
Without knowledge of the masses, one cannot project
against one or other state exactly. It is true, however,
that the coupling of the state r4r ~1 s r4r ~I F to 8s F is

suppressed by tan(M), and vanishes in the continuum
limit.
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III. WALL SOURCES

One of the major problems facing spectrum calcula-
tions is the need to extract a clear asymptotic signal. If
we consider a state at zero spatial momentum (which is
the case throughout this paper) then the Euclidean corre-
lator falls as exp( M~t

—
~ ) for large time separations, M

being the mass of the state. The goal is to have a strong
signal at large separations in order to remove contamina-
tion from excited states while keeping statistical errors
small.

This has been a particularly dificult problem for the
calculation of baryon masses. The Tsukuba group' have
argued that one needs lattices which are extremely long
in the time direction so that signals can be followed out
for many time slices. They have shown that, as one goes
to smaller quark masses, one can extract a baryon mass
which is significantly different from the correct value if
too short a lattice is used.

A more economical solution to this problem is to use
better operators to create and destroy the state. If one
can enhance the overlap with the lightest particle com-
pared to that of the excited states, then one will see the
asymptotic signal at smaller time separations. Since
present calculations are done with a lattice spacing
a-0. 1 fm, while hadrons have typical radii of ~0.5 fm,
it seems likely that extended operators would improve
the signals. In the last few years there has been a Aurry
of effort aimed at finding the best such source, building
upon the original idea of Ref. 14. For a general discus-
sion of source methods, see Ref. 15. Our choice was
driven by the needs of our matrix element calculation, for
which we require that the meson states have zero spatial
momenta. The simplest way to arrange this is to make
the quark source have zero spatial momentum, i.e., to
spread it out uniformly over an entire time slice. This
choice we call a wall source.

An important issue is how we make the source gauge
invariant. We do this by fixing the source time slice to
the Coulomb gauge, the same method as has been advo-
cated by the APE group. ' This gauge has no ghosts, so
that nonlocal operators produce only the physical mesons
and baryons. By accident we left the source time slice in
the Landau gauge on a subset of our lattices at P=6. The
physical interpretation of the results in the Landau gauge
is unclear. The process of gauge fixing propagates infor-
mation across time slices, so that wall source operators
are, in some sense, spread out over all time. Thus corre-
lation functions of two extended operators contain a corn-
ponent in which the two sources overlap, for which there
is no interpretation as a state being propagated by the
Hamiltonian. In order for the Landau gauge results to
make sense, the overlapping components must be small at
long times. This appears to be true, for there is little
difference between the masses extracted from two-point
functions in the two gauges. In fact, there is little
difference in the form of the correlators even at short
times.

A related problem is that there may be disconnected
components in correlation functions of extended Landau
gauge operators. In the Landau gauge there is a nonvan-

ishing quark propagator, and numerical studies indicate
that the quark propagator falls exponentially at long
times, so that one can extract a quark mass m&. ' The
disconnected component consists of separate quark and
antiquark propagators, with lowest energy 2m&. If this
unphysical component is lighter than the meson in the
channel under consideration, then the analysis woUld be-
come very dificult. In fact we find that m &Zm& and
m& & 3m& for our range of quark masses. Thus it is not
surprising that we also find that m, m, and m& from
the Landau and Coulomb gauge sources agree well.

A quark source at zero spatial momentum is a linear
combination of the extended quarks fields of Eq. (2.3),
which are labeled by the hypercube four-vector g. We re-
strict our fields to a single time slice, i.e., q4=0, so that
the most general zero-momentum source is a linear com-
bination of eight extended quark fields:
S= Q„A(g)q(g). A wall source propagator is thus
determined by

(3.1)

where x=(x, t), t, is the source time slice, and c is its
color. g is the standard staggered fermion action given,
for example, in Ref. 2. Note that we use lattices with
even dimensions, and use periodic boundary conditions in
the spatial directions.

For a given choice of amplitudes A(g), the mesons
and baryons that are created by combining the propaga-
tors 6 are a subset of the total available states. Motivat-
ed by matrix element calculations we use two sources,
which we call even and odd. The former is defined by
A(g)=1 for all rI, the latter by A(g)=( —1) '
Both are nonzero for every point on the time slice. We
refer to the propagator from an odd source as an o, and
that from an even source as a q. With these types of
propagators we can consider four types of mesons:
qq, oo, qo, and oq. Here the first letter refers to the anti-
quark propagator, the second to the quark. We use a
similar notation for the baryons.

To explain why we choose these particular wall
sources, we must first explain which states they create.
Combining extended quark and antiquark fields gives a
sum of operators of the form of GsF in Eq. (2.4). To
determine which states are created we have to find the
operators which appear in this sum. Since the wall
sources are contained only on a single time slice, we
know that S4 =F4. This is not a restriction on the states,
however, as explained above. We also know that the
states must come in pairs, for we have that

(3.2)

where I z =y4y5I s and I z =y4y~I ~. This is the famil-
iar result for staggered fermions that a single time-slice
operator always produces two states, one of which oscil-
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lates in time. For example, all pions (S=y~) are part-
nered with scalars (S=y4). In fact, as mentioned above,
we cannot project out one of these states using a two
time-slice operator, although we can suppress one of the
amplitudes. With a single time-slice operator there is no
suppression whatsoever.

To proceed further we must consider particular exam-
ples. We begin with the qq source, which can be written
as

S,q = g g q(q)q(g+5) (3.5)

and

Sq, = g ( —1) ' ' ' g q(g)q(g+5),
5 "I

(3.6)

The table also gives the results of a similar exercise for
oq and qo sources. These can be written as

S = g g q(g)( —1) ' ' 'q(g+5),
5

(3.3)

where the phase factor comes from the antiquark propa-
gator. The oo source is similarly

S„=g (
—1) ' ' 'g q(g)( —1) ' ' 'q(q+5)

5 7l

(3.4)

These equations show that both sources are a sum of
eight terms, one for each 5. Each of these terms is of the
form of the left-hand side of Eq. (3.2), and thus creates
two states. Both sources thus create the same 16 states,
but with different amplitudes. States with "even" 5 [i.e. ,

51+62+63
( —1) ' ' '=1] are produced with the same amplitude
by both sources, while those with "odd" 5 come with op-
posite amplitudes. Thus by forming qq+oo we can select
out one-half of the states. This filtering is essential for
our weak matrix element calculation, and is the reason
for our using o sources in addition to q sources.

To determine the representation of states that are
created by the wall sources, we must find, for each 6, the
choices of I z(3)I F with S=F+6 in which the traces in

Eq. (3.2) give the alternating phase ( —1) ' ' ' appear-
ing in Eqs. (3.3) and (3.4). This is a simple exercise, the
result of which is given in Table I. The table also indi-
cates which of the states couple to qq+oo sources, and
which to qq

—oo. We have listed only the pion and p
states; the accompanying scalars and axial vectors are ob-
tained by multiplying both S and F by y4y5, as explained
above.

respectively. The only difference from qq and oo sources
is that the alternating phase is replaced by the identity.

In total, then, our sources create 32 states (including
scalars and axial vectors), which we can organize into
four sets of eight. The table shows the representations in
which the pions and p s lie, and our labeling conventions.
There are four pions, two in 1D reps, and two in 3D reps.
The two 1D reps are the standard, local states. The ~ is
the pseudo Goldstone pion, and we folio~ the notation of
Ref. 2 and label the other pion 5.. The bonus from using
our wall sources is two completely new 3D reps of pions
with distance 1, which we label ~3 and N.3. In total we
can study one-half the pion representations.

There are 12 different p's created by the wall sources.
Of these, four lie in 3D reps, the other eight in 6D reps.
The four 3D reps are different, and we label them arbi-
trarily as A —D. Some of the states in 6D reps are parts
of the same representation, as must be true since there
are only four 6D reps. There are three representatives
each of p6 and p6, while only one each of p6 and p6. In
total we have representatives of one-half of the 3D reps,
and all the 6D reps. None of these p's are created by lo-
cal operators, so that all of our p's are different from
those usually studied.

To determine the baryons created by our wall sources,
we use the work of Golterman and Smit. To understand
the following discussion, the reader must have in hand
Table 3 of that work. Recall that there are only three
baryon representations, the 8 (which contains the nu-
cleon), the 8' [in which the lightest state is the SU(4) ana-
log of the b, (1232)], and the 16 (which also couples to the

TABLE I. Pion and p states created by the four wall sources qq+oo and qo+oq. 5 is the separation
between quark and antiquark fields, as explained in the text. The column labeled "State" gives our no-
tation for the particles, while "Dim."gives the dimension of the lattice representation in which the par-
ticles lie.

000
011
101
110

qq+ oo

'Ys 'Ys

'Y3 Y'2

71/4 X3T4
X2 'Y1

State

p6'

p6
p6

Dim. qo+ oq

74Xs 74/s
Y33 4 Y2Y4

'Y1 X3

7274 Y 174

State

p6
p6'

p6

Dim.

001
010
100
111

qq oo
'Ys Xs'Y3

3 3 Y1Y47s
'Y174 X4

72 Y2 Y43 s

'TT 3

p6
P3
P3

qo —oq
74/sT3747s

'Y374'Y1'Ys

X11
72Y4 Y2YS

'7T3

p6
P3
P3
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nucleon). Only the g has been studied up to now, this be-
ing the representation produced by local operators. We
are particularly interested in the 8', since the staggered
fermion 6 has not been seen previously.

It turns out that all the possible combinations of three
propagators, qqq, qqo, etc. , create the same states, and
we use only qqq and ooo in our calculations. These con-
tain operators in which the three extended quark fields
have all possible relative positions in the spatial cube.
These operators divide up into classes which are labeled
in Ref. 9. For example, class 1 operators are local, and
class 2 operators have two quarks at one site and the
third one link away. Each class of operator couples to
different states depending on the relative signs of the
different elements obtained from one another by transla-
tions, rotations, and rejections. Thus certain combina-
tions of class 2 operators couple to the 8, while other
combinations couple to the 16. As shown in Table 3 of
Ref. 9, the latter combinations are "traceless" in the
sense that the signs of various components add to zero.
With our sources, however, the different components al-
ways come in with relative plus signs, and so our source
contains class 2 operators which couple only to the 8 and
not the 16. By a similar analysis we find from Ref. 9 that
our source has class 3 operators coupling to the 8, class 4
coupling to the 8', classes 5 and 6 to the 8, and finally
class 7 to the 8'. In addition, after correcting some sign
errors in the results of Ref. 9, we find that our source also
contains class 4 and 6 operators coupling to both the 8'
and to the 16.

The upshot of all this is that our sources create states
in all three baryon representations. As always, these rep-
resentations come in both parities, so that we can in prin-
ciple study six representations. In practice, the signal is
poor for the negative-parity states, and we do not discuss
them further.

In summary, our wall sources have a number of virtues
relative to point sources. First, they are extended, which
should improve the signal. Second, the states they create
come from a larger number of distinct representations.
This is a help when studying staggered fIIavor-symmetry
restoration as we approach the continuum limit. Third,
we can finally investigate the 6 using staggered fermions.

We can now explain our specific choice of wall sources.
For studying weak matrix elements, we need a source of
Goldstone pions at zero spatial momentum, uncontam-
inated by other light states, i.e., other pions. The qq+oo
source satisfies this requirement, since it produces only
p's in addition to the Goldstone pion. A single source
will always produce at least two pions, so we must use at
least two sources. This still leaves many options, and our
choice produces as many nonlocal states as possible, the
6 in particular. We note in passing that for the purposes
of spectroscopy alone there exist even better sources
which produce all possible states for the price of a single
propagator calculation. For example, take the A(g) to
be square roots of prime numbers, with a different prime
for each corner g of the spatial cube. The disadvantage
from our point of view is that it is then too expensive to
project against the contamination from unwanted non-
Czoldstone pions.

f

~

(ct)
P —6 16 x40 m=0. 01

qq+oo ' ITl
3

0.0
10

I I I I I I I I I I I

20
t

(b}'
p=6 16 x40 rrt=0. 01&,

qq —oo

00
0 10 20 30

t

FI(s. 1. Results for m, tt [Eq. (6.1)] for the 16'X 40 lattices at
m~=0. 01 at P=6. In both figures the source is fixed at t =0,
while the sink moves from t =0 to 39. The sink is a qq extended
operator, while the source is (a) qq+oo and (b) qq

—oo in the
two figures. The horizontal lines show the values of the ~ and
~, masses.

To illustrate the filtering power of our sources, we
show in Fig. 1(a) an effective mass plot for the correlator
between the qq+oo source and a qq sink, and in Fig. 1(b)
a similar plot with the qq

—oo source (see Sec. VI for our
definition of mdr). The results are for our lightest-quark
mass on the 16 X401attices at p=6. The qq sink couples
not only to the ~, but also to the ~3, and to a number of
p's as listed in Table I. The qq+00 source should pro-
duce only the ~ and half of the p's, while the qq

—00
source should produce only the ~3 and the other one-half
of the p's. The horizontal lines show the actual masses of
the m. and ~3. For this quark mass, the p's lie at
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m =0.45. With the qq+oo source we see that it takes
P

10 time slices for the Goldstone pion to become dom-
inant, and that for t & 30 there are large boundary effects
due to our use of Dirichlet boundary conditions. The be-
havior for t = 10—20 is slightly disturbing. The major
effect is the undulation. This is present even if we use an
extended operator which projects onto the ~, and is not
due to a contamination from the ~~. The small oscilla-
tion is due to a small contamination from the p's. The
pattern is similar with the qq

—oo source, except that the
errors are larger. The projection is more difficult here,
since it must be done against the lighter m. There is some
indication of a drop around t =22, but we have checked
that this is not due to contamination with the m.

We end this section with a brief summary of alternative
sources. One might expect that the major weakness of
our source is that it is too large, since a source of typical
hadronic size would be best for spectrum calculations.
Such sources have been proposed by the APE Collabora-
tion, ' who use a cube source of typical hadronic size,
and the Wuppertal group' who use a scalar propagator
to smear the source on a time slice. The APE group has
also suggested using a number of cubes or smeared
sources of hadronic size spaced as far apart as possible-
the multiorigin method. ' Our conclusion, based on a
comparison with the work of the APE group at P=5.7
(Ref. 20) is that for the lattice volumes used in this study,
wall sources work comparably to cube sources.

It is possible, however, to include correlations in our
zero-momentum wall sources. One method is to generate
three-dimensional pseudofermions P by solving
( Dz+m„„„—, ) 'P=r), and then using P as the source.
Here q is a Gaussian noise vector on the source time
slice, D& is the scalar covariant derivative restricted to
the time slice, and m„„„,is a tunable mass parameter.
Averaging over pseudofermions ensures zero spatial
momentum, while correlations over a tunable distance
are built in. The limit m ~ ~ corresponds to zero corre-
lation, or a random gauge transformation at every site,
just as in the original proposal of Ref. 14. The limit
m ~0 corresponds to long-range correlation, similar to a
wall source. One might hope to find an optimum some-
where between the two extremes. We plan to test this
idea in future work.

IV. OPERATORS

The wall sources produce a number of different states.
To extract their masses, we would like to use operators
which pick out only one representation. In fact, as dis-
cussed in Sec. II, the best that can be done is to couple to
two representations, one oscillating, the other smooth.
To do this we use two types of operators: extended and
quasilocal. We will discuss these operators first for the
mesons, and then the baryons.

For mesons, the extended operators are exactly those
discussed in Sec. II, and are given explicitly in Eq. (2.4).
The operators are made gauge invariant by requiring that
the lattices are put into the Landau gauge. The advan-
tage of these operators is that they form true representa-
tions of the zero spatial momentum time-slice group.

The main disadvantage is that, as mentioned previously,
correlation functions of the Landau gauge operators do
not have a transfer matrix interpretation. This is true
despite the fact that one of the operators is in the
Coulomb gauge, since the Landau gauge operator in-
volves links everywhere on the lattice. A second disad-
vantage is that the correlators are noisier than those with
quasilocal operators. In practice, the increased noise
makes these correlators inferior to those with quasilocal
operators. Nevertheless, in all channels with a signal the
resulting masses are consistent with those from quasilocal
operators.

The quasilocal operators are defined as follows. For
the state I &I z, we use

@sF(r)= & & Xl:(2y, t)+n)XI:(2y r)+)'l

X Tr(I "„ISI „I ~) . (4. l)

That is, in each hypercube we project onto the required
spin and Aavor and then sum over all 24 hypercubes
whose origin lies in a given time slice. Most of the opera-
tors involve y and y fields at different sites, and these are
defined by using the Landau gauge. Thus these apparent-
ly quasilocal operators have some component spread out
over all the lattice. We expect this to be much less of a
problem than for the extended operators, since it is
presumably suppressed by the small size of the "dipole. "
We can actually test this for the Goldstone pion because
we can destroy the pion with the true axial-vector
current, a manifestly gauge-invariant operator which
couples only to physical states, and with a Landau gauge
version of this operator in which the gauge link is absent.
We find that, after a short transient period, the two
correlators are proportional [with a ratio close to the
value of Tr( U)/3 given in Table II].

The other disadvantage of these operators is that they
are not true representations of the time-slice group, ex-
cept for those in which S =F or S=F+(0,0, 0, 1). One
can write the operators as a sum of an operator which is a
true representation, and a second operator which con-
tains derivatives. The second operator will, in general,
couple to states in other representations: p's will couple
also to certain pion representations, and vice versa. One
might expect this to be problematic for p's, since the
pions are lighter. However, the second operator contains
derivatives, and its overlap with the unwanted states is
suppressed by the lattice spacing. In practice, we do not
find such contamination to be a problem. Nevertheless,
we recommend that future calculations avoid this prob-
lem altogether by using the somewhat more complicated
quasilocal operators of Ref. 7, which are true representa-
tions of the time-slice group.

We use operators for all the spin flavors in Table I, to-
gether with the corresponding scalar and axial-vector
channels obtained by I &I z~y4y~I sy4y~I z. These
are all LT operators, i.e., 5=S—F has no time com-
ponent. We also use operators with an additional time
link, i.e., y4I z I z and y5I & y4y5I „. These NLT
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TABLE II. Simulation parameters. The algorithms are pseudoheat bath (PHB), rnultihit Metropolis (Met) and an
overrelaxed/Metropolis mixture (OR/Met) in the ratio of 4:1. The errors on (Tr( U) ) /3 are less than 1 in the last digit. A dash indi-

cates that the result is not available.

Sample (A)
(B)

Sweeps/config. (A)
(B)
(A)
(B)

Landau iters
Landau ( Tr( U) ) /3

Coulomb iters
Coulomb (Tr( U) ) /3

Plq

Avg. CG iters

13

Size:
5.7

16'X 32

12
20

1000
1000

OR/Met
PHB
350

0.824
100

0.856
0.015, 0.01, 0.005

585, 628, 700

6.0
16'X40

21
15

300
1000

OR/Met
PHB
300

100

0.03, 0.02, 0.01
321, 361, 571

6.0
24'X40

15
8

500
500

OR/Met
OR/Met

350
0.8610

300
0.882

0.03, 0.02, 0.01
324, 361, 586

6.2
18 X42

32

250

Met

1000
0.873

0

0.03, 0.02, 0.01, 0.007
318, 437, 722, 1225

operators couple to the same states, but with different
amplitudes. In fact, as explained in Ref. 2, the NLT
operators reduce the contribution from oscillating states.
This advantage is offset by the general tendency for the
signal with NLT operators to die out faster. Which
operator gives the best signal depends on the channel.

For baryons we use exactly the same two types of
operators as for mesons, i.e., extended and quasilocal.
The extended operators are made out of the extended
quark fields following the construction given in Table 3 of
Ref. 9, which we discussed previously in connection with
wall sources. We construct operators of all possible
classes, in all cases taking the same elements of the repre-
sentations as are created by the wall source. Operators of
classes 1 and 5 couple only to the 8 (class 1 is the familiar
local baryon), while class 7 operators couple only to the
8'. Our operators of classes 3 and 6 couple to both the 8
and 16, while our class 4 operators to both the 8' and 16.
Thus we only expect a pure 6 signal with the class 7
operator. This operator has the quarks all separated
from each other by two links, e.g. , one quark at x, the
second at y and the third at z. All other operators couple
to the nucleon, but have different coupling to the excited
states. In fact we find, at P=6 and 6.2, that some class 4
and 6 operators show a 6 signal at small times and a nu-
cleon signal at long times.

We can improve the quality of the signal using quasilo-
cal operators which, as for the mesons, are not true repre-
sentations of the lattice time-slice symmetry group. In
these, the three quark fields are contained in the same
spatial 2 cube, and then one sums over the cubes in the
time slice. The class of the operator is determined by the
relative positions of the quarks in the cube just as for the
extended operators. Again we form operators of all
classes, but now the class 7 operator not only couples to
the 6 but can also couple to the nucleon by terms
suppressed by the lattice spacing.

We have also used NLT operators in which one of the
three quarks is translated in the time direction, but with
all other phases unchanged. This does not change the

representations that are created, but it does reduce the
amplitude of the oscillating opposite-parity component.
We use such NLT variants of both extended and quasilo-
cal operators. As for the mesons, the disadvantage of the
NLT channels is that the signal tends to last for less time.
For the 6, however, the signal only extends to relatively
short times, and the NLT operator is preferred. Since we
want to be sure that we are seeing the 5, we try to use the
NLT variant of the extended class 7 operator, which we
call the "true" 6 operator. Unfortunately, the signal is
only good enough at /3=6. 2. For @=6,we are forced to
use the NLT quasilocal class 7 operator.

Clearly it would be better to use the quasilocal opera-
tors of Ref. 7 which truly represent the time-slice group.
Our experience suggests that NLT variants of these
operators would be the best choice.

V. CALCULATION DETAILS

The lattices have been generated using a variety of al-
gorithms: multihit Metropolis, Cabibbo-Marinari pseu-
doheat bath, and a combined overrelaxed/Metropolis
method. All configurations have been generated using
periodic boundary conditions in space and time. More
details can be found in Ref. 21. We list in Table II the
important statistics of the various ensembles that we use.
We have chosen the number of sweeps between analyzed
configurations to produce an essentially decorrelated
sample of lattices.

As mentioned above, we use a hybrid gauge for our
propagator calculations. The gauge fixing is done in two
steps. First we transform the lattice to the Landau gauge
using an overrelaxed algorithm described in Ref. 22. The
boundary conditions remain periodic in space and time.
Next, we fix the source time slices to the Coulomb gauge.
Table II also gives the parameters of these two gauge-
fixing steps.

In all calculations of propagator s we use periodic
boundary conditions (PBC's) in space and Dirichlet
boundary conditions (DBC's) in time. We calculate prop-
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agators using two positions for the wall source. For the
lattices at p=5. 7 and 6.0, we place the wall sources on
the first and last time slices, i.e., the time slices adjacent
to the boundary. On the p=6. 2 lattices we place the
sources at t =3 and 38, using the convention (as is done
throughout this paper) that the lattice time ranges from
t =0 to t =(N, —1). We use DBC in time primarily be-
cause it simplifies our calculation of weak matrix ele-
ments. It has been argued, however, that DBC are inferi-
or to (A.)PBC for spectrum calculations, because of
rejections from the boundary. We find that, on the
contrary, the fact that the signal extends in many chan-
nels across the entire lattices makes DBC preferable.

The quark propagators are calculated using a standard
conjugate-gradient algorithm, in which we solve only for
the even half of the points, and construct the odd half at
the end. We have made the following improvements
compared to our previous work.

(1) We rotate to temporal gauge during the calculation,
which removes one quarter of the multiples by gauge Ina-
trices. At the end of the computation we rotate the prop-
agator back to the hybrid gauge.

(2) To reduce memory charges we pack the 18 real
numbers of the gauge links into five 64-bit words. We
have checked that the small changes in the gauge links
that are introduced by this packing have an effect on the
masses which is much smaller than the statistical errors.

(3) The code is multitasked, which again reduces
memory charges. The various tasks calculate the action
of g on different parts of the vector. The typical overlap,
on a four processor Cray 2, is -2.

On each configuration we calculate four propagators at
each quark mass: q and 0 sources at both ends of the lat-
tice. The quark masses that we use are given in Table II.
In all cases we run propagators until the residual satisfies

(5.1)

where 6 is the propagator, S is the source, and the sub-
scripts refer to even and odd parts. Our tests indicate
that this is a conservative choice. To illustrate this claim,
we show in Fig. 2 how one of the p propagators at t =25
varies as a function of our convergence parameter
(r, /6, ) . The answer reaches a stable value at roughly
10 ', though it is not converged at all before 10 . The
signal in this channel does not extend to t =25, so the
quantity plotted is in the statistical noise. The figure
shows that this noise, which hides the p signal, is due to
the finite size of our sample of configurations, and does
not come from a lack of convergence of the propagators.
For our weak matrix element calculations, it is important
that we know the converged value of correlators in chan-
nels such as that shown.

Table II lists the number of iterations that are required
to reach an accuracy of 10 ". The only exceptions are
for m =0.005 at p=5. 7, and for all inversions at p=6. 2,
for which the criterion was relaxed to ~r, ~

10 '
~ G, ~

.
For all but the highest masses, we use a starting seed, ob-
tained by polynomial extrapolation from the propagators
at higher masses. This simple expedient saves roughly
290 iterations at p=6.0, or about 20% overall.

0. 1

0.0

—5 —10
log, „(Accuracy)

FIG. 2. A p correlator on one configuration at m =0.03 and
t=25 as a function of convergence on the 16 X40 lattice at
p=6. 0.

VI. EXTRACTING MASSES

The extraction of reliable mass estimates from the had-
ron correlators is a potential source of systematic errors.
In our previous work we fit the correlators to a sum of
two exponentials over a certain range of times. For
correlators other than that of the Goldstone pion, one of
the exponentials oscillates in time, corresponding to the
opposite-parity partner. By varying the fitting range we
obtained some estimate of the reliability of the results.
We then confirmed this by looking at the plots of the
correlator. Errors were estimated using the jackknife or
bootstrap methods, though using only the diagonal part
of the error matrix to do the fitting.

We now think that, except for channels with clear sig-
nals (namely, the pions and some of the p's), we substan-
tially underestimated the errors due to fitting. The prob-
lem was partly caused by not using the full error matrix,
so that we did not know the goodness of fit. More impor-
tant, however, was the fact that we assessed the reliability
of the fits by looking only at log plots of the correlators.
In a number of cases we ended up fitting to regions where
the data was unreliable, or had clearly not reached the re-
gion of asymptotic fall-off.

We improve on this method here by (a) using the full
error matrix, so that we know when our time range is too
large because the goodness of fit deteriorates, and (b) us-

ing plots of the effective mass (rather than the correlator
itself) to see whether the mass has reached its asymptotic
value. For staggered fermions, the transfer matrix is
defined for two time steps, so we use

(6.1)

where C is a hadron correlator. We use the jackknife
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TABLE III. Meson spectrum for staggered fermions at f3= 5.7 on a 16' X 32 lattice.

0.015
0.015+0.010

0.01
0.015+0.005
0.010+0.005

0.005

8—18

0.350(1)
0.322(1)
0.289(1)
0.289(1)
0.252(1)
0.208(1)

X'/&DF

6/7
5/7
4/7
5/7
6/7
8/7

2—8

0.71(2)
0.69(2)
0.67(2)
0.66(2)
0.64(2)
0.61(3)

X'»DF

2/3
1/3
1/3
1/3
1/3
1/3

0.93(3)
0.91(4)
0.89(4)
0.89(4)
0.86(5)
0.82(7)

X'/&DF

0.4/2
0.3/2
0.2/2
0.2/2
0.1/2
0.1/2

method to calculate the errors in m, z. In a typical chan-
nel (see, for example, Figs. 4 and 5) the effective mass
grows, then reaches a plateau, and then becomes noise.
As will be discussed further in Sec. VIII, it is possible for
the fitting program to give a reasonable fit for a small set
of time ranges (particularly if one does not use the full er-
ror matrix), and yet for it to be apparent from the plot of
m ff that the asymptotic plateau has not been reached.

Note that the approach to the asymptotic value need
not be from above because our correlators are not diago-
nal: we use extended operators to create the states out of
a Dirichlet boundary condition, and quasilocal operators
to destroy them into something more like the usual vacu-
um. Thus contributions to the correlators are not posi-
tive definite.

Our fitting method consists of first determining from
the effective mass plot whether there is a plateau region.
If so we use the above-mentioned fit to two exponentials
in that region. We calculate the full error matrix using
the entire sample, and then estimate errors using single
elimination jackknife, fitting for each subsample using the
full error matrix. We estimate the goodness of fit using
the average y of the fits for each of the subsamples.
Typically we quote results from the largest time range
available, and estimate a systematic error due to fitting by
varying the time range. With much of our data we find
this error to be at least as large as the statistical error,
and sometimes 2—3 times larger. This is due to undula-
tions in the plateaus.

We try to avoid the spurious fits of our previous work
by not quoting a value if there is not a clear plateau. Of
course, the choice of what constitutes clarity in a plateau
is somewhat subjective. We try to make clear in the text
which of the results we quote have large uncertainties.
For example, we have not found reliable signals for any
of the positive-parity mesons (ao, ai, and bi) or
negative-parity baryons.

VII. 16 X32 LATTICES ATP=5. 7

tunately, the signals for states other than the Goldstone
pion are poor. Thus, the major functions of the calcula-
tion are to indicate how rapidly quantities vary with P,
and to cross-check the results of the APE Collabora-
tion.

Our result for the mesons are given in Table III, and
for the nucleon (we have no signal for the b, ) in Table IV.
Figures 3(a)—3(c) show examples of the signals on which
these results are based. For the mesons we quote results
for the largest time range falling within the plateau for all
quark masses. All fits are reasonable, having y /ND„( l.
For the nucleon, there is no plateau, so we quote m, z at
the largest two times with reasonable errors (t =3 and 4).
The quoted errors are purely statistical; we discuss sys-
tematic effects in the following.

The Goldstone-pion signal is of good quality. We use
the NLT operator y~y& y5, since it has a plateau in m, z
which begins earlier than that for the LT operator
y~(3y~. As Fig. 3 shows, the plateau for the NLT opera-
tor begins almost at t =1, and extends to t =20—24 (the
precise value depending on m ), at which time boundary
effects become important. We quote numbers using the
range t=8—18. At all except the lightest-quark mass,
fitting to other reasonable time ranges, or using the LT
operator, gives numbers consistent with those quoted to
within —10.. At the lightest mass, the LT operator gives
m =0.205(1), which is 3o. below the NLT value. Thus
the systematic errors coming from the fitting are some-
what larger than the statistical errors.

Our result for the Goldstone pion agree well with the
behavior m ~m expected in the chiral limit. Fitting to
m = 3 m +B we find 3 =7.96(5) and
B =0.004(1). The slight deviation of B from zero may

TABLE IV. Values for m, s for the nucleon at P=5.7 on a

16 X 32 lattice.

We begin with results from a relatively strong cou-
pling, P=5.7. Calculating at this coupling allows us to
use a large lattice in physical units, and thus work at
small physical pion masses. We use quark masses 0.005,
0.010, and 0.015, corresponding to pion masses ranging
from roughly 200 to 400 MeV. Having such light masses
is important for our study of weak matrix elements, since
it allows us to examine their chiral behavior. Unfor-

0.015+0.015+0.015
0.010+0.015+0.015
0.010+0.010+0.015
0.010+0.010+0.010
0.005+0.010+0.010
0.005+0.005+0.010
0.005+0.005+0.005

m, ff(t = 3)

1.22(3)
1.20(3)
1.18(3)
1.15(4)
1.13(5)
1.12(6)
1.11(9)

m, ff(t =4)

1.14(7)
1.12(8)
1.09(9)
1.07(10)
1.06(13)
1.06(18)
1.09(26)
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FICx. 3. Effective mass plot for the rr, m 3, p6", and nucleon on the 16' X 32 lattices at @=5.7 for (a) m, =0.005, (b) m =0.010, and

(c) rn~ =0.015. The lattice runs from t =0 to 31, with the wall source at t =0.

be an indication of finite-size effects at the lightest-quark
masses.

The best signal from the non-Goldstone pions is for the
7T3 using the LT operator. As Fig. 3 shows, the signal
degenerates into noise by t =8 for the lightest-quark
mass, and by t = 10 for the heaviest. One can still extract
a mass with some reliability, although the errors are
clearly quite large. The signals for the N. and 5.

3 are poor-
er, but the effective mass plots show that all three non-
Cxoldstone pions are degenerate within large ( —10%) er-
rors. All three are thus much heavier than the Goldstone
pion, so that Aavor symmetry is badly broken, as we
would expect at such strong coupling.

The signal deteriorates further when we look at the p's.
Table III and Fig. 3 only give results for the operator
f3 p 2 which creates a p6 state. All other p channels

have comparable or worse signals, and all lead to con-
sistent estimates of m . Our results are not good enough
to demonstrate the existence of a plateau in m, z', the pos-
sible plateau beginning at t = 1—2 disappears into noise by
t =5—6. To quote a mass we fit to the range t =2—7 (cor-
responding to t =2—5 in the m, It plot). Clearly these esti-
rnates are subject to significant systematic errors.

Finally, we turn to the nucleon. We quote results for
the operator with the cleanest signal, which turns out to
be a LT operator in class 2 of Ref. 9. It consists of a sum
of terms with two quarks on one site, and the other
separated by a link in the z direction. At the highest-
quark mass, there is evidence for a plateau from t =2—5,
but at the lowest-quark mass there is no plateau. Because
of this, we simply quote in Table IV the values of m, z at
t =3 and 4.
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At m =0.01, we can directly compare our results with
those of the APE Collaboration. They use three
different sized lattices, and have samples of similar size to
ours: 60 of size 12 X 24, 20 of size 18 X 24, and 50 of size
24 X 32. They use a smaller source —a "cube" (three lat-
tice units on a side) rather than a "wall. " Also, the
phase, A(71) in Eq. (3.1), is zero except at q=0, so that
the source only creates local states. Thus we can only
directly compare the rr and nucleon masses (they do not
quote a result for the Fr). It is, however, reasonable to
compare the results for m, since we find all p's to be de-
generate within errors.

Our result for the pion mass at m =0.01
[m =0.289(1)] agrees within —1.5o. with both their 24
lattice value [0.2876(7)] and their 18 result [0.283(3)]. In
the p channels the APE group finds a clear plateau in m, ff
only on their largest lattice, the plateau consisting of four
points, and yielding m =0.88(6). Our results at
m~ =0.01 [Fig. 3(b)] are very similar, in terms both of the
number of useful points and of the resulting value of
m~[0. 89(4)]. This implies that our wall source has an
efficacy similar to the cube source used by APE.

The comparison of the nucleon mass is less satisfacto-
ry. The APE results are reliable only on the 24 lattice,
and they find m&=1.454(26). This is many standard de-
viations above all our points in Fig. 3(b). We can also
compare at m =0.015, for which our data is better, with
evidence for a plateau at m&=1. 15. The average of the
APE results for m =0.01 and m =0.02 is m~ = 1.48(2),
again much above our data. The APE results are not
given in the form of an effective mass plot, so we cannot
directly compare the quality of our data with theirs. We
suspect that neither group has found the asymptotic re-
sult for m~.

VIII. 16 X40 AND 24' X40 LATTICES AT P=6

Our most extensive data is at f3=6, for which we have
both "small" (16 X40) and "large" (24 X40) lattices.
This allows us to search for finite-volume effects, both in
the masses themselves, and in the performance of the wall
sources. The quark masses used are heavier than for
P=4. 7: m =0.01, 0.02, and 0.03, which correspond ap-
proximately to m, /2, m, and 3m, /2. We use two in-
dependent samples of lattices for both sizes (see Table II)
and we find no significant differences in hadron masses
between the samples. For the small lattices we quote re-
sults for the combined data sample. For the large lat-
tices, however, the source time slice for the smaller sam-
ple was inadvertently fixed to the Landau rather than the
Coulomb gauge, so we cannot simply combine it with the
larger sample. Thus we quote results only from the
larger sample of 15 lattices.

We collect our results for hadron masses in Tables V
and VI, and show in Fig. 4 the correlators at the lightest
and heaviest quark masses. The errors are purely statisti-
cal, and the goodness of fit can be gauged by the y /XD„.
The results for m =0.01+0.03 are not shown since they
are essentially identical to those for m =0.02. In pre-
paring these tables we have to choose the time range for
the fits, and select between various operators. We have

studied the dependence of the masses on these choices in
order to estimate the systematic errors due to fitting. We
now discuss these points in some detail for each state.

The best estimate of the Goldstone-pion mass comes
from the LT operator. The difference between the LT
and NLT operators is shown in Fig. 5 for the lightest-
quark mass. The NLT channel has a plateau which be-
gins slightly earlier (as discussed above), but this is more
than compensated by the earlier onset of boundary
effects. At heavier-quark masses the plateau is longer, so
a fitting range suitable for all masses is t = 12—28. Unfor-
tunately, we have too few large lattices to invert the
correlation matrix for such a long-time range, so we fit to
t = 15—25 and to t = 12—21 on both lattice sizes. Compar-
ing these two time ranges we see variations in m„on a
given lattice size of up to 3o. . This is caused by the pla-
teaus not being flat. In Fig. 5, for example, the LT pla-
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TABLE V. (a) The pion spectrum at P=6 on both size lattices. We quote the masses, y (using
correlated errors), and the number of degrees of freedom (NnF). The results of two fits on each lattice
are shown. (b). The p spectrum at P=6 from the two lattices. The notation is as in (a).

Fit

(a)
Staggered pion spectrum at P=6

77 '773

0.03+0.03

0.03+0.02

15—25(24 )

X /NnF
15—25(16 )

/Nnp
12—21(24 )

X /NnF
12—21(16 )

/NnF

15—25(24')
x /NnF
15—25(16 )

x'/Nnp
12—21(24 )

x'/Nnp
12—21(16 )

x'/NnF

0.417(2)
8/7

0.407(2)
3/7

0.412(2)
15/6

0.410(3)
6/6

0.382(2)
9/7

0.373(2)
3/7

0.376(2)
15/6

0.375(3)
7/6

0.461(2)
10/7

0.451(6)
6/7

0.461(3)
15/6

0.457(3)
9/6

0.426(3)
13/7

0.424(3)
7/7

0.425(3)
13/6

0.422(4)
11/6

0.474(5)
14/7

0.461(3)
4/7

0.461(3)
40/6

0.469(5)
7/6

0.439(5)
12/7

0.424(3)
6/7

0.428(2)
32/6

0.436(5)
6/6

0.451(4)
19/7

0.449(3)
9/7

0.463(4)
17/6

0.456{4)
8/6

0.417(4)
16/7

0.414(3)
7/7

0.429(4)
20/6

0.422(4)
7/6

0.02+ 0.02 15—25(24 )

x'/NnF
15—25(16 )

X /NnF
12—21(24 )

x /NnF
12—21(16 )

x'/NnF

0.342(2)
10/7

0.334{2)
3/7

0.336(2)
15/6

0.337(3)
7/6

0.386(3)
18/7

0.383(7)
6/7

0.386(3)
11/6

0.384(4)
10/6

0.399(3)
13/7

0.387(3)
10/7

0.393(3)
29/6

0.401(5)
5/6

0.381(3)
11/7

0.379(3)
6/7

0.392(4)
21/6

0.386(4)
5/6

0.01+0.02 15—25(24 )

x'/NnF
15—25(16 )

x'/NnF

0.296(2)
12/7

0.286(15)
5/7

0.342(6)
30/7

0.340(3)
5/7

0.353(2)
147/7

0.343(5)
13/7

0.345(4)
13/7

0.342(6)
4/7

teau slopes slightly downwards, while the NLT plateau
slopes more prominently upwards. We also find up to 3o
variations in m„between LT and NLT operators. All
this indicates that the systematic errors due to fitting are
considerably larger than the quoted errors. The real er-
rors are —2—3 %, rather than the 0.5—1% statistical er-
rors.

For all the non-Goldstone pions we can use the same
fitting ranges as for ~. The signal for the ~3 is illustrated
in Fig. 4. For the m3 the LT channel gives the best signal,
while for the 5.

3 and 5., the NLT operators are better.
Some of the fits to these channels are very poor, particu-
larly for the 5.

3 at small quark mass. This is due to undu-
lations in the plateau, the worst example of which (corre-
sponding to the terrible fit with g /ND„= 147/7) is
shown in Fig. 6. Once again the systematic errors are a
few times the statistical errors.

We give results for only one of the p channels, the p6
created by the LT operator y3y2. We examine all 12
channels (belonging to eight different representations as
explained in Sec. II), and find the others to be of similar

\)

24 x40 P=6 m=. 01 =

,cr&$
A Z'

0 NLT~
~ LT7T

o ~o
0 10 20 30

t
FIG. 5. Effective masses for the Goldstone pion on 24 X40

lattices at g=6 using the LT and NLT operators.
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mq Fit

TABLE V. (Continued).

(a)
Staggered pion spectrum at P= 6

77 7T3

12—21(24 )

X'/NDF
12—21(16 )

/NDF

0.291(2)
13/6

0.293(3)
10/6

0.342(3)
9/6

0.341(4)
7/6

0.349(3)
26/6

0.363(5}
7/6

0.349{2)
10/6

0.348(4)
3/6

0.01+0.01 15—25(24 )

y /NDF
15-25(16')

/NDF
12—21(24 )

X'/NDF
12—21(16 )

X'/NDF

0.239(1)
19/7

0.234{10)
6/7

0.237(2)
14/6

0.242(3)
7/6

0.295(2)
38/7

0.291(5)
3/7

0.288(2)
12/6

0.295(4)
3/6

0.314(6)
54/7

0.296(7)
15/7

0.319(6)
31/6

0.322(7)
10/6

0.295(3)
22/7

0.297(6)
7/7

0.300(3)
6/6

0.301(4)
4/6

(b)
Staggered p spectrum at f3=6

Fit p6' X /NDF

0.03+0.03 6—16(24 )

6—16(16 )

0.562(4}
0.575(7)

11/7
3/7

0.03+0.02 6—16(24 )

6—16(16')
0.537(5)
0.546(9)

10/7
2/7

0.02+ 0.02 6—16(24 )

6—16(16')
0.51(1)
0.52(1)

12/7
1/7

0.01+0.02 6—16(24 )

6—16(16 )

0.49(1)
0.48(1)

13/7
1/7

0.01+0.01 6—16(24 )

6—16(16')
0.45(2)
0.44(2)

16/7
4/7

or slightly worse quality, and that all give consistent
values of m . The p has a respectable plateau, particular-
ly at the heavier mass, and we fit to t =6—16 (correspond-
ing to 6—14 on the m, s plots. ) There is not much freedom
to vary the range of the fit, but, to the extent we can, the
central value for m does not change by more than 1o..

For the nucleon, we have to choose from a number of
channels involving different spatial separations of the

quarks, as well as between LT and NLT operators. It
turns out that there is little difference between the vari-
ous spatial separations, so we use the spatially local
operator since this allows direct comparison with previ-
ous work. The plateau is slightly shorter than for the p,
mainly because it begins at a later time, and we fit to
t=10—18. Rather than choose between LT and NLT
channels, we quote results for both in Table VI. The

TABLE VI. Nucleon spectrum at P=6 on both size lattices and using both LT and NLT operators.
All fits are to t = 10—18, so there are five degrees of freedom.

Tvp
mq

ze) LT(16 )

m~ x2
NLT(16 )

m~ x2

LT(24')
m~ x2

NLT(24 )

m~ x2

0.03+0.03+0.03
0.02+0.03+0.03
0.02+0.02+0.03
0.02+0.02+0.02
0.01+0.02+0.02
0.01+0.01+0.02
0.01+0.01+0.01

0.84(1)
0.82(1)
0.79(1)
0.77(2)
0.74(2)
0.71(2)
0.69(3)

0.84(4)
0.79(2)
0.76(2)
0.72(5)
0.69(2)
0.67(4)
0.63(4)

0.83(1)
0.79{2)
0.75(3)
0.72(3)
0.67(2)
0.64(1)
0.61(2)

10
10
9
9
7
3
2

0.84(4)
0.80(1)
0.78(2)
0.75(3)
0.71(4)
0.67(4)
0.61(5)
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FIG. 6. Effective mass for the 5.
3 for m~ =0.015 (0.01+0.02)

on the 24' X 40 lattices at P= 6. FIG. 7. The chiral behavior of rn from the 24' X40 lattices
it P=6. The lines show linear fits.

differences between the channels can be seen by compar-
ing Figs. 9(a) and 9(b), and we will discuss them in detail
below.

Figures 4(a) and 4(b) also show a signal for the b, . This
uses the quasilocal NLT operator (in class 7 of Ref. 9),
which, as discussed in Sec. III, is not a pure 6 operator,
since it can couple to the nucleon through terms
suppressed by the lattice spacing. The signal lies
significantly above that for the nucleon, however, and we
take this as evidence that a heavier 6 exists, though we
do not quote masses. Fortunately, the evidence is more
convincing at /3=6. 2. Several other mixed channels (e.g. ,
in class 4 operators which couple to both the S' and the
16) show a "Delta" signal at early times and then drop to
a nucleon plateau.

There are several marked differences compared to re-
sults at /3=5. 7. This can be seen most clearly by compar-
ing Figs. 3 and 4. For a start, the data for the non-
Goldstone pions, p's and baryons is much cleaner. This
is consistent with previous experience that signals im-
prove rapidly just beyond the "crossover" region in
which the nonperturbative p function has a dip. Second,
the staggered flavor symmetry is much less strongly bro-
ken in the pion sector than at P=5.7, confirming earlier
results. ' In addition, at p=6, all 12 p's that we mea-l2, 23

sure are degenerate, within the 2—5% errors. This is a
weak bound, however, because we see no closer degenera-
cy between those p's which lie in the same lattice repre-
sentation (and thus should be degenerate even at finite
lattice spacing) than between p's in different representa-
tions.

For pions there is the usual gap between Goldstone
and non-Goldstone pions. This is shown in Fig. 7, where
we plot the values for m on the large lattice [using the
fit from Table 5(a) with the greater confidence level]. The
773 and 5. are nearly degenerate, while there are indica-
tions that N3 is slightly heavier. Figure 7 also shows fits

4

0.40

0.38
24 x40

x 16 x40

0
0 10

FIG. 8. Finite-volume effects in the effective mass of the m

using the LT operator. Results are for m, =0.03 at p=6.

of m to A m +8 . As usual, the Goldstone pion ex-
trapolates to the origin with good accuracy, as required
by the chiral symmetry of staggered fermions. The pa-
rameters of the fit for the Goldstone pion are

=S.g7(6) and 8 = —0.001(1).
An important issue is whether the hadron masses de-

pend on the volume. For the Goldstone pions, Table V(a)
does show a systematically higher value from the larger
lattice at the heavier values of m . The difference, how-q'
ever, is of the same size as the uncertainty due to varying
the fitting range. The situation is clarified by looking
directly at the corresponding effective mass plots, which
are shown for the heaviest-quark mass in Fig. 8. It is the
lack of a Oat plateau in the results from the small lattice
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which are the cause of the fitting uncertainty. We cannot
conclude that there is a real finite-size effect until we see a
clear difference between two Hat plateaus. What we can
conclude is that finite-size effects are small, at the level of
2% or less.

For the non-Goldstone pions and the p's there is no
volume dependence within the errors, which are some-
what larger than those for the Goldstone pion. The
correlators agree well at all times: the plateaus in m, z be-
gin at the same time, and the transients are very similar.
In fact, the same is true for the Goldstone pion for t ~ 15
in Fig. 8.

For the nucleon, Table VI shows no volume depen-
dence at the larger quark masses, but a confusing pattern
of variations at the lightest-quark mass. In particular,
there is, for m~ =0.01, a 2—3o. difference in mz between
lattice sizes if one uses LT operators, but no significant
difference if one uses NLT operators. On the large lattice
the two types of operators give consistent masses while
on the small lattice the mass from the LT operator is
higher. Clearly the statistical and systematic errors
prevent us from making definite statements. It is impor-
tant to note, however, that the bounds on finite-volume
effects coming from our results are weaker than for the
pion. The effect could be as large as 10% at the smallest
quark mass.

There is, however, a clear finite-volume dependence in
the transients. This is illustrated in Fig. 9 for the
lightest-quark mass, but the same features are apparent
for all quark masses. With LT operators there exists
both an opposite-parity contribution (giving the oscilla-
tions) and an excitation of the same parity but opposite
amplitude (giving the initial rise). For the NLT opera-
tors, the opposite-parity contribution is absent. For both
operators the same finite-volume effect is apparent: the
transients persist for longer time on the larger lattice.
This is as expected, since the difference between the wall
sources operators on the large and small lattices is a sum
of operators with the quark and antiquark at large sepa-
ration. These operators increase the coupling of excited
states relative to the ground state.

Another issue we can comment on is the volume
dependence of statistical errors. We find that the errors
from 15 large lattices are somewhat smaller than those
from 36 small lattices. This is consistent with the hy-
pothesis that the extra volume of the large lattices gives
independent information. If so, one would expect the er-
rors to be smaller by a factor of +(15/36) X(24/16)
= 1.2, roughly consistent with what we find.

Finally we compare results with earlier calculations.
Both Refs. 24 and 23 have results at the lighest-quark
mass m =0.01. The former work uses five 16 X32 lat-
tices, with three point sources on each configuration, the
latter a single source on each of the 32 16 X24 lattices.
Thus we can only directly compare local states, i.e., the

and the nucleon. Reference 24 quotes
m =0.249(4) and m&=0. 728(95), whereas Ref. 23 has
m„=0.247(3) and m =0.312(47) (they use APBC in

space which makes extracting the nucleon mass difficult).
These are to be compared to our results on 16 X40 lat-
tices: m =0.242(3) [or m„=0.234(10), see Table V(a)],

l(o)
N(LT) rn=. 01 P —6—

0 24 x4Q
x 16 x40

)i

() ()()), (& LC)

0 4 I )

0 10
t

(b)' ' ' T
N(NLT) rn=. 01 P=s

0 p4 x4Q
x ]6 x@0

)i:(
() )( '&~

t

(

() (-)
(::),'::.':

,( ()

(3(.
)

--C:)

(Dp4&
0 10 20

t
FIG. 9. Finite-volume effects in the effective mass of the nu-

cleon using (a) LT and (b) NLT operators. Results are for
m =0.01 at P=6. A slight horizontal offset has been added to
the 16 X40 results.

IX. 18 X 42 LATTICES AT @=6.2

The data presented here are from a new analysis using
the background gauge configurations of Ref. 2. Whereas

m =0.297(6) and m)v=0. 69(3) (using the LT operator
as used in Ref. 24). The agreement is reasonable. For the
p's, Ref. 24 quote m =0.50(5) and 0.39(6) for the two lo-
cal p's, while Ref. 23 find m =0.62(7) and 0.66(18) from
poor fits. These are clearly consistent with 0.44(2) for our
p6. Their p s lie in different lattice representations from
all of ours, but our results indicate that this is not impor-
tant. In short, the march of time has simply reduced the
statistical error bars by a significant factor, and the
analysis has become more sophisticated, allowing us to
estimate systematic errors.
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TABLE VII. Meson spectrum for P=6.2 on 18'X42 lattices. A dash indicates that no reliable fit

can be made.

0.03
0.03+0.02

0.02
0.02+0.01

0.01
0.01+0.007

0.007

14-26

0.355(2)
0.328(2)
0.293(3)
0.257(4)
0.215(4)
0.201(5)
0.182(5)

X /Nnp

15/9
18/9
18/9
17/9
19/9
12/9
13/9

14-26

0.369(2)
0.337(2)
0.302{3)
0.266(4)
0.228(5)
0.213(6)
0.197(8)

773

x'/&nF

8/9
6/9
5/9
8/9
10/9
8/9
8/9

10-20

0.429(6)
0.41(1)
0.38(1)
0.36(1)
0.33(2)

p6'

x'/&nF

31/7
29/7
24/7
15/7
11/7

previously we used antiperiodic boundary conditions and
point sources for the quark propagators, we now use Di-
richlet BC and wall sources. The wall sources are placed
at t =3 and 37, and the number of lattices used varies
from 28 to 32 depending on the channel.

The 18 lattices have the smallest physical volume of
any we consider in this paper. The lattice spacing de-
creases between p=6 and p=6. 2 by about a factor of
0.8. Thus the lattice is about 0.8X18/16=0.9 times
smaller along a side than the 16 lattice at /3=6. On the
basis of our results at /3=6, we do not expect the pion
and p masses to be much afI'ected by this small volume,
but we cannot rule out an eft'ect on the baryon masses.

Our results for hadron masses are given in Tables VII
and VIII. We use a larger range of physical quark masses
than at P=6. Using a scaling factor of 0.8, and ignoring
anomalous dimensions, our range of 0.007—0.03 corre-
sponds to 0.0087—0.0375 at p=6. Unfortunately, we gain
little by going to lighter-quark masses, since the statisti-
cal errors increase rapidly in all but the pion channels.

For the pions, we only have results for m and m3 and we

quote results from the LT operators for the same reasons
as at P=6. The fits are reasonable, leading to errors com-
parable to those at /3=6. Changing the time range alters
the central values by up to 2o. , the largest changes being
for the heavier-quark masses.

We use the same p channel as before, the other chan-

nels again giving consistent masses. The fits are reason-
able at the lightest masses, but get poorer as the mass in-
creases. To see what is happening we show in Fig. 10 the
p6 correlator at m =0.0085 and 0.025. The plateau is
very long at m =0.025, but undulates after t =16, so
that in our fitting range (r =10—20) the plateau is not
very Aat. For m &0.01, we do not find a convincing pla-
teau, as illustrated in the Fig. 10, and we do not quote a p
mass.

For the nucleons, we quote results for the operator lo-
cal in time (LT), and adjust the time ranges to agree with
the length of the plateau. All fits give reasonable
g /ND„, and different time ranges give values agreeing
within —10.. The NLT operator gives results 2o. higher
for the heaviest masses, though the fits have a much
larger y, but gives consistent results with better y for
the lighter-quark masses. The quality of the data is
shown in Figs. 11(a) and 11(b).

Finally, we quote a result for the A. We find a reason-
able signal in the pure 6 channel discussed in Sec. III.
Figures 12(a) and 12(b) show this signal for m =0.01 and
0.03, respectively. At the heavier mass there is a clear
plateau from t =8—16, while for the lighter mass the pla-
teau is less convincing. Table VIII gives the results of a
fit to t=8—16 for m ~0.01, the signal at lower masses
being too poor to warrant fitting. Clearly, the statistical
significance of mz —m& decreases as m decreases.

q

TABLE VIII. Baryon spectrum for p=6. 2 on, a 18'X42 lattice. A dash indicates that no reliable fit
can be made.

0.03+0.03+0.03
0.02+0.03+0.03
0.02+0.02+0.03
0.02+0.02+0.02
0.01+0.02+0.02
0.01+0.01+0.02
0.01+0.01+0.01
0.007+0.01+0.01
0.007+0.007+0.01
0.007+0.007+0.007

0.65{1)
0.63(1)
0.61(1)
0.58(1)
0.56(1)
0.54(2)
0.52(2)
0.52(2)
0.51(2)
0.51(3)

Fit

12-24
12-24
12-24
12-24
12-24
10-22
10-20
10-20
10-18
10-18

x'/&nF

8/9
7/9
5/9
5/9
2/9
4/9
7/7
10/7
8/5
10/5

0.72(2)
0.70(2)
0.67(2)
0.65(2)
0.63(2)
0.62(2)
0.60(2)

8—16
8—16
8—16
8—16
8—16
8—16
8—16

x'/&nF

8/9
6/7
6/7
5/7
2/5
2/5
1/5



43 QUENCHED SPECTRUM WITH STAGGERED FERMIONS 2019

0.6 I I I I I I I I I I I I I I

Ps P=6.2 18 x42
(o)

P=6.2 rn=. 01 N (LT)
o ~=.0@5

x rn=. 0085

)

(5)
()() ()

0.8

0.6

x APBC, point sourc e
d m, ff

—0.05

cI DBC, wall source
I I I I I I I I t I I

10 20 30
t

10
t

FIG. 10. Effective mass plot for the p6 on the 18 X42 lat-
tices at P=6.2 for m =0.025 (0.02+0.03) and 0.0085
(0.007+0.01). A slight horizontal offset has been added to the
latter points. The wall source is at t =3, and the lattice ranges
from t =0 to 41. 1.0—

x APBC, point source
Am, ff

———0.06

( b)
P=6 ~ ~= O3 N (LT)

It is interesting to compare the data at p =6.2 with
those from the 16 X40 lattices at p=6. The two lattices
have a similar physical size, and the statistics are compa-
rable. The data at p=6. 2 is clearly better at the heavier
quark masses. The quark masses in Figs. 10(a) and 10(b)
(0.0085 and 0.025) are chosen so that the data for p can
be compared with the results from p=6 shown in Figs.
4(a) (m~=0. 01) and 4(b) (m =0.03), respectively, if we
use a scaling factor of 0.8. For the heavier masses, the
signal at p=6. 2 extends much further and has smaller er-
rors. At the lighter mass, the two signals are comparable.
The improved quality of the nucleon signal is also clear
from a comparison of Figs. 12(a) and 12(b) with Figs. 4(a)
and 4(b), respectively. (Here the matching of masses is
not exact. ) We discuss the comparison of the results for
masses in the following two sections.

We now turn to a comparison with our earlier pub-
lished results. We can directly compare only the Gold-
stone pion, the 5. and the nucleon, although we expect
that the p6 will be nearly degenerate to the two p's calcu-
lated in Ref. 2. Comparing to Table II of Ref. 2 we find
good agreement for both pions, while the old values forI lie consistently -2o. above our new values. TheP
differences are much larger for nucleons (Table IV of Ref.
2), the old values lying 4—5o above our new results at the
higher masses.

We have reanalyzed our old data with the improved
method. Our overall conclusion is that the use of corre-
lated errors has little eA'ect on the extracted masses, but
does increase the estimated errors in the masses, particu-
larly for the nucleon. More importantly, we find that our
old results have an additional error due to the choice of
fitting range. We can reproduce our old results, but the
result of varying the range changes the parameters by

DBC, wall source

(D(D )~)(

20 30

FIG. 11. Effective mass plots for nucleon, using the LT
operator, on the 18'X42 lattices at @=6.2. Open circles show
the results from the present data set, crosses the results from
Ref. 2. The latter have been shifted vertically by Am, & to re-
move the kinetic energy, as explained in the text. (a) mq =0.01
with Am, z = —0.05. (b) mq =0.03 with Am, z = —0.06.

amounts which are much larger than the statistical error.
We have remarked above that the same type of error
aNicts our present data, but the error is much more
severe for our old results. In fact we find, on examination
of plots of m, ff, that the quality of the old data is very
poor compared to that of the present work. In many
channels the signal is so poor that we would now consid-
er it unreasonable to do a fit.

To illustrate these comments, we show a comparison of
f71 ff for various channels. This comparison also allows us
to study the efficacy of the wall sources compared to the
point sources which we used in our old work. Figures
11(a) and 11(b) show the comparisons for the nucleon, us-
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FIG. 12. Effective mass plot comparing the nucleon and 5
signals on 18' X 42 lattices at P=6.2, with (a) m, =0.01, and (b)
m =0.03.
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FIG. 13. Effective mass plot for the p's on the 18 X42 lat-
tices at f3=6.2. Open circles show the results from the present
data set (p6 ), crosses the results from Ref. 2 using the NLT-
NLT correlator. A slight horizontal offset has been added to
the latter points. (a) m~ =0.01, and (b) m~ =0.03.

ing LT operators, at m =0.01 and 0.03, respectively. In
Ref. 2 we used APBC in space, so that the lightest nu-
cleon has a nonzero momentum in all three directions.
We have taken the extra kinetic energy into account, fol-
lowing Table IV of Ref. 2, by subtracting 0.06 and 0.05,
respectively, from m, z of our old data. The use of APBC
in time means that we know m, z for only one-half the lat-
tice.

At the heaviest mass [Fig. 11(b)], the difference in qual-
ity of the signal is enormous. The wall source reduces the
transients and the statistical errors. Furthermore, the
open boundary conditions allow us to follow m, z to
much longer times. As for the resulting value of m&, our
old value of 0.73(2) comes from points t=8—13, which
from the m, z plot one sees is not asymptotic. Our new
value is 0.65(l). Similar comments apply at m =0.01

[Fig. 11(a)],except that the new signal is now less impres-
sive. Our old value was 0.59(3}, while our new result is
0.52(2). These differences between the two analyses are
important, since they lower the ratio m&/m towards the
expected values, as we discuss further in the final section.

Figures 13(a) and 13(b} show the same comparison for
the p's. The same overall comments apply as for the nu-
cleons, except that here the old data do have a small pla-
teau. This plateau is in good agreement with that of our
new results.

Finally, we quoted, in Table III of Ref. 2, results for
even-parity meson masses, whereas we do not have good
signals in these channels in the present study. In Fig. 14
we show the old signal at m =0.01 for the e, for which
our old result was m =0.24(9). The signal is clearly un-
reliable. Looking at plots of m, ~ in all the 0++, 1++, and
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tract f we combine Ciiit, with the wall to local correla-
tor

exp( m —t )
C ( t ) = & OI 6( t )

I
rr & & rrI qq+ oo

I
W &

2m V

(10.2)

where we have taken t large enough that the pion dom-
inates, but not too large that boundary effects become im-
portant. The operator 6=/(n)g(n)( —1)" is the com-
pletely local pion operator residing on a single site, in
terms of which f is given by

f (10.3)&2m'

0 0
5 10

t

FIG. 14. Effective mass plot showing data from Ref. 2 for the
Z. The lattice size is 18 X42 at P=6.2 and for m =0.01.

1+ channels we conclude that the results of Table III in
Ref. 2 should be discarded except for those at the heavi-
est mass. This provides a simple solution to the problem
of the e being too light.

X. f, (gg&, THE LATTICE SPACING a, AND m,

We collect together in this section various results
which are related to the estimation of the lattice spacing,
and to its variation with p.

The calculation off„ is made more difficult by our use
of wall sources. To extract the amplitude with which the
local operator creates the pion, we need to know the cou-
pling of the wall source to the pion. For this we must use
a diagonal correlator in which the pion is destroyed by
the same extended operators on a time slice which is the
same distance from the boundary as the wall source (and
in the same gauge). Thus, if the wall source lies on the
boundary time slice (as on the lattices at p=5. 7 and 6),
the signal must propagate across the entire lattice.

In the following discussion we assume for definiteness
that the wall source is at t =0, and the sink time slice is
at time T=X, —1. The diagonal correlator we calculate
1s

With staggered fermions, there are no perturbative
correction factors to this formula. Combining Eqs.
(10.1), (10.2), and (10.3), we obtain f . We actually use a
hypercube operator residing on two time slices, and
summed over spatial positions, but this is easily account-
ed for.

The results for p=6 on the two lattices sizes are shown
in Fig. 15, together with a linear fit to the 24 data. The
two 1attice sizes give results consistent within the errors.
Our results disagree at about the 2v level with those from
Ref. 25 which quotes f =0.067 at m~ =0.04 and
f =0.051 at m~ =0.01. These results use point sources
on 16 X 32 lattices with antiperiodic boundary conditions
in space, and Dirichlet boundary conditions in time. The
source is four time slices from the boundary, which they
assume is sufhcient to eliminate boundary effects. On the
basis of our results for the pion propagator, as illustrated
in Fig. 5, we would claim that at least 10 time slices are
needed to remove boundary effects. Thus it is likely that
the results of Ref. 25 suffer from boundary effects.

I I I I I I I I I I I I I I I I

0.08—

o, x 16 x40 P=6

24 x40 P =6

0.06—

exp( —m T)
Cii ii

=
& ~lqq l~& & ~lqq+oo I

II'), (10.1)
2m V

0.05

where V is the spatial volume, and W refers to the com-
plicated state that the wall operator acts upon. We have
assumed that only the pion intermediate state (at p=0)
contributes since the correlator runs across the entire lat-
tice. Note that we actually use the operator qq to destroy
the state, but since Wis a singlet under staggered fermion
flavor transformations, the matrix element of oo will be
the same, so we can replace qq with (qq+oo)/2. To ex-

FIG. 15. Results for f {in lattice units) from p=6. The
points from the 16' lattice have been ofFset horizontally for clar-
ity. The results at nonzero mq come from the amplitude of the
pion correlators, and the line shows a linear fit to the 24 results.
The points at m~ =0 use (gy & extrapolated to m, =0.
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We can also calculate f using the condensate extrapo-
lated to zero quark mass:

I I I I I I I I I

f (m =0)= m( jy(m =0))
2m~

(10.4)

We cannot use wall sources to calculate (fg), but, as
part of our weak matrix element calculations, we do have
available a noisy estimator of (gy ) . We calculate
P;=(B+m) 'g;, where tq;I is a sample of a Gaussian
noise vectors, and then use (gy(n)) =((mP(n )P(n))),
where the average is over the pseudofermions P, We
have done 24 pseudofermion inversions on each lattice at
each mass. We have also calculated, using source
methods, a noisy estimator of the derivative d (gy) /dm.
The noise in the estimator is balanced by the fact that we
have a value for every site. To illustrate the quality of
the results, we show in Fig. 16 the condensate averaged
over each time slice, for m =0.01 on the large lattice.
The boundary effects (extending for about 10 time slices)
are clear, as well as the plateau region in the center. To
quote numbers we use the results from t =20.

To extrapolate (gy) to m =0, we follow Ref. 2 and
calculate the intercept

Int(m )= 1 —m (gg) .Cg

dm
(10.5)

0 ~ 10

16 x40 P=6 rn =.01

Figure 16 also shows md(gg)/dm, the quantity to be
subtracted from (gy) to obtain the intercept. The re-
sults for the condensate and the intercept on the P=6 lat-
tices are shown in Fig. 17. Also shown are linear fits to
the condensate, and fits of the form 2 +8m to the inter-
cept. We use the latter to extract (pp)(mq =0)=0.033
and 0.029 on the 24 and 16 lattices, respectively, with
errors in both cases -0.002. Thus there is a possible 2o.
finite-size effect. We can again compare our results with

0. 1

00
0.00 0.01 0.02 0.03

FIG. 17. Results for (gg) and Int(m~) at /3=6. Also shown
are linear fits to the condensate, and fits of the intercept to
3 +Bmq.

those of Ref. 25. They find an extrapolated value for
(gg) of 0.036, with an estimated 20%%uo error, which is
consistent with our result. For the intercept, however,
they find 0.024 at m =0.01, considerably below our
value of 0.031(1),and even further below their extrapolat-
ed value for (gy). They attribute this low result to the
use of too small quark masses. In fact, it is clear from
Fig. 16 that the discrepancy could easily be due to the
boundary effects, which reduces the intercept below its
value in the plateau.

With our extrapolated condensate in hand, we can use
Eq. (10.4) to calculate f„directly at m =0. The results
for the two lattice sizes are shown as points at m =0 in

q
Fig. 15. The agreement with the result from extrapolat-
ing f directly (the solid line) provides a check on our ex-
traction of f„(m ).

Linear fits to f extracted using the amplitude of the
correlators give

0.08 — ~ &yy)
e

f = 0118(7) +0.97m
q

at P=5.7,
f =0.054(5)+0.47m~ at P=6.0 (24 X40),

f =0.032(4)+0.45m at 13=6.2 .

(10.6)

[IJ
0.06 —y m d&yy)/drn

oem& ~a@~~
C'

004 ~'''
0 10 20 30 40

FIG. 16. Results for (gy), averaged over each time slice,
and for md(gy)/dm. The lattice size is 16'X40, with P=6
and mq =0.01.

At P=6.0, the result from the condensate is
f (mq =0)=0.054(2). The result at I33=6.2 is in agree-
ment with our previous estimate, using the condensate,
off (m~ =0)=0.035(1).

We now turn to our determinations of the lattice spac-
ing. We obtain three estimates using m (mq =0),
m&(m =0), and f (m =0). In addition, the ratio of the
slopes, R = 2 /3, can be determined if we assume

mp 3 pmq +Bp and m = 3 m +B . Comparing with
experimental value of

mir- m ~
2 2

R=
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TABLE IX. Various determinations of the scale. The p=6 results are from the 24 X401attice. A dash indicates that no result is
available.

Scale
M

Expt.
(GeV)

P=5.7
aM(m =0) a ' (GeV) aM(m~ =0) a ' (GeV)

P= 6.2
aM(m =0) a ' (GeV)

mp
mN

0.770
0.938
0.093
1.87

0.78(7)

0.118(7)

1.0(1)

0.8(1)

0.410(15)
0.490(16)
0.054(2)
1.15(12)

1.9(1)
1.9(1)
1.7(1)
1.6(2)

0.29(1)
0.45(2)
0.032(4)
0.87{11)

2.7(1)
2.1(1)
2.9(4)
2.1(3)

gives a fourth independent estimate. These estimates are
collected in Table IX.

At p=6 there is good consistency in the determination
of the scale. The range a '=1.6—1.9 GeV agrees with
previous determinations. The results at p=6. 2 are con-
sistent with those from our previous work. As before,
the most significant discrepancy is the familiar disagree-
ment between the nucleon and p scales, which we discuss
further below. Asymptotic scaling, at the two-loop level,
predicts that a(p=6. 2) =0.8a(p=6). We find the ratios
in rough agreement with this prediction: 0.7, 0.9, 0.6, and
0.8 for the four quantities in the table. At p=5. 7 we find
1/a —1 GeV from both m and f, though we have no
results from the other methods. The ratio of the scale at
p =6 to that at p= 5.7 (a factor of —2) is greater than the
factor of 1.4 predicted by asymptotic scaling. These con-
clusions on scaling agree qualitatively with those of Ref.
25.

Having determined the lattice scale we can extract
values for m, . We do this using the experimental values
for m +/mz, m +/m, mz/m, and mz/f . In the
latter case, for example, we adjust the quark mass until
the ratio of the lattice m „ to the lattice value of
f (m =0) equals the continuum ratio m& /f . This
then corresponds to m = m, /2. For P=5.7 the different
methods give completely inconsistent answers, since there
is little resemblance between lattice and physical spectra.
For P=6 the results lie in the range m, a =0.024—0.029.
Converting to physical units using the same quantity to
set the scale as is used to determine m„we find

m, =46W9 MeV. For p=6. 2, we find m, a ranging from
0.012 to 0.020, with m, =35—54 MeV. This is consistent
with our previous results, as well as with the value at

=6.
These results are quite different from continuum esti-

mates. At a scale of -2 GeV, which is similar to the
scale of the lattice evaluation, m,""'-150MeV. This is
-3 times larger than the lattice value, much larger than
can be accounted for by perturbative corrections. [An
essentially equivalent way of stating the discrepancy is
that the continuum condensate (uu ) =0.0114 GeV
(Ref. 26) is roughly three times larger than the lattice re-
sult ((gy)/4) ' =0.038(3), where the factor of 4 ac-
counts for the number of fiavors. ] We have suggested be-
fore that this discrepancy may be due to the use of the
quenched approximation. If we fix the scale with f, and
use mz If „to fix m„ then, since the lattice and continu-
um pseudoscalar masses are consistent with
m f =m (uu+dd ), we are in effect fixing

m, (gy)(m~=0) to its physical value. But we expect
(gy) to be too large in the quenched approximation,
since configurations which have small eigenvalues, and
which therefore give large contributions to (gy), are not
suppressed by the determinant. Thus we expect m, to be
too small. Runs on lattices similar to ours, but including
dynamical fermions, show at most a small (nowhere near
a factor of 2) effect on the condensate. However these
runs have been done with quark masses near the strange-
quark mass, and it is quite plausible that the mechanism
we describe will only take effect when effects of the
lighter up and down quarks are taken into account.

It is interesting to note that the quark masses that one
finds with Wilson fermions are heavier than those for
staggered fermions. The ratio of Wilson to staggered
masses is roughly 3 at P=6, and —2 at P=6.2. There
are considerable uncertainties in these numbers, but it is
clear that the difference between continuum and Wilson
fermion quark masses is much smaller than for staggered
fermions.

Finally, we can use our values for m, to estimate the
lattice result for fz/f . At p=6 we find 1.21—1.25,
while for P=6.2 we have 1.16—1.28, where the ranges are
due to the uncertainty in m, ~ Since the quenched approx-
imation does not include pion and kaon loops, the
quenched answer may differ from the continuum value of
1.22 by -0.1. Thus our result can only be considered a
qualitative, and not a quantitative, success.

XI. COMPARISONS

We now turn to comparisons between the spectrum at
p=6. 0 and 6.2, and between our results and those ob-
tained using Wilson fermions. Both comparisons are
aimed at testing the approach to the scaling limit.

In Fig. 18 we show the ~, m.3,p, and nucleon masses
plotted against m . Figure 18(a) shows the results for the
large lattice at p=6. Figure 18(b) shows results from
p=6. 2 rescaled by a factor of 0.8 to take into account the
difference in lattice scales. The dashed lines show the fits
to the data displayed in Fig. 18(a). The Goldstone-pion
data agree well, and the trend towards flavor-symmetry
restoration is very clear. There are, however, clear signs
of scaling violations in the p masses, and in the slope of
the nucleon data.

Flavor-symmetry breaking gives rise to a difference in
slope ( A W A ) and in intercept between Goldstone and

3

non-Goldstone pions. Only the slopes have small enough
errors that we can study the dependence on lattice spac-
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1.0 I I I I I I I I I

24 x4Q P=G, Q

ing. We expect that the quantity 5 = ( 3 —2 ) / A will
3

vanish as a power of a in the continuum limit. This ratio
is an attractive object to study because anomalous dimen-
sion factors from the quark mass cancel. We find this
quantity to be 0.07 and 0.04, for /3= 6 and 6.2, respective-
ly, with poorly determined errors of at least 0.01 in both
cases. Recall that we find the ratio of lattice spacings to
be 0.6—0.9 (see the previous section). Thus, all we can say
is the symmetry breaking is decreasing as the continuum
limit is approached, but we cannot distinguish between a
linear and a quadratic dependence on a.

To investigate the P dependence of p and nucleon

1.6

1 4

I I I I I I I I

c& c) zc
()

Staggered

& 24 &&40 P=6.0

D 18 x42 P=6.2

0.8
1.2

0.0 1.00.5
(M„/M )

FIG. 19. Staggered fermions APE plot for the mass ratio
m& /m, using the LT nucleon operator, and the fits to
t =15—25 for the pions at /3=6. Extra points have been added
by interpolating the baryon results.

X
X 0

X 0

0 0
0,00 0.01 0.02 0.03

1.0 (b) ~
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0.8

0.4

Z4'x40 P=6
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FIG. 18. The spectrum as a function of the quark mass. The
solid lines are linear fits. (a) Results from /3=6 on 24 X401at-
tices, using the LT nucleon operator, and the fits to t =15—25
for the pions. (b) Rescaled results (using a factor of 0.8) from
/3=6. 2 on 18'X42 lattices. The dashed lines are the fits to the
P= 6 data shown in (a), with quadratic fits used for the pions.

masses we show in Fig. 19 the dimensionless ratio
m~/m on the APE plot. The errors have been obtained
using the jackknife method. The squares are the experi-
mental point and that for m = oo. The two solid lines
are estimates of how the mass ratio is expected to behave
as a function of the quark mass, and are meant to serve as
a rough guide. For further discussion, see Refs. 4 and
31. Results are given for the large lattice at /3=6, and
from P= 6.2. For the baryons, we use LT operators.

Our most reliable results are on the large lattice at
/3=6. These are consistent with the solid curves, actually
falling below rather than above. Although the errors are
too big to do a reasonable extrapolation, it is worth em-
phasizing that there is no reason why the quenched re-
sults should not extrapolate to a value below the experi-
mental point. It is gratifying, however, to find results
for m&/m which are decreasing as the quark mass de-
creases. The only caveat is that, as discussed above, there
may be a small residual finite-size shift in the nucleon
mass.

Unfortunately, this happy situation does not hold at
/3=6. 2. Although our new results for m~/m are con-
siderably lower than those in Ref. 2, they still deviate
from the large lattice P= 6 results at small m . Given the
large systematic uncertainties in fitting, the size of the
statistical errors at /3=6. 2, and the possibility of finite-
size efFects in the nucleon mass, we cannot, however,
draw any definite conclusions about scaling. Clearly
what we need are better statistics at P=6, and a new cal-
culation at /3= 6.2 on a larger lattice.

We can compare our results on the 24 lattice at
P=6.0 with a calculation using 24 X32 lattices carried
out by the APE group using Wilson fermions. Figure
20 shows the APE plot for Wilson fermions. The mass
ratios at P=6 are in reasonable agreement with those for
staggered fermions shown in Fig. 19. Scaling violations
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TABLE XI. Comparison of the spectrum for staggered and
Wilson fermions at P=6.2 on 18 lattices. The data at v=0. 32
and 0.325 are with r=0. 5 Wilson fermions. A dash indicates
that no result is available.

Wilson ferrnions

Q4 xQQ P=5.7
x 18 xgQ P=6, 0

x P4 xgP P=6.0
o 18 x42 P=-6.H

Mass

mq =0.03
~=0.151
~=0.320

mq =0.02
K=O. 152
K=0.325

mq =0.01
pc=0. 152

0.355(2)
0.358(5)
0.37(1)

0.293(3)
0.300(6)
0.29(1)

0.215(4)
0.224(9)

0.429(6)
0.416(1)
0.443(6)

0.38(1)
0.368(2)
0.39(1)

0.33(2)
0.322(6)

Nucleon

0.653(7)

0.715(8)

0.58(1)

0.62(1)

0.52(2)

1.2—
0.0 0.5

(M„/M )

1.0

FIG. 20. Wilson fermions APE plot. The data at P=5.7 and
that at p=6 is from Ref. 33 and that at p=6. 2 from our previ-
ous work (Ref. 2).

do appear, however, if we make a more detailed compar-
ison. We do this by matching the pion masses of the two
fermion formulations, and comparing the p and nucleon
masses. We compare using both the staggered Goldstone
pion and one of the non-Goldstone pions since there is no
a priori reason for choosing one over the other. Table
X(a) shows the comparison using the Goldstone pion.
The staggered p and nucleon masses lie significantly
above those for Wilson fermions. The agreement is much
improved if we match using the staggered 5, as shown in
Table X(b).

Mass

mq =0.03+0.03
~=0.1530

0.417(2)
0.422(2)

0.562(4)
0.504(4)

Nucleon

0.83(1)
0.793(8)

I
q
=0.0 1 +0.02
v=0. 1550

0.296(2)
0.298(2)

0.49(1)
0.423(7)

0.65(2)
0.629(13)

mq =0.01+0.01
~=0. 1558

0.239(2)
0.236(3)

0.45(2)
0.392(11)

0.61(2)
0.549(19)

Mass
(b)

Nucleon

mq =0.02+0.03
]c=0.1530

0.417(4)
0.422(2)

0.537(5)
0.504(4)

0.77(2)
0.793(8)

mq =0.01+0.01
+=0.1550

0.295(3)
0.298(2)

0.45(2)
0.423(7)

0.61(5)
0.629(13)

TABLE X. (a) Comparison of the spectrum for staggered and
Wilson fermions at P=6.0 on 24' lattices. We use the LT nu-

cleon operator, and have interpolated to get a value for stag-
gered fermions at mq =0.01+0.02. (b) same as for (a), except
matching the staggered ~ with the Wilson fermion pion.

(a)

At p=6. 2, we can compare with our old r = I/2 Wil-
son fermion results from the same lattices. In addition,
for r=1 Wilson fermions, there exists data on 16 X40
lattices for the pion and p from the ELC Collaboration.
In Table XI we compare the spectra, again fixing quark
masses so that the pion masses agree. (Here the
difference between ~ and ~. is too small to be important. )

The pattern is similar to that at p=6 when using ~. to do
the matching [see Table X(b)].

XII. CONCLUSIONS

The size of staggered Aavor-symmetry breaking and
the lack of signal in p and nucleon correlators at p=5. 7
mandates that future calculations be done at P) 6.0, with
P) 6.2 preferable.

To do such calculations efficiently, extended sources
are mandatory. We use a wall source, and find that the
improvement in the quality of the signal in hadron corre-
lators is similar to that obtained using the APE cube
sources. A particularly useful feature of our source is
that it allows us to study a number of pion and p repre-
sentations, while generating states with zero momentum.
In addition, the sources also produce the 6, and we find a
reasonable signal for this particle at /3=6. 2. To the best
of our knowledge, this is the first time that a signal for
the 6 has been obtained using staggered fermions.

We do not find a signal in the even-parity meson sector
on any of the lattices considered in this study. A
reanalysis of the data given in Table III of Ref. 2 indi-
cates that those results should be discarded, except at the
heaviest-quark mass. In particular, there is no evidence
for an anomalously light scalar.

At P=6 our results show that finite-size effects in pion
and p masses are small or absent on a 16 lattice. For the
baryons, however, there are contradictory indications,
and all we can do is limit possible finite-size effects. For
our two lattice sizes, the difference in the nucleon mass at
small quark masses is 10% or less. It would be useful to
improve the statistical precision of these results in order
to determine the minimum volume one can safely use for
a nucleon at rest.
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The results on the 24 lattice at /3=6. 0 probably
represent, within the statistical and systematic errors dis-
cussed above, infinite-volume results. We find that the
ratio m&/m lie considerably below previous results us-

ing staggered fermions, and there is encouraging agree-
ment with Wilson fermions. Nevertheless, a glance at
Figs. 19 and 20 is sufficient to indicate that much work
remains. To systematically investigate the validity of the
quenched approximation, we have to work at weaker
coupling and with smaller quark masses, and we must
reduce the size of the errors.

Note added. Another sighting of the 4 baryon has
been made, using techniques similar to those presented
here.
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