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Nonperturbative many-body techniques applied to the Yang-Mills Hamiltonian
in the Schwinger gauge
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Starting with the Hamiltonian formulation of pure Yang-Mills theory in the Schwinger gauge,
nonperturbative many-body techniques (Bogoliubov theory) are applied to calculate the gluon spec-
trum and the vacuum energy expectation value. The Schwinger gauge offers the possiblity of imple-
menting a lattice analogous regularization in a natural way. The main results are the appearance of
a mass gap in the interacting theory and a satisfactory agreement of the behavior of the vacuum en-
ergy expectation value (as a function of the coupling constant) with lattice calculations.

I. INTRODUCTION

Strong efforts have been undertaken in the past few
years to obtain an understanding of the structure of
Yang-Mills theories in the nonperturbative regime, where
characteristic phenomena of non-Abelian gauge theories
should occur. Because of the enormous numerical ex-
pense of the most successful lattice Monte Carlo method
(a formulation based on evaluating a Feynman path in-
tegral) one is looking for an alternative framework to get
better insight into the structure of bound states, eigen-
functions, etc. The treatment of the field-theoretical
Hamiltonian with nonperturbative techniques seems to be
the obvious way. The reliable results of the lattice calcu-
lations can be used for testing these other approaches.
New results of van Baal' stimulate the hope that princi-
pally it should be possible to get a genuine alternative in
this framework.

It is the purpose of this paper to investigate the eigen-
value problem of the Yang-Mills Hamiltonian (with com-
plete gauge fixing) by applying many-body methods well
known, e.g. , from the description of nuclear matter.
Concerning the choice of gauge, it has been shown in a
recent paper that the Schwinger gauge x A =0 seems to
be distinguished in calculating bound states, etc. Com-
pared to Ref. 1, this formulation also allows a replace-
ment of the torus by a spherical cavity as a more natural
domain of the definition of the theory.

The various complete gauge fixings —Coulomb, axial,
etc. , as they are applied to Refs. 3 —7—yield different for-
mulations, but should in principle agree with the results
for the observables because of the local gauge invariance
of the theory. However, the choice of a suitable regulari-
zation scheme is expected to be decisive in order to ob-
tain a scaling behavior of the observables which is a
necessary condition for consistency. ' In the continuum
perturbation theory it is the dimensional regularization
and in the nonperturbative sector it is the lattice formula-
tion' '" that satisfy the above criterion (though only in a
scaling window) and conserve the so-called Ward identi-
ties, which are a direct consequence of gauge invariance.

One advantage of the Schwinger gauge now is the pos-
sibility of introducing a lattice analogous regularization.

II. CANONICAL QUANTIZATON

With standard notation the pure Yang-Mills Langran-
gian is

XvM = —,'F""'(x)F„,(x )—
with

(2.1)

and

F~"(x)= a~ ~ "(x) a~ ~ (x)—
+gf' 'A"' (x)A '(x) (2.2)

Details of the general structure of this formulation are
discussed in Ref. 2.

Within this paper the mathematical structure and a nu-
merical application of the simplest nonperturbative
many-body technique, the Bogoliubov theory, are
presented. As a result we find the appearance of an ener-

gy gap in the single-particle (SP) spectrum of the non-
Abelian theory, a structure which is expected to occur for
the spectrum of the Yang-Mills theory (finite glueball
mass), see, e.g., Refs. 5 and 12. We also present results
for the vacuum energy expectation value which turn out
to be in satisfactory agreement with lattice results. These
calculations are considered as a first step for the compu-
tation of glueballs.

The paper is organized in the following way. After
canonical quantization of the pure Yang-Mills theory we
specify the Hamiltonian in the Schwinger gauge taking
the results of Ref. 2 (Sec. II). To calculate the expecta-
tion values of H with respect to a BCS ansatz for the vac-
uum it is advantageous to implement a Bogoliubov trans-
formation (Sec. III). This yields a characteristic set of
random-phase-approximation (RPA) equations for this
transformation from a variational principle equivalent to
a diagonalization of the SP normal-ordered Hamiltonian
(Sec. IV). A lattice analogous regularization is intro-
duced in Sec. V. With the matrices consisting of the
eigenvectors of the solved RPA problem, we compute the
vacuum energy expectation value (Sec. VI). Some con-
clusions are given in Sec. VII.
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x. A(x)=0
which yields the Hamiltonian

Hs, „„,„„=—,
' Jd'x II;II'+ —,

' Jd x p, I p,

(2.6)

= —g~" ' T, go= —gAs'~T, ,

T, C Lie algebra of SU(n),

[ 7 7. ] &f abc7 fabcf dbc n—5ad

XvM is invariant under the local SU(n) transformations

g (x) =exp[ —i8'(x) T, ], O'HIE, (2.4)

~„'(x)=g(x)(~„—ia„)g-'(x) . (2.5)

The procedure for quantization is to impose gauge fixing
via constraints. ' ' The most convenient strategy is to
impose the temporal gauge 30=0 leaving open time-
independent gauge transformations and the Gauss law on
the states (gauge invariance of the states). This gauss
law is conveniently satisfied via complete gauge fixing (for
details see Ref. 2).

Here we consider the "Schwinger" condition

For the Fock-space operators we have the canonical com-
mutation rules

[a, ~t]=5 ~, [, i3]=[a", ~]=0 (2.14)

and those of the fields contain now a "transversal" 5
function:

I

[II;(x),A; (y)]~, =o= i—5', 5,';(& &—'),
r2

5tr( II II i) y yi.lm (II)yi.lm(fbi )

(2.15)

III. THE BOGOI.IUBOV TRANSFORMATION

(3.1)

To calculate the expectation values of the above Ham-
iltonian it is necessary to make an ansatz for the ground
state, the interacting vacuum. From the many-body
theory it is known ' that if ~P) is the ground state of a
many-body system, there exists a representation of the
form

+ ~ f d 3x 7I a71 a

with the color-charge density

p = —V.II+ i [II, A ],
and

I = —8 'r () 'r, 8 '=(c}li) )
' r=~x~ .

(2.&)

(2.&)

with 5 a function only of the creation operators and an
uncorrelated ground state ~P) (e.g., a Slater determinant
in the case of fermions). In our case

~ P )—:
~
0 ) is the

Fock-space vacuum of the annihilation operators
(a ~0) =0) defined in the last section and

S=c a +—'c ~a a +—c ~rata@~t + . . (3.2)
1

1 a 2 2 a P ~~ 3 a y

A(x)=g — (a +s a )f (r, Q),l
2'

II(x)= i g —(a ——s a )f (r, fl)V co
a

(2.9)

(2.10)

with

f (r, Q)=r 'g, i(r)Y~™(A)T s =( —1)

~11m ~(1,1)lm

Y'™=~[i(l+I)]-'"e„XLy™,
e„=~x~ 'x —x Y~' =0

(2. 1 1)

aIld

g„»(r =o)=o (2.12)

with a=(n, l, mk, , a), n E%; l + 1; —l +rn +l; A, =1,2;
a = 1, . . . , n —1; a=(n, l, —m, A, , a), for more details see
Ref. 2. (co is a fixed length scale which can be put equal
to one at a later stage. )

The freedom of the choice of suitable radial functions
is later used for defining a regularization scheme (see Sec.
V). The operator c) in I is defined as in Ref. 2 to avoid
singularities in the energy expectation value:

(8 'g)(r =0)=0:(c) 'g)(r)= J dr'g(r') .
0

(2.13)

To satisfy the Schwinger condition (2.6) we expand the
fields and their conjugate momenta into the product of
linear combinations of vector spherical harmonics' and
nonspecified radial functions (see Ref. 2):

The c coefficients must be chosen such that ~1ij) has the
same trivial quantum numbers as the vacuum.

Within this paper we approximate S by the first two
terms in (3.2). Extensions to higher orders with a suitable
cluster expansion' will be devoted to future investiga-
tions. Although we cannot hope to comprehend the
whole theory, the first interesting insights into charac-
teristic processes should be expected.

Because of color symmetry, c& vanishes. So the ansatz
for the vacuum

~p) =exp(-,'c,~a apt)~0) (3.3)

is identical with the well-known BCS ansatz. Thereby,
because of the vacuum symmetry, c2 has to be of the
form

c2 =( 1) 5 b5i.i.5ii5m c,""' (3.4)

The calculation of expectation values with this ansatz is
facilitated essentially by the possibility of transforming to
quasiparticle operator (b, b ) by a Bogoliubov transfor-
mation' defined by

bt =g(U& a&+V& a&), b =g(Up a&+V& a&)

(3.5)

(we assume the matrices U, V to be real) such that one has

b ~f) =0, [b,bii]=5 ii, etc. (3.6)

The condition that
~ g ) should have trivial angular

momentum, color, and parity leads in the framework of
our spherical basis of SP states to the restrictions
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U.i3=5i.i. 5ii 5,
V~p ~A, k'~11'~m, —m' a~ah Vnn'

(3.7)

0 —1

Finally the commutation relations (6) determine a gen-
eralized orthogonality (for every fixed l, A, ):

lk IA,U' V' U V 1 0
Vt Ut f V U lt f

Then V=:V3+H3+ V4+H4. . The BCS ansatz for the
vacuum yields vanishing expectation values for the three
point terms H3, V3 (an extended ansatz for the ground
state with nonvanishing expectation values of H3 and V3

is described in Refs. 7 and 18).
For technical reasons we represent the untransformed

fields of Sec. II by the Bargmann-space variables related
to the SP basis mentioned above:

E

( U' means U transpose) . (3.8)

A(x)= g —(b +s b )(U —V)„'„Y' T, ,
tx n7

(3.9)

In the case of fermions (anticommutation rules) f is equal
to the identity. Therefore, the transformation is unitary
for fermions and symplectic for bosons.

For the transformed fields we obtain (a~ = 1)

A=gq f

=gp f, [q,pi3]=i5 i3

with (co= 1)

1
q

= —(a+sa ),tl
2

et tt

p = i ——(sa —a ).
2

(4 4)

(4.5)

II(x)= i g — (b sbt )(—U+ V)'„„Y~™T,.
2 r

Then we get the norma1-ordered SP part of the Hamil-
tonian (4.1):

This shows that on account of the ansatz (3.7) for U, V

only the radial functions are transformed, while the
spherical harmonics remain unchanged.

Hsp:=:(q P) 0
0 q

8 p
(4.6)

IV. THK RPA EQUATIONS

H=(H)+ —,'gE btb +V (4.1)

with the SP energies E and a higher-order term V =:V:

For a better understanding we specify the contributions
of Hsch~lzger

The Wick rule is the important tool for a convenient
representation of operators composed of the fields
specified in Sec. III. Here, normal ordering and contrac-
tions will be defined with respect to the operators b, b

and the vacuum
~ g ) .

The standard structure of the Bogoliubov theory' is
that a variation of the ground state (with respect to the
parameters of the Bogoliubov transformation) is

equivalent to a diagonalization of the single-particle part
of the Hamiltonian yielding

w P=H ~+v-t'&p p &

+(H- P+H-l' +H-i3 +H-"i')&q q &4 4 4 4 o.
(4.7)

8 =H + Vz + V4 '(qaq, ) .

lA, —
nlqk.ma ( U V)nn'qn'lmia

IA. —
p. i )..=( U+ V)- p. i i,

(4.8)

Here ( ) = (t(it~ ~g) and Hz~, etc. means the Bargmann-
space matrix element with respect to the SP basis. Mixed
elements (in the p, q) are vanishing. [Appearing only
through V4 they do not contribute because of the symme-

try of the matrix elements V4 ~' and the canonical com-
mutation rules of the Bargmann-space variables (4).]

With the Bogoliubov transformation for the
(q,p)~(q, p),

H H +H2+ V2+H3+ V3+ V4+H4

with

H =—' d xH'II'
77 2

H2= —,
' f d x(vX A)~(vx A)i,

v, =-,' fd'x(v 11);r(v 11);,

V, = g fd'x(V II) r—f "'ll,"W;,

x(V X A) fc( A )( Ac).
3 2

2
g d 3x fabcf ade(11b Ac)r(IId Ae)

4

2—g d 3x fabcf ade( Ab~ Ac) ( Ad X Ae)
4 8 J J

(4.2)

(4.3)

[ U, V real matrices, see Eq. (3.5)], we obtain the "elemen-
tary contractions"

i. b &
=&- (1 ~ » All 5.b5

(q„, ~, q„, ,~,b ) =p„„,(l, A, )s 5„,5, 5 5

(q~p) = —(ppq ) =i '5 i3-
with

~„„.(l, A, ) = —,'( U+ V)'„k( U'+ V')I,„
(l g) —t

( U V)ll ( Ut Vt)lk

(4.9)

(4.10)

Finally, by inserting (4.8) into (4.6), applying the general-
ized orthogonality [Eq. (3.8)], and going back to the Fock
space, one sees that the Hamiltonian (4.6) is diagonalized
if the following equation is satisfied:
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U V U V K 0
V U V U 0 —K (4.1 1)

with the norm (see Sec. III)

fWf W'=1, W=

Here E (the matrix consisting of the eigenvalues E ) is di-
agonal and

h =A +B, A=B —A (4.12)

V. REGULARIZATIGN

Up to this point all operators, especially the Hamil-
tonian, have to be understood as formal objects, because,
as is well known, the representation of the Poincare
group resulting from the canonical quantization of a clas-
sical field theory with interaction is pathological. In or-
der to give the generators a mathematical meaning, we
have to find a consistent regularization scheme.

In gauge theories we have to respect gauge invariance,
yielding, e.g. , Ward-Slavnov-Taylor identities. In pertur-
bation theory dimensional regularization satisfies this
criterion in the continuum theory and the lattice formu-
lation in the nonperturbative sector in a natural and
elegant way. ' '"

Within the Hamiltonian formulation, a regularization
may be defined by truncating the expansion [Eqs. (2.9)
and (2.10)], of the field operators by taking into account
only a finite number of terms. An essential problem is
then the choice of the form of these modes. In the fixed-
gauge investigations in Refs. 3 —7, plain waves (in Ref. 3
the S analog) have been used for the basis functions in
the expansion [Eqs. (2.9) and (2.10)] and the truncation
was given by a (sharp) momentum cutofF.

Since h, A depend on U, V this is a nonlinear eigenvalue
equation with a non-Hermitian matrix related to the Her-
mitian matrices A, B. For fixed h, A it is a linear eigen-
value problem of the RPA type. The transformation 8 is
symplectic, as seen from its symmetry with respect to the
metric f. To every eigenvector (v)'„with eigenvalue F.
there exists a corresponding eigenvector (U)'„with eigen-
value —E .

The next step is to compute the matrices A, B related
to H„,H2, H4, V2, V4. Because of the symmetries of U, V
the A, B are of the form

A ~=5115 5ii.s 5,b A„„(l,A, ),
(4.13)=5ii 5 5i„i s 5,bB„„(t, A). ,

Therefore the RPA equation (4.11) can be divided into a
system of coupled RPA equations consisting of eigenval-
ue equations for every (l, k, ). Then the calculation is
straightforward and just technical. The details of the
different contributions of the Hamiltonian to A and B are
specified in the Appendix. For general radial functions
g„&i we obtain five types of radial integrals (see the Ap-
pendix), which are reduced to three after introducing our
special regularization.

Especially the rather complicated structure of the
Hamiltonian in the Coulomb gauge"' related to the Cxri-

bov horizon' makes it technically very dificult to work
with other single-particle functions.

A momentum cutofF', however, is very problematic,
since it is well known from perturbation theory that in
order to make it consistent with dimensional regulariza-
tion, counterterms have to be introduced (new counter-
terms in each order of perturbation theory) which are
difticult to overview. In fact, in all the above exam-
ples the counterterms were neglected (except for nor-
mal ordering).

The great advantage of the Schwinger gauge is the
rather simple structure of the Coulomb term [Eq. (2.7)]
allowing general choices of radial functions without tech-
nical diKculties. As discussed in Ref. 2, the lattice regu-
larization is related to an expansion of the field operators
in terms of characteristic functions. Such functions can
now also be introduced for the radial coordinate within
our Schwinger gauge framework and we expect that be-
cause of the analogy to the lattice formulation this regu-
larization has a better chance of being consistent with di-
mensional regularization without counterterms. A finite
check of this consistency is only possible by looking at
the scaling properties of reliably computed observables
which goes beyond the scope of our paper. Thus our reg-
ularization is given by

g„&(r)=—[6(r na) —e(r —(n +—1)a )]=g„(r),1
(5.1)

where a is the "lattice parameter" and

n EN, 1 +n ~N, „, r CR, r («N, „+1) .a (5.2)

In that way we obtain a theory in a finite volume (as in a
bag model or in Ref. 1) and with an ultraviolet momen-
tum cutoA as in the lattice formulation p ~ m /a,
l ~L,„=vr(N, „+1 ).

The introduction of characteristic functions produces
ambiguities in the definition of the regularized forms of
the operators a ', a (see Sec. II and the Appendix). The
only matrix elements which we have to define are (see the
Appendix)

a„„=f a 'g„r 'a 'g„dr,

b„k = f ag„agkd
(5.3)

a-'= fdr a y. (5.4)

We also have

fg gkdr =a

Putting the scale a equal to one (co= 1 is also legitimate),
we obtain, for the radial matrix elements of the Appendix

Within the presented calculation we have made the
choice

ag„~a '(g„,—g„), n ~ 2

and
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a„„= g J
j=M

M =max(n, k),

~nk ( ~nk ~nk —1 ink+1)
—2

Cnk ~nk n

dnk ~lj nk ~ where gn gk ~nkgk

lj
enk ~lj ~nl Cnk

(5.5)

The choice in (5.4) is not unique; others are given in Ref.
2 (see Secs. VI and VII for discussion of this point). In
order to test the quality of the definition, the analytically
solvable Abelian case (see Ref. 2) was treated. Very accu-
rate results were obtained already with N, „=25. We
used this value in the non-Abelian case yielding an ac-
ceptable CPU time as well as good precision.

VI. RESULTS

A. The non-Abelian single-particle spectrum

The single-particle spectrum and the vacuum energy
expectation value calculated in this section do not have a
direct physical meaning, but they yield the possibility of a
first understanding of the complicated structure of the
many-body problem and the techniques of the formula-
tion describing it.

5=ca 'exp c =const
Og

(6.2)

with $0=3. 1 (similar to the Coulomb and axial gauge)
while the correct value is /3o=0. 14.

We hope to get in the future a better result by extend-
ing the vacuum ansatz (see e.g., Ref. 18) or/and by
defining another prescription for the regularized opera-
torsa ', a:e.g. ,

8 =h '(D ' —h' ) with D =h '8 (6.3)

h
' the derivation of h, with a regular function h and a

parameter o..

ial gauge or lattice calculations' is striking. It is an
open question whether this gap may be interpreted as the
existence of massive gluons in the interacting theory since
up to now no calculation has been done in the continuum
limit and the nature of the longitudinal components of
the gluon is unclear. The existence of the gap, however,
is probably a necessary condition for having only massive
(colorless) glueballs.

To look for something like scaling behavior let us un-
derstand the gap as nearly half the mass of a glueball, a
physical object (as we hope). Then with the gap 5=600
MeV (Ref. 12) for g =1.0 we get a '=1.2 GeV. In the
range of g =0.8. . . 1.1 we obtain a scaling behavior

T

To calculate the non-Abelian spectrum of the Hamil-
tonian mentioned in Sec. IV we have to diagonalize the
coupled nonlinear system of RPA equations (see Sec. IV)
by iteration. With the former regularization and the re-
sults of the Appendix we obtain

I I I I
f

I I I I

A„„(l,A, ) = +5„„.5k,
bnn ' l (l +1)

2

+N, g ~„„,(l', A, ')(2l'+ l )a„„' 16~

+N, g p„„,(l', A, ')
~ 5„„' 16~ "" ' n2

(6.1)

Zo—
Z

e
~'

~'

2 '2 2
2

g p„„,(l', A, ')(2l'+ l )a„„, .' 16m

The summation is performed over l', A,
'

( 1» I, l' » l

A. , A,
' = 1,2; 1» n, n

' » N, „)and N, is related to the gauge
group SU(N, ). The matrices p and ~ (containing the
U, V) are given in Sec. IV. The first sum in A and that in
8 results from V4, the second one in A from H4. With
A, B we obtain h, b [see Eq. (4.12)j and the coupled sys-
tem of RPA equations is solved through iteration (with
suitable initial conditions, e.g. , U=I, V=O). The eigen-
vectors and eigenvalues converge very rapidly; for a good
precision we need only 4—5 iterations. The resulting SP
spectrum [E„I(N,„+I) as a function of l, n fixed] for
N, =3 and radial quantum number n =1 is shown in Fig.
1.

The appearance of an energy gap for g %0, as in the ax-

I

II

LLj

10

10

ANGULAR MOMENTUM L

15

FICx. 1. The non-Abelian single-particle energies (N, =3) for
the lowest radial modes (n =1) as a function of the angular
momentum L for g =0.0 ( ), g =0. 1 ( ———), g =0.9
( ——), g =1.2 ( —-—-) relative to E —

& L —
&

the energy of the
lowest-lying state in the bag for g =0. The cutoF is given by
nmax =25
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B. The vacuum energy expectation value

From the calculation of the SP spectrum we have ob-
tained the matrices U, V, which diagonalize the SP Ham-
iltonian approximatively. Therefore we can use these re-
sults to compute the vacuum expectation value of H and
to compare it with lattice results from Chin, Long, and
Rob son.

Only the complete contractions are to be determined:

(H)=(H )+(H, )+(V, )+(H, )+(V ). (6.4)

This calculation is analogous to the former one and yields
the terms

(H ) = ,'D, g—(2l+1)a„„(1,X),

a(H„, )
eK.s

C P

(6.8)

with the Kogut-Susskind Hamiltonian '
hKs and X =

the number of the plaquettes.
To compare their results with ours a different

definition of the coupling constant must be taken into ac-
count. Our formulation is related to that of Chin, Long,
and Robson by the replacement

a„k, b„k are the same as in Secs. IV and V.
Figure 2 shows the expectation values in units of a

of the Abelian and non-Abelian contribution to (H ).
Chin, Long, and Robson have calculated, in the lattice
formulation,

( A, II ) = ) g A, —II1
(6.9)

l (l + 1)X b,„.+5„,6q,

( V2) = ,'D, g (2l+ —l)a„„(l,A, )a„„l(l+1)

(6.5)

(6.10)

For comparison we also have to define an energy density
per gluon degree of freedom:

a(H )~g«V= 4~ (X + 1)S D y &

3 max
C

with D, the dimension of the Lie algebra of SU(X, ).
Because of the antisymmetry of the structure constants

only two types of contractions are nonvanishing in the
four point terms, e.g. , for H4,

(AA)(AA) and (AA)(AA), (6.6)

yielding

(H4) g N D g (21+1)(2l +1)
16m

Xp„„(l,A, )p„„(l',A. ')n
(6.7)

2

( V4) = X,D, g (2l +1)(2l'+1)a„„
16~

X [p„„,(l', A.')~„„.(l, A, ) —5 ] .

The sums include all appearing indices and both p, ~ and

In Fig. 3 the ratio (esfa)/eKs (with a constant a taking
into account the various regularization schemes) is
represented as a function of the coupling constant g. The
value is nearly equal to one, which seems to be a good
confirmation of our approach.

VII. SUMMARY AND REMARKS

Summarizing we may say that the application of non-
perturbative many-body methods to the Yang-Mills
Hamiltonian in the Schwinger gauge regularized by a lat-
tice analogous scheme yields a technically transparent
formulation to compute expectation values (spectra of
bound states at a later stage) with a minimal numerical
expense. The vacuum energy is described in a satisfacto-
ry way when compared to lattice results, and an effective
mass for the gluon in the interacting theory can also be
obtained, though with a scaling behavior not better than

2.5 1.5

2.0—
C)

M

1.5—

cH»
&H»++H~»+cV~»
cH~»+ cQ~»

lh
hC

0)

1.0 0
LA

0)

A
1.0—

V
l

C3

0.50.8
I

0.9
I

1.0

COUPLING g

I

1.2
0.50.9 1.0

COUPLING g

FIG. 2. The vacuum energy expectation values in units of
a '. The cuto6'is given by N, „=25.

FIG. 3. Ratio of the vacuum energy densities. See text for
details.
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in other approaches. An extension of the vacuum ansatz
to include three-point contributions and different choices
of the regularization prescription for i3

' may perhaps
improve this situation.

Also it should be mentioned that a more detailed inves-
tigation of the boundary conditions of the fields might be
necessary, motivated by the following remark: Generally
every gauge fixing of the form I ( A)=0 must be com-
plete and unique (every orbit is cut from the hyperplane
defined by the gauge condition only once). In the
Coulomb gauge the uniqueness is not satisfied and there-
fore the Gribov horizon is introduced.

Here we have the problem that the gauge transforma-
tion to the Schwigner gauge,

g(x)=Pexp iB ' —A(x)
r

(with the definition of 8 given in Sec. II and Ref. 2),
might not be consistent with respect to given boundary
conditions of the gauge fields. This means that the
Schwinger gauge condition eventually has to be extended.
An example of this type has been discussed by Yabuki.
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APPENDIX

Here we specify the results in the computation of the SP matrix elements of the Schwinger Hamiltonian. With the SP
functions from Sec. II we obtain

H l=
—,'Trfd xf f&= ,'s 5&, —

with

V ~=
—,'Tr f d x V f I V. fp= —,'5iq5ii5 5&is 5,b(l(l+I)&.ji.,

H i =
—,'Tr f d3x Vxf Vxfp=5p5ii, 5 ms~5, b( ,'b„ii, „,ii—„,+ —,'5i, l(1+1)c„ii„ii.)

(A1)

a ii ig=fdr(Ogive)l'(Bg ii )

(A2)

—2
nl A, , n'I'1, ' d ~nl A, n 'I'A. '

In the computation of the non-Abelian contributions we use the rotational invariance of a sum of a product of four
spherical harmonics:

2

V~ ~'= — Tr f d x[f, f ]I [f&, f,];
therefore

and

2

V4 ~'(q q, )=S Q, g p, , (l', , k', )(2ii+1)d ', '~" ', '~'
t I

1 I

2

& "~(p.p, ) =5.P, g ~, , (1'„k', )(2l', +1)d,', ,', ,',', ,', ,',
tl i, n2

1 I,A. I

(with 5 &=5&&.5&i 5 s 5,b),

2

Tr f d x ~~& F-kj(fq fllfP f&].
with

2
'+H ' +H '~+H ~')(q q )=5 =jV g p, , (l' X')(2l'+l)d, ',',', ,','2

4 4 4 4
n l, n2

I I, A. I

(A3)
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dg= Jdr(B 'g g )r (t) 'gpg), e &= J dr g g r g&g, . (A4)

With the definition of the radial functions as "characteristic functions" we obtain the results for the radial matrix e]e-
ments specified in Eq. (5.5).

Fina11y, the resulting matrices A, B are given in Eq. (6.1).
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