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We present a new technique for analyzing heavy-quark bound states in lattice QCD. The
method is based upon a nonrelativistic reformulation of the heavy-quark dynamics that is sys-
tematically developed starting from the Dirac theory. It is far superior to traditional relativistic
techniques, as we illustrate in a numerical study of the T and % meson families.

I. INTRODUCTION

Quantum chromodynamics (QCD) has been quite suc-
cessful in accounting for the high-energy interactions of
quarks and gluons. Unfortunately, we have been largely
unable as yet to extract reliable quantitative informa-
tion from the theory concerning the low-energy structure
and properties of hadrons. Of all hadrons, the ones that
ought to be the simplest to analyze are those composed
entirely of heavy quarks. In this paper we present the
first results of a new approach, based upon lattice QCD,
to the nonperturbative study of such hadrons.

The advantage of studying heavy-quark hadrons lies in
the fact that the quarks are nonrelativistic. For example,
the quark velocities squared in the T and the 1 arel

o2~ 0.1 for the T,
0.3 for the .

Low quark velocities have two important consequences.
First, the probability for finding low-energy gluons in the
meson is small, since the amplitude for a quark to ra-
diate a gluon is typically proportional to v (by gauge
invariance). Second, the quark-antiquark interaction is
approximately instantaneous. A gluon exchanged by
the quark and antiquark usually has momentum of or-
der the quark momenta, and thus the gluon’s energy is
larger than the quark kinetic energies by a factor of 1/v:
Ey ~ py ~ Mv > Mv?, where M is the quark mass.
As a result gluons have reaction times that are 1/v times
shorter than the quark reaction time, and lead to inter-
actions that are more or less instantaneous as far as the
heavy quarks are concerned. These two features suggest
that we can model heavy-quark mesons as simple QQ
bound states, interacting via instantaneous potentials;
other channels, such as QQg, and retardation effects are
suppressed by powers of v. Indeed, phenomenological
nonrelativistic potential models have been very successful
in describing much of the physics of the T and % systems.
As aresult the T and ¢ are certainly the most thoroughly
understood of hadrons, and it is for this reason that they
provide a natural starting point for a nonperturbative
study of hadronic structure in QCD.

One approach to the nonperturbative analysis of these

43

mesons is to compute the instantaneous QQ potential
directly, for use in a QQ Schrédinger equation for the
mesons. This can be done in lattice QCD by replacing
the heavy quarks with static sources, leading to a nu-
merical procedure that is straightforward although com-
putationally rather expensive. Our approach is different.
We retain the quark dynamics, extracting meson masses,
wave functions, etc., directly from the simulation. This
procedure is practical only for studies of the lowest-lying
states in each channel, but it is much faster than extract-
ing the QQ potential. Furthermore, retardation effects
are properly included in our analysis, allowing us to go
beyond the simple nonrelativistic quark model for the
first time.

Little is known about retardation in the QQ interac-
tion. Such retardation would be a signal for important
non-QQ components in the meson. As mentioned above,
the coupling between low-energy QQ and QQy states is
roughly proportional to the heavy quark’s velocity v and
thus the probability for finding a QQyg state in the me-
son ought to be? P(QQg) ~ a,v®. This suggests that
retardation effects could be as large as 10% for the T
mesons, and even larger for the ¢ family. Another im-
portant channel is one in which there is an additional
light quark-antiquark pair present. One indicator for the
importance of the QQqg channel is the decay width of T
mesons above the BB threshhold (or ¢’s above the DD
threshhold). The decay into BB mesons is obviously the
result of coupling between the dominant Q@ channel of
the meson and a QQqg channel. This coupling results in
a shift of the meson energy that has an imaginary part,
the decay width, and most probably a real part of similar
magnitude. These T’s have decay widths of order 25-100
MeV and so one expects mass shifts of this size due to
retardation, even for mesons below the BB threshhold.
Such retardation effects cannot be handled properly in
the context of a simple Q@ potential model.

Given the extensive literature on the spectroscopy of
light hadrons in lattice QCD, it seems surprising that so
little work has been done on T and ¥ mesons. This is
because of a difficulty that is fundamental to any study
of nonrelativistic systems. By their very nature such sys-
tems have a wide range of important dynamical energy
scales, making numerical analyses difficult. Specifically
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there are three important scales,

M ~ mass,
Muv ~ 3-momentum, 1)

Mv? ~ kinetic energy,

and they are very different when v is small. Thus, in a
lattice simulation, one must use a space-time grid that is
large compared with 1/Mv2, but with a lattice spacing
that is small compared with 1/M. To simulate the T,
where M/Mv? ~ 10, one probably needs lattices as large
as 100% before systematic errors due to finite lattice spac-
ing and finite volume are acceptably small. Such large
lattices are beyond our current computing capabilities.

To pursue a numerical analysis of heavy-quark mesons,
we must take advantage of the fact that the largest scale,
the mass M, plays only a minor role in the dynamics
of a nonrelativistic system. We do this by choosing the
lattice spacing so as to exclude relativistic heavy-quark
momenta from the theory (i.e., a ~ 1/M). Then we
use renormalization-group techniques to replace the usual
Dirac action for the heavy quarks by a nonrelativistic
Schrodinger action*~6. The nonrelativistic (NR) theory
that results (NRQCD) reproduces the exact results of or-
dinary QCD to whatever order in the heavy-quark veloc-
ity (p/M) is desired. The introduction of nonrelativistic
dynamics leads to several dramatic simplifications.

The scale M is explicitly removed from the dynamics,
allowing lattice spacings larger by a factor of 1/v. This
reduces the size of the lattice needed for a given accuracy
by a factor of {1/v)* (~100 for the T).

The quark and antiquark degrees of freedom largely
decouple in a nonrelativistic action. As a result the equa-
tion for the quark propagator is first order in /8t and
can be solved as an initial-value problem in a single pass
through the lattice. This is an enormous improvement
over the iterative solution of the boundary-value problem
that yields the Dirac propagator, which typically requires
10’s or 100’s of sweeps through the lattice. Also the non-
relativistic quark propagator is not periodic in time and
so can be computed out to arbitrarily large values of time
(larger than the length of the lattice).

The problem of fermion doubling does not arise in the
nonrelativistic theory. Indeed the distinction between
nonrelativistic fermions and bosons is largely irrelevant
to the dynamics.

In this, as in any approach, heavy-quark vacuum po-
larization has little effect on the physics of a heavy-quark
meson; there is not enough energy in the system to cre-
ate QQ pairs efficiently. Thus the determinant of the
heavy-quark propagator can be omitted in the first ap-
proximation, and included perturbatively when further
accuracy is warranted.

These simplifications turn an impossible problem into
one of the easiest of all physically relevant calculations
in lattice QCD.

In this paper we develop the nonrelativistic formalism
and apply it in a numerical study of the s-p ground-state
splittings and the hadronic decay rates (i.e., wave func-
tions at the origin) of T and 1 mesons. Our numerical
calculation is only a prototype for a proper calculation;
the lattice spacing we used was too large (8 = 5.7) for
reliable results. But our results illustrate the method and
demonstrate its tremendous efficiency: we analyzed over
1000 meson propagators on an 82 x 16 x 24 lattice using
for the most part no computer larger than a SUN 3/50
workstation (100 kflops). Moreover, the results we ob-
tained are surprisingly consistent with the experimental
data, especially as regards the mass independence of the
s-p splitting.

The plan of this paper is as follows. In Sec. II we
outline our calculation in terms of the continuum theory,
with special emphasis on the definition of nonrelativistic
QCD. Then in Sec. III we introduce a discretized version
of the theory for use in simulations and discuss the few
subtleties that arise. We present our results in Sec. IV,
and in Sec. V we summarize our results, discuss the wide-
ranging possibilities for further work, and try to assess
the importance of this class of problems relative to other
problems under study in lattice QCD.

II. NONRELATIVISTIC QUANTUM
CHROMODYNAMICS

A. The continuum theory

The major obstacle to direct simulations involving
heavy quarks is the presence of the quark’s mass as a
dynamical scale of the theory. This obstacle can be re-
moved, in two steps, using renormalization techniques.

First, starting with the usual Dirac theory for the
heavy quark,

L=Y(iD -y — M)V, (2)

where D,, = 0, +1gA,, we introduce an ultraviolet cutoff
A that is of order the quark mass M or less. This cut-
off explicitly excludes relativistic heavy quarks from the
theory. It is a physically sensible choice of cutoff for our
purposes, given that the physics of heavy-quark mesons
is dominated by momenta of order p ~ Mv « M. Of
course, since we are dealing with a quantum field the-
ory, the relativistic states we are discarding do have a
strong effect on the low-energy physics. However any
nonrelativistic interaction involving relativistic interme-
diate states is approximately local, since the intermediate
states are necessarily highly virtual and so cannot prop-
agate large distances. Thus, generalizing the traditional
renormalization procedure, we can compensate for the
loss of relativistic states by adding new local interactions
to the Lagrangian. To leading order in 1/A these new
interactions are identical in form to interactions already
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present in the theory, and so the net effect is simply to
shift the bare mass and charge of the quark. Beyond
leading order one must include nonrenormalizable inter-
actions such as

y22 (‘/—’7;11[’)2"" "
3)

flxg-zﬁa “"¢+ J Gid F*y, +

where the scale of the coupling is determined by the cut-
off (the lowest-energy scale in the part of the theory be-
ing discarded). In principle there are infinitely many
such terms that can be added; in practice only a few
are needed. Generally if one desires accuracy of order
(p/A)", one need only keep terms in the Lagrangian up to
and including the O(1/A"™) interactions. The couplings
M,g,c1,ca,... are determined by the requirement that
the cutoff theory reproduce the results of the full theory
through order (p/A)".

The utility of the cutoff theory is greatly enhanced if we
transform the Dirac field so as to decouple its upper com-
ponents from its lower components, thereby separating
the quark field from the antiquark field. This is a Foldy-
Wouthuysen-Tani transformation,” and it transforms the
Dirac Lagrangian into a nonrelativistic Lagrangian:

2M

D*
t 9 t
+ (618M3 +c22M<r B>¢+¢ (

D2
LNrQep = —1TrF,, FP + ¢t (ZDt + ——) P

SVE

—_— D2
\II(D-7~—M)\II—~>1/)*<1' M+——)¢

2M

+¢f(—aB+ V-E

2M 8M?

D4
+8M3+~~)¢, (4)

where E and B are the chromoelectric and chromomag-
netic fields, and ¢ is a two-component (in spin space)
Pauli spinor representing the quark part of the origi-
nal Dirac field. The lower components of the Dirac field
lead to analogous terms that specify the chromodynamic
interactions of antiquarks. The Foldy-Wouthuysen-Tani
transformation generates an infinite expansion of the ac-
tion in powers of 1/M. As an ordinary A — oo field the-
ory it is a disaster: the renormalizability of the theory
is completely disguised, as it relies upon a delicate con-
spiracy involving terms of all orders in 1/M. However,
setting A ~ M means that the expansion is an expansion
in 1/A, and our general discussion of renormalization the-
ory implies that only a finite number of terms need be
retained in the expansion when working to some finite
order in p/A ~ p/M ~ v. Thus to study the chromody-
namic interactions of heavy quarks through order v? we
replace the Dirac QCD theory by a nonrelativistic QCD
(NRQCD) theory with the Lagrangian®

V- E+C4

8M2 o (DXE-— ExD))

+antiquark terms + quark-antiquark terms + - -- . (5)

The couplings M, g,¢;1,ca,. .. are specific to the particu-
lar cutoff, A ~ M, in use. Renormalization theory tells
us that there exists a choice of these coupling constants
such that NRQCD reproduces all of the results of ordi-
nary QCD up to corrections of order (p/M)a.

NRQCD is far superior to the original Dirac theory for
numerical simulation of heavy-quark mesons such as the
Y. The rest mass has been removed from quark ener-
gies, allowing for much coarser lattices than in the Dirac
case. The quark and antiquark fields have been decou-
pled, with the result that the quark’s Green’s function
satisfies a simple Schrédinger equation,

(zD, + QD—M +- ) G(z,2') = 6%(z — o), 6)

that is easily solved numerically as an initial-value prob-
lem. The Dirac theory, on the other hand, must be solved
as a boundary-value problem, so as to control the contri-
bution from the negative-energy antiparticle states intro-
duced by the Dirac operator; a boundary-value problem
is far more costly to solve than an initial-value prob-
lem. To lowest order in v, quark spin can be neglected
in NRQCD, and the quark described by a three (color)

f
component field. The quark field has twelve (spin-color)

components in Dirac theory. In NRQCD, relativistic ef-
fects, such as the electric and magnetic spin couplings,
can be introduced and studied separately. There is no
straightforward way of isolating such effects in the Dirac
theory.

There is little likelihood of producing a virtual heavy
quark-antiquark pair in a nonrelativistic meson such as
the T. Consequently, the determinant that results when
the quark fields are integrated out of the theory (for the
purposes of numerical simulations) can be omitted. Its
effects can be introduced as perturbations to the gluon
action, if and when more precise results are needed.

In addition to heavy-quark loops, we omit from the
theory all interactions that lead to (heavy) quark-
antiquark annihilation into gluons. Such annihilation
processes have only a small effect on the properties of
T and ¢ mesons: the hadronic decay width of the T is
10 times smaller than typical excitation energies. These
effects can be included in NRQCD through four Fermi in-
teractions coupling the quark and antiquark fields. The
coupling constants for these interactions have imaginary
parts that determine the decay rates of the mesons.
(Note that the theory is then nonunitary; probability
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disappears from the theory as the quarks annihilate into
states that have been excluded from the Hilbert space.)

B. The coupling constants in NRQCD

To fully define NRQCD we must specify the coupling
constants M, g,c;,... that appear in the Lagrangian.
These have unique values that are particular to the cut-
off used to regulate the theory. As the couplings serve to
mimic relativistic physics, they are computable in pertur-
bation theory provided the quark mass is large enough.
One way to do this is to compute simple scattering am-
plitudes both in QCD and in NRQCD, the amplitudes
being functions of the unknown coupling constants in the
latter case. The amplitudes are then compared, and the
coupling constants adjusted until NRQCD agrees with
QCD to whatever order in v and «; is desired. The cou-
pling constants c¢j,...,c4 all equal one at the tree level
in perturbation theory.

To illustrate this procedure, consider the o - B interac-
tion in LnrqQcp- A process that is sensitive to this term
is spin-flip scattering of a quark on an external B field.
The amplitude for this process is readily computed using
perturbation theory both in QCD and in NRQCD, and
the two calculations should agree when the momentum
transferred is nonrelativistic (Fig. 1). The nonrelativistic
amplitude depends upon c3, the coupling constant for the
o - B interaction. This coupling constant is adjusted so
that NRQCD reproduces the QCD result (Fig. 2). Notice
how in ¢; the infrared sensitivity of the exact QCD ampli-
tude is completely cancelled by the terms from NRQCD,
leaving behind loop contributions that are only relativis-
tic. Therefore ¢y is a constant, independent of the mo-
mentum transferred (& M), and also perturbative when
M is large.

Unlike in QCD one is not able to remove the cutoff
A in NRQCD by taking A — oo. The theory contains
power-law divergences, contributing terms such as

as(a)% (7

to the couplings. Such terms render perturbation the-
ory practically useless if A is made too large. Thus in
general one is limited to a ~ 1/M. This means that
perturbation theory is almost certainly applicable in the
case of b quarks and probably still useful for ¢ quarks. Of
course as is true in all applications of perturbative QCD
various nonleading, nonperturbative corrections are ex-

NRQCD

FIG. 1. The amplitude for spin-flip scattering as calcu-
lated in QCD and NRQCD.

QCD

NRQCD

FIG. 2. The coupling constant c; is adjusted so that
NRQCD reproduces the QCD result.

pected; but these most likely do not cause problems until
rather high orders in v. In any case, NRQCD provides a
valid framework for studying heavy-quark systems, and if
need be the coupling constants can be tuned numerically
to fit data from experiments (or from QCD simulations).

C. The static limit

NRQCD can be further simplified for studies of heavy-
light hybrid mesons such as the B or D. In these mesons
the momentum scale is set by the dynamics of the light
quark, and is presumably of order a few hundred MeV,
independent of the heavy quark’s mass. (A QED ana-
logue is the hydrogen atom, where the momentum is of
order am, and largely independent of m,.) As a result
the kinetic energy of the heavy quark is negligible rela-
tive to that of the light quark. This suggests that the
basic physics of the heavy quark in such mesons is well
described just by the action:

Lstatic = $1iDyy. (8)

The kinetic energy and o - B interactions are suppressed
in their effect by one power of the heavy-quark velocity
(p)/M, and can be treated perturbatively. In this limit
the heavy quark becomes a static source of chromoelec-
tric field, with dynamics that are even simpler than in
NRQCD.®%®

The static approximation is obviously inappropriate
for mesons, such as the ¥ and the T, in which both con-
stituents are massive. The basic characteristics of these
mesons result from the balancing of kinetic against po-
tential energy, and so it is quite wrong to neglect the
quark’s kinetic energy in computing, say, meson propa-
gators. But the static approximation is useful in comput-
ing the quark-antiquark potential. As we discussed in the
Introduction, the virtual gluons exchanged by the quark
and antiquark typically have energies and momenta of or-
der the quark’s three-momenta, which is larger (by 1/v)
than the quark’s energies. This means that the creation
of a virtual gluon requires a large fluctuation in the en-
ergy of the state, and so, by the uncertainty principle, the
virtual gluon is short lived. Thus the interaction is effec-
tively instantaneous as far as the quarks are concerned,
and the quarks can be approximated by static sources
during the interaction (but not between interactions). In
calculations of the potential using perturbation theory,
for example, one finds that the quark kinetic energy is
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usually masked by the energy of the exchanged gluon
and can be neglected.

The static approximation, when combined with lattice
QCD and the nonrelativistic quark model, has great po-
tential for explaining the physics of heavy-quark mesons.
However the approximation is limited in utility. There
are certainly gluonic and light-quark excitations involv-
ing small momenta and energies of order the quark en-
ergies. In perturbation theory, for example, one might
have diagrams where a soft gluon is emitted and later
reabsorbed (in analogy with the QED processes that in-
duce the Lamb shift). Such interactions are badly mis-
handled in the static approximation. Soft gluonic exci-
tations couple to the quarks through the g¥'V . Av/m
term in Lnrqcp and so their contribution should be sup-
pressed by a factor of order v2. Since v? ~ 0.1 for Y’s,
such effects might spoil predlctlons from the statlc-quark
potential model at the 10-20 % level.

A residue of retardation due to gluon emission and
reabsorption appears in the perturbative calculation of
static Q@ potential.!® There is no gluon radiation in the
static limit of an Abelian theory since static quarks do
not radiate. However in (non-Abelian) QCD the gluons
exchanged by the static quarks can themselves radiate,
and this leads to severe infrared divergences in each of
the individual diagrams in Fig. 3. These divergences are
regulated when one sums to all orders the ladder dia-
grams shown, the divergent energy integration being cut
off by the potential energy (~ a,/r) between the sources.
Unfortunately the static approximation is a very poor
one for dealing with such effects. In particular, the in-
frared cutoff for a real meson would involve the kinetic
energy (p%/2M) for the quarks as well as their potential
energy. Since these energies are comparable in a meson
state, it is incorrect to drop one. Furthermore, diagrams
involving radiation from the quarks are comparable in
magnitude for a meson and yet vanish in the static limit.
Thus the potential obtained in the static quark approxi-
mation contains retardation effects, but these are incor-
rectly handled. Of course such effects are nonleading,
being down by ~ «,v2. Just how nonleading they really
are can be established by comparing the results of our
analysis, which treats retardation correctly, with a lat-
tice analysis using a static potential, where, preferably,
the same configurations are used in each case.

PN %JFW

FIG. 3. Infrared-divergent diagrams involving radiation
from the gluons exchanged by static quarks.

III. NRQCD ON A LATTICE

A. Discretization of NRQCD

We now define NRQCD on a space-time grid having
L, sites in the pth direction (¢ = 1,...,4, corresponds
to the directions ¢,z,y,2). As we used only the lowest-
order terms in our simulation, we omit terms in the action
of O(v) or higher. Then the lattice action in lattice units
is

@=vy'Ky
2 AA;
=2 ke | As =D = | e 9)
Xt j=

Here vx: is the quark field at spatial site x and time ¢,
and the gauge-covariant difference operators are defined

by
A,,’l/),, = Ua:,;t¢a:+f4 - ¢xy
(10)
A_yps = Yr —
where U, , is the usual lattice link variable at site z =
(x,t) in direction u (representing the gauge field). This

action is gauge invariant and reduces to the continuum
action

DZ
Sff“t = / dt &3z ! (Dt - m—) P

Ul y¥ami

(11)

as the lattice spacing a — 0.

The antiquarks transform as 3’s under color rotations
and so their action is the same as the quark action but
with Uy , — Uy ,: that is, S5 = X' K*X, where ¥ is the
antiquark field. This gives a continuum action which is
identical to the quark’s action, but with the sign of the
charge flipped. It is convenient when comparing to the
Dirac theory to rename the antiquark field x = x*, in
which case the lattice action becomes

Sg = —-x'kly, (12)

where now Y is the creation operator and x! the destruc-
tion operator for antiquarks.
Note that the lattice propagator for a free quark,

-1
isinpo—%(Qsm )2 —-;—J-Z(Qsm )
i
(13)

has only a single pole in pg, indicating that there is only
one fermion species in the theory. There is no doubling
problem.
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B. Meson propagators

To study mesons we compute meson propagators of the
form

G(t —to) = Y (0T (x,t)["(x0, 20 0), (14)

where I'(x,t) is a bilinear quark operator that couples
the meson to the vacuum:

I'(x,t) = x'O(x, ). (15)

Such propagators tell us about the energies and wave
functions of the mesons, as is evident from the spectral
decomposition of G:

Gt—to) =) _An(1—En)'7", (16)
where
A2 = |(0|T(0)|np = 0)|? (17)

and E, is the energy of state [np = 0). [The states |np)
have total momentum p and (continuum) normalization
(np|mq) = L36p qbnm.] Note that

(1= En)'™" — exp [— En(t — to)] (18)

in the continuum limit. Coefficient A2 contains informa-
tion about the wave function of state n. For example,
choosing T'(0) = x'(x/2)¥[—(x/2)] in Coulomb gauge

gives
AL = [, (%)), (19)
where matrix element

W, (x) = (0lx"(x/2)%(—x/2)|np = 0)

is just the nonrelativistic wave function for state n. As
t —tp — 00, G is dominated by the lowest-energy state
for which A2 is nonzero,

G(t —to) = AZ(1 — Ep)' o, (21)

(20)

and so this state is generally the easiest to study.
A Monte Carlo estimate for G(t — tp) is obtained by
averaging the quantity

> 0(xt)Gx[U1O (x0t0) G [U] (22)
X

over random gauge configurations generated with weight
exp (—S[U]), where S[U] is the usual gauge-field action.
Color indices are implicit in this expression, and Gx;[U]
is the propagator for a heavy quark moving from xo#¢ to
xt in the gauge field. This propagator is computed using

the evolution equation
Gxt+1 = U;‘“A(l - H)Gxn (23)

where H is a gauge-covariant Hamiltonian operator from
the action, Eq.( 9):

AjA_;
H:—Z: TR (24)
J

The initial condition at t = g is

(25)

Gxtu = 6x,x°'

Note that Gx; is just a Wilson line operator in the limit
M — oo. The cost of computing Gx; is roughly com-
parable to that of computing a Wilson line in that the
lattice is processed only once.

The evolution of Gx:, Eq.( 23), becomes unstable if
the quark mass M is too small. This occurs when the
temporal lattice spacing is too large to accurately model
the evolution of the highest-energy quark modes in the
theory. For smooth evolution one requires

|1 - H| <1, (26)

which, for the free quark theory, implies (in lattice units)
M > 3. (27)

To study quarks with smaller masses, one might reduce
the temporal lattice spacing. However there is no real
need to model the high-energy modes accurately since
these modes have little direct effect upon the meson
physics. So a more convenient procedure for dealing
with this problem is to replace the evolution equation,
Eq. (23), by

1 n
Gxts1 = Uk, 4 (1 - ;H) Gxt, (28)

where n is a small integer. This equation should prove
stable for masses of order 3/n or larger. This change
corresponds to a modification of the heavy-quark La-
grangian. For example, in the case n = 2 the Lagrangian
Y1(Agq + H)y is replaced by ¢f(Ay + H — %Hz)z,/;. Such
changes have little effect on low-energy results since they
are higher order in the lattice spacing.

C. Vertex operators for mesons

Meson propagators can be computed for a variety of
vertex operators I'(xt). Different operators couple to dif-
ferent states of the meson. The simplest lattice vertex
operators are given in Table I, where we introduce the
compact notation

XA = [3(Ai + L)X + XT3 (A + ALy,
(29)

The vertices are classified according to their representa-
tions of the lattice symmetry group (the octahedral point
group O). Notice that different spin components of the
J = 2 mesons fall into different representations of the
lattice group and so will not have exactly equal masses.
The extent to which the masses are equal is a test for the
restoration of rotational symmetry. We also give the rela-
tion between the coefficient A2 of the exponential in the
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TABLE 1.

wave functions R(0).
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Lattice vertex operators I' for QQ mesons and their relation to continuum radial

Meson state Lattice Continuum Ap
28411 ,(JFC) rep. V2n.I(x, 1) (approximate)
S0 (07F) ATt x'y R(0)/v/4x
%51 (177) (un xtoiy R(0)/v/ax
P (1F7) T N aR'(0)/+/4x/3
2P (0FY) At x'3, aihit aR'(0)/+/47 /9
Sp (1%t T X' (Bioj — Ajoi)y aR'(0)/\/27/3
*py (2%Y) Ett x'(Aio —Z,'ij aR'(0)/+\/27/3
T x'(Aio; + ijf;)tbl-‘#j aR'(0)/\/27/3
1Dy (27%) E~* X'(K.‘ - K,‘)l/J a’R"(0)/\/47/15
7t '(Z.‘Z,‘)'/JI.‘# a’R"(0)/+\/167/15

asymptotic Green’s function and the radial wave func-
tion R(r) for each meson.!! [We assume the standard
normalization [ dr r?R?(r) = 1]

IV. MONTE CARLO RESULTS

We computed meson propagators for s and p states us-
ing the lowest order action for the heavy quarks [Eq.(9)].
The 48 gauge field configurations used in this calculation
were provided by the Fermilab Collaboration.!? The con-
figurations were created by the Cabibbo-Marinari heat-
bath method. The number of initialization sweeps was
1500 and there were 500 sweeps between configurations.
The lattice size was 8 x 8 X 16 x 24, where 24 is the num-
ber of sites in the time direction, and the value of # was
5.7.

Calculations were done for both ¢ quarks and b quarks,
using (bare) masses of 1.5 and 4.7 GeV, respectively (as-
suming that the lattice spacingisa =1 GeV_l). A con-
stant was added to the quark Hamiltonian to shift the
s-state energy to zero. The shift was 0.435 GeV for the
T and 0.758 GeV for the 3. The p-state energy is then
equal to the energy splitting between the two states. The
modified evolution equation (28) with n = 2 was used for
the c-quark calculations.

The code was written in FORTRAN and run on several
SUN 3/50 workstations. Each s-state meson propagator
(carried out to 48 time steps) took about one hour to
compute and each p-state propagator (carried out to 24
time steps) took about four hours to compute for M =
4.7 GeV and twice as long for M = 1.5 GeV.

Meson propagators were computed starting at several
different sites on the same lattice for each configuration.
Such propagators ought to be statistically independent,
since the T and ¢ mesons are not much larger in size than
the lattice spacing (the rms radii are 2.3 and 1.0 GeV ™}
respectively). This was confirmed by a statistical anal-
ysis of the Monte Carlo data, as discussed in the Ap-
pendix on statistics. The points chosen as starting sites
were the eight points most widely separated on the initial

time slice of the grid. The s-state propagators were com-
puted out to 48 time steps by using the configurations
twice. For p states noise dominated the signal after ten
to twenty time steps, and so we computed the propaga-
tor only out to 24 time steps. To further improve statis-
tics for the p states, we computed propagators starting
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at each of three different, equally spaced, time slices for
each configuration. These also proved to be statistically
independent (see the Appendix). In all we averaged 384
s-state propagators and 1152 p-state propagators to ob-
tain final estimates for the meson propagators.

Our Monte Carlo data for s and p mesons for each
quark mass are presented in Figs. 4-7. The meson prop-
agator G(t) is dominated by the lowest-energy state for
large t:

G(t) — |4o|*(1 ~ Eo)".
To see how large a t is needed, we computed

G(t+1)
g@)

— Eg as t — oo.

(30)

Et)y=1-

(31)
This quantity is plotted in the first panel of each figure.
To extract reliable estimates of Ag and Ey we fit the
large-t data to the theoretical prediction [Eq.(30)], taking
proper account of correlations between estimates of G(t)
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FIG. 5. s-state results for bare mass M = 4.7 GeV: E(t)
vs t and the best fit to Eo (top); the propagator data and best
fit (middle); the optimal fitting parameters and the range of
Ax? < 1 (bottom).
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at different t’s (see the Appendix). The propagators and
fits are plotted in the second panel of each figure. The
fitting parameters for which x? is minimized are listed at
the bottom of each figure, together with plots showing
the range of fitting parameters for which Ax? < 1.

Not surprisingly, the s-state fits are an order of mag-
nitude more precise than the p-state fits. The statistical
errors in the s-state propagators are so small that contri-
butions from the excited states can still be resolved at 30
time steps or beyond. The small oscillations apparent in
E(t) for the s states confirm that the discrete version of
the nonrelativistic action has only approximate reflection
positivity. The oscillations are negligible in practice.

The lattice results are compared with results from
theoretical models and from experiment in Table II.
We used two theoretical models. One was the non-
relativistic quark potential model used by the Cornell
Collaboration.!® The other was a discretized version of
this model, in which the three-dimensional Schrodinger
equation was defined on a spatial lattice with spacing
a =1 GeV™!. We used the second model to assess the

meson propagator
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TABLE II. Results from lattice QCD, discrete and continuum quark potential models, and

experiment.
M AB(1p - 15) B2 (O)F Rup(a)P
(GeV) (GeV) (GeV?) (GeV?)

Lattice QCD 1.5 0.35 £ 0.01 0.80 £0.03 0.07 £ 0.01
Disc. quark model 1.84 0.44 0.91 0.11
Quark pot. model 1.84 0.43 1.49 0.06
Experiment (¢) 0.43 0.48 £ 0.04 0.194+0.13
Lattice QCD 4.7 0.34 £ 0.03 5.1 4+0.1 0.58 £0.12
Disc. quark model 5.17 0.36 4.6 0.54
Quark pot. model 5.17 0.51 14.7 0.37
Experiment (T) 0.44 5.1+0.2

importance of systematic errors due to the large lattice
spacing.

The results of the discrete quark model depend sensi-
tively on the value of the discrete quark potential Vit (7)
at » = 0, since a is so large. The continuum potential
Veont(r) is infinite at the origin, but clearly Viu.(r) is
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some sort of average of Veont(r). We found empirically
that the choice

1
Watt (0) _——

2 dr Vcont(")
Iril<a/2

(32)
results in s-p splittings that agree with the continuum
quark model for our masses and lattice spacing. This is
the value used in our comparisons.

Our experimental estimates for |R(0)|? in the 3 and
T cases are based on the branching ratio for decays into
lepton pairs (see, for example, Ref. 14). Notice that the
experimental estimate of |R(0)|? is significantly smaller
than the prediction of the Cornell quark model. The two
can probably be reconciled by including QCD radiative
corrections. To first order, these result in an additional
factor of (1 — 16, /37) ~ 0.3 — 0.7 which could easily
raise the experimental estimate of |R(0)|? to 15 GeV?®
for the T and 1.5 GeV? for the . It is not clear which
of these results should be compared to the lattice QCD
result since some part of the radiative correction is auto-
matically included in the simulation result. The radiative
correction comes mostly from relativistic momenta and
so the part that is omitted from NRQCD can be readily
computed using perturbation theory.

The value of the p-state wave function at » = a can be
estimated crudely using experimental data for the widths
for two-photon decay. These widths are determined by
the derivative of the wave function at the origin (see
Ref. 14), from which we can estimate the wave function
at r=a:

R(a) ~ aR/(0). (33)

The lattice QCD results are surprisingly consistent
with the models and with experiment, given the large
lattice spacing. The most striking feature of the simula-
tion results is the lack of dependence in s-p splitting on
the quark mass. This is a well-known feature of the data
that strongly constrains the QQ potential.

It is unlikely that the quark masses we used in our
simulation are precisely correct for the ¢ and b quarks.
Also it may be appropriate to use a somewhat different
lattice spacing for heavy-quark analyses, given that light-
quark vacuum polarization, which has not been included,
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affects heavy-quark systems differently than light-quark
systems. In a larger and more complete calculation one
might determine both the lattice spacing and the bare
mass directly from the simulation results. Since the s-p
splitting is largely independent of the quark mass, it is
an ideal quantity for setting the lattice spacing. Then
the s-state wave function at the origin can be used to
tune the bare quark mass, since it depends sensitively on
the mass. Of course, perturbation theory when combined
with simulation results, can also be used to suggest bare
quark masses directly from the mass of the meson. These
calculations are in progress.

V. CONCLUSIONS AND THE FUTURE

In this paper we have presented the first nonpertur-
bative QCD analysis of the low-lying T and 1 states.
Although the systematic errors are undoubtably large,
‘because of the large lattice spacing, our numerical re-
sults for the lowest-lying s and p states are surpris-
ingly consistent with experiment. More significant per-
haps are the relatively tiny statistical errors obtained
for medium sized lattices using very small computers
(~ 10~*xCRAY-XMP). Clearly one can do a lot of
heavy-quark analysis before the cost becomes compara-
ble to that required in generating the gluon configura-
tions, particularly if light-quark vacuum polarization is
included.

Our results suggest three general areas for new re-
search. The first is to redo our analysis but with re-
duced systematic errors. Most importantly a smaller lat-
tice spacing (higher ) is required. A lattice at 8 = 6.0
has spacing a ~ 0.5 GeV, which is a bit coarse for
the T (¢ ~ Ry/2), but probably adequate for the 1
(a ~ Ry /5). By B = 6.6, where a ~ Ry /4, systematic
errors due to finite lattice spacing should be under con-
trol for both meson families. The use of such a large
B necessitates large lattices so as to avoid deconfining
effects. However, because these mesons are so small, a
large number of statistically independent meson propaga-
tors can be extracted from a single configuration, thereby
reducing the total number of configurations needed.

It is also important that light-quark vacuum polariza-
tion be included at some point. As discussed in the In-
troduction, the widths of the heavy-quark mesons above
the heavy-quark threshhold are indicative of the effects
of light quarks on the masses of all the heavy-quark
mesons. These, and model calculations such as those by
the Cornell Charmonium Collaboration,!3 suggest that
light quarks might change energy level spacings by as
much as 50 or 100 MeV.

One other source of systematic errors results from our
limitation to lattice spacings a of order 1/M or larger.
The O(a) and O(1/M) corrections to the lattice should
be systematically included. In principle the coupling con-
stants for these interactions can be computed in pertur-
bation theory, at least if a is small enough. However it
remains to be seen how well perturbation theory con-

verges for realistic a’s; some tuning of the nonrelativistic
theory against experiment (or the Dirac theory) may be
required. These perturbative calculations are under way.

A second general area of research lies in extending the
range of physical quantities extracted from the simula-
tion. In our analysis we computed the wave function at
the origin for s states and its derivative for p states. Ob-
viously the whole wave function can be extracted, for use
in computing such things as (QED) radiative decay rates.
Actually form factors for decays such as xp — 4T can be
extracted directly using standard methods. Also the en-
ergies and wave functions of the lowest-lying d states can
be extracted in analogy to our analysis, allowing one, for
example, to verify that the different lattice d-wave multi-
plets become degenerate as the lattice spacing is reduced
(and Poincaré invariance restored).

It is also important to run the simulation at very large
B’s and M’s, to demonstrate the roughly linear depen-
dence on M of the s-p and s-d mass splittings that is
expected as M becomes large and the binding potential
becomes Coulombic. It would also be interesting to run
simulations at relatively low masses. One can then assess
how well or how poorly nonrelativistic dynamics accounts
for the properties of light-quark hadrons—protons, pions,
etc.

The introduction of O(1/M) corrections such as the
yto - By term into the action allows us to examine the
role of relativity in heavy-quark systems. Relativistic
effects are important for understanding such things as
the spin splittings and radiative decays of heavy-quark
mesons. These effects cannot be treated very system-
atically in quark potential models. In simulations with
NRQCD we can introduce relativistic corrections one at
a time, and perhaps shed some light on the underlying
systematics. Spin-dependent hyperfine structure in the
lowest-lying s, p, and d multiplets is readily analyzed us-
ing our techniques, as are radiative decays of x states
into YT’s or ¢¥’s.

A related subject involves combining heavy-quark
propagators from NRQCD with light-quark propagators
from QCD to study the properties of the B and D families
of mesons. Among other things, one might numerically
tune the coefficient of the interaction ¥fe - By to give
the correct B-B* splitting and then compute the Y-n,
splitting, this being induced primarily by the ¢o - B in-
teraction. Also by comparing the energy of the B meson
as computed in this way with its experimental mass, we
can fix the otherwise arbitrary origin of the nonrelativis-
tic energy scale and extract predictions for the masses of
separate T states (and not just for mass differences).

Other hadrons that are easily studied using lattice
NRQCD are baryons composed entirely of heavy quarks.
Such baryons have never been seen experimentally (and
may well be impossibly difficult to make). Nor are they
understood in terms of quark potential models. The form
of the potential (2 body, 3 body?) and its relation to the
QQ potential are not well understood, although some re-
sults exist from lattice QCD.!2 These issues might well
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be illuminated by lattice simulations, particularly if one
examined a variety of baryons with differing numbers
of ¢ and b quarks (i.e., ccc, ccb, cbb, and bbb). Such a
study could lead to insights into the nature of light-quark
baryons. Moreover, if there is any possibility at all of
finding the heavy-quark baryons experimentally, then we
have an excellent opportunity to make predictions using
lattice methods about whole families of (nearly stable)
particles.

One final area of research concerns the validity of the
quark potential model. As we discussed earlier, the static
approximation for the Q@ potential mishandles retarda-
tion corrections (analogous to those leading to the Lamb
shift in QED atoms). The utility of the quark potential
model rests in part upon the assumption that such ef-
fects are small. This assumption is readily tested using
lattice simulation methods. On the one hand, one can
extract the QQ potential from such a simulation and use
it to compute the meson spectrum using a discretized
Schrédinger equation defined on the same grid as the po-
tential. These results can then be compared with the
spectrum obtained using NRQCD and dynamical heavy
quarks, as in this paper. Insofar as the major improve-
ment in using dynamical quarks is the proper treatment
of retardation, this comparison gives a direct indication
of its importance. Studies such as this can help map out
the limitations of the potential model, and, more impor-
tantly, perhaps suggest refinements of the model.

Clearly there are many issues, both theoretical and
phenomenological, that can be addressed using NRQCD
and lattice methods. These methods might shed some
light on the limitations of lattice QCD itself.. We are still
in need of compelling demonstrations that lattice QCD
works. Heavy-quark systems may well prove superior to
light-quark systems for this purpose. Our understanding
of heavy-quark mesons and our ability to model them
far surpasses that for light-quark hadrons. The compu-
tational cost of generating quark propagators is greatly
reduced for the heavy quarks (using NRQCD). The ratio
of important dynamical scales in the T is at most of or-
der 1/v ~ 3, which is significantly smaller than the ratio
for the proton, where m,/my ~ 7. Thus smaller lattices
should work for heavy quarks. As long as m,/m, ~ 1.5
in light-quark simulations, one has to worry that the
bulk of any hadron mass being computed is just quark
mass, with QCD dynamics entering as a perturbation.
In nonrelativistic simulations of heavy quarks, energies
are due entirely to dynamics, the rest mass having been
removed. The proper inclusion of light-quark vacuum po-
larization greatly complicates the study of light hadrons,
since only a small fraction of these are stable against
strong-interaction decays. All of the lowest-lying v and
T states are effectively stable in NRQCD. (These mesons
can only decay via Q@ annihilation, and this mechanism
appears as a very high order correction to the NRQCD
action that is usually omitted.) In light of these facts,
heavy-quark mesons and NRQCD could well play a cen-
tral role in validating the lattice approximation to QCD.

The ground work has been laid for a fundamental study
of heavy-quark systems, which will yield energy splittings
and decay widths as well as information on fine structure
and radiative transitions. In addition to studying the
phenomenology of heavy-quark bound states, the compu-
tational advantages of nonrelativistic lattice QCD make
it useful in studying the limitations of QCD itself. Runs
on lattices at higher values of 3 should yield important
imformation about heavy-quark bound states and lattice
QCD in the near future.

ACKNOWLEDGMENTS

We are grateful to Paul Mackenzie for several insightful
comments. We also thank the Fermilab Lattice Collabo-
ration for the use of their configurations. This work was
supported by a grant from the National Science Founda-
tion.

APPENDIX A: STATISTICS

A thorough analysis of statistical errors is essential for
the interpretation of our Monte Carlo results. There are
three basic issues.

Signal/noise vs t. It is important to compute meson
propagators G(t) at as large a t as possible so as to min-
imize contamination from excited states. However one
is limited in practice by the exponential growth of the
statistical fluctuations in the propagator for all but the s
states. In our simulation, the ratio of signal to noise was
almost ¢ independent for the s states, allowing us to com-
pute G(t) for arbitrarily large ¢. For the p state the statis-
tical fluctuations were comparable in magnitude to those
for the s states, but the signal was exponentially smaller
at large ¢ since E, — E, > 0. Consequently, the fluctu-
ations dominated the p-state propagator for t’s greater
than 10-20 steps. This behavior is easily understood. If
N is the number of statistically independent Monte Carlo
estimates used, then the statistical fluctuation o(t) in a
propagator G(t) = (I'(¢)T'(0)) is given by

(C2()r2(0) — g*(1)
~ .

The t dependence of the first term in o'?(t) is determined
by the mass of the lowest-energy state that couples to
the vacuum via I'?(¢). Generally this state is composed
of two s-state mesons and thus (I'?(¢)['2(0)) falls off with
increasing ¢t approximately like the square of the s-state
propagator G,(t). Since G(t) for higher energy states falls
faster than G,(t), we expect in general

(1) = (A1)

o(t) ~ -g—%) (A2)

For s states, then, the signal-to-noise ratio is roughly
constant,

G.(t)
os(t) \/N,

(A3)
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while for p states it falls quickly with ¢:

Gp(t) ~ \/ﬁgg@
ap(t) G,(t)
The situation for d states should be worse still.
Given Monte Carlo estimates {G4(t),a =1,...,N} of
a propagator, the magnitude of the statistical fluctua-
tions can be estimated from the diagonal elements of the
covariance matrix:

(A4)

O'(t) " Ott, (A5)
where
_ 5 [Ga(®) = GG (t) = G(#)]
= 1 (46)

and E(t—)- is the average of the G,’s. This is how the error
bars were computed for the propagators in Figs. 4-7.

Statistical independence. Formula (A6) for the covari-
ance matrix is valid only if the estimates G, are statis-
tically independent. Each gauge field configuration we
used was generated from the previous configuration and
so there must be some correlation between G,’s com-
puted on different configurations. Since successive con-
figurations were separated by 500 sweeps of heat-bath up-
dating, the correlations are negligible. We checked this
by comparing estimates of o(t) made using G,’s from
each of the original 48 configurations, with estimates us-
ing 24 “binned” propagators {3[G24(t) + G2a-1(t)], @ =
1,...,24}. The error estimates were unaffected by bin-
ning, confirming the statistical independence of the sep-
arate configurations.

We also used binning to check for correlations between
G.’s computed on the same configurations but starting
at different sites. We obtained the errors for an s-state
propagator by averaging 96 estimates G,, half starting at
site (0,0,0,0) and the other half starting at (0,4,0,0). The
errors were computed first by treating all G,’s as inde-
pendent, and then by binning together the two G4’s from

each gauge field configuration. The errors were largely
unaffected by the binning. For the p-state propagator
we compared binned and unbinned G,’s starting at two
different time steps, eight steps apart, on each configura-
tion. Again there was little evidence of statistical corre-
lation.

Curve fitting. To extract energies and wave functions
from our averaged propagators G, we fit the theoretical
function Gy, [Eq.(30)] to G(t) by minimizing

Xr= ) [6@) - Gum®)]Sw[G(E) — Gn(t)),

t,t'>tmin

(AT)

where S;y is the inverse of the covariance matrix 0'?,,
[Eq.(A6)]. Since Gp, describes only the contribution from
the ground state, the fit must be restricted to large t¢’s.
The low t cutoff ¢y, was chosen as the smallest cutoff
that gave an acceptable x2. In practice ¢n,;, was roughly
the point at which the effective energy E(t) [Eq.(31)]
became constant within errors. [The errors for E(t) were
computed using the bootstrap method.]

The only complication in the fitting procedure con-
cerned the inversion of 02, to obtain Sy. Typically o2,
has eigenvalues covering an enormous range in magni-
tude, far larger than warranted by the 6-7 digit precision
of our input data. This made it impossible to invert the
matrix in some cases (especially for the s states). To
proceed we used a singular value decomposition (SVD)
algorithm that allowed us to remove the largest eigen-
values from o2, before inverting it (Ref. 15). We found
that G was sensitive to our round-off errors in the third
or fourth significant digit. For consistency then, we re-
tained only eigenvalues varying in magnitude by a factor
of 10 or less from the smallest eigenvalue. This is why
the number of degrees of freedom listed in Figs. 4-7 is
sometimes much smaller than the number of points fit-
ted. Keeping too many eigenvalues usually led to poor
x2 and/or peculiar fits—for example, fits that fell outside
all of the error bars for the propagator data.

1The mass difference between states with the same quantum
numbers (e.g., My/ — M) is roughly 500 MeV for both
families. This should be of order the average kinetic energy
E ~ (Mv?), where M is the quark mass. Taking the quark
mass to be half the meson mass gives the estimates quoted.
These also follow from detailed potential models. Note that
a small excitation energy (relative to the total mass) is
generally an indicator for nonrelativistic dynamics.

2The probability for finding a low-energy eey state in
positronium is similarly P(eey) ~ av? ~ o® (i.e., very
small). Such states have energy of order a’m and so
shift the energies of positronium levels by AF(eey) ~
a’mP(eey) ~ a®m. This is the origin of the bulk of the
Lamb shift in such atoms.

3To deal with mesons above the BB (or DD) threshhold
one must at least introduce BB (or DD) channels into the
analysis, and solve the remaining coupled-channel problem.
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