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Construction of one-particle states as unitary representations of the Poincaré algebra in 2+ 1 di-
mensions shows that an anyon has one polarization state. However, for nonzero spin manifestly
linear and covariant realizations of Lorentz transformations require more than one field component,
and an infinite number is needed when the value of spin is not an integer or half-integer. We discuss
the relation between these two aspects of Poincaré symmetry. In particular, we construct a relativ-
istic equation for anyons where the number of physical polarizations is reduced to one by virtue of a

gauge symmetry or equivalent constraint.

I. INTRODUCTION

Theories of anyons or particles with arbitrary spin and
statistics in 2+ 1 dimensions have been attracting consid-
erable attention, partially motivated by potential applica-
tions to the fractional quantum Hall effect, to high-T, su-
perconductivity, and to the description of physical pro-
cesses in the presence of cosmic strings. Since the origi-
nal kinematical analyses revealed the possibility of
anyons,! many models have been proposed that realize
anyonic states in a field-theoretic way. The solitons of
the O(3) o0 model with a Hopf term are particles of arbi-
trary spin and statistics.? But the model has many other
states of integral spin and therefore the O(3) o model
does not give a minimal theory of anyons. Another ap-
proach is to couple minimally point particles to a U(1)
gauge field, sometimes called a statistical gauge field,
whose dynamics is governed by the Chern-Simons ac-
tion.> The elimination of the gauge field leads to a
redefinition of one-particle states; the new states carry ar-
bitrary spin, determined by the coupling strength. In the
relativistic context, possibly relevant to cosmic-string ap-
plications, carrying out the above procedure in a field
theory (e.g., scalar or spinor fields coupled to a Chern-
Simons gauge field) does not produce a description for a
free single particle with arbitrary spin. Indeed, it is not
clear whether the only effect of the gauge field is to en-
dow the particle with arbitrary spin or whether residual
interactions are present.* It is therefore of interest to
construct a field theory where the fundamental fields are
expected to represent the creation and annihilation of
anyons.

As in any field theory, there are two aspects to the real-
ization of Poincaré symmetry for anyons. First, the one-
particle states should carry a unitary representation of
the Poincaré group; this can be achieved by use of an in-
duced representation. Second, for a manifestly covariant
theory the basic fields transform as a linear representa-
tion of the Lorentz group. The field equations and subsi-
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diary conditions (if any) then must be chosen so as to re-
cover the one-particle Poincaré group representation.’

In this paper we propose a field equation that attains
this goal; just as the Dirac equation is appropriate for
spin-1 particles and yields solutions that give a spin-;
representation of the Poincaré group, we offer an anyon
equation that does the same job for planar particles with
arbitrary spin.

In Sec. II we review the appropriate single-particle rep-
resentation for the Poincaré group in (2+ 1)-dimensional
space-time. In Sec. III we examine explicitly how solu-
tions to familiar equations for spin 1 and 1 give rise to
these representations, and we observe that both equations
can be presented in terms of the Pauli-Lubanski scalar.
The remainder of the paper is devoted to our proposal.
We describe and solve the field equations in Sec. IV. Sec-
tion V offers a gauge-theoretic formulation of the subsidi-
ary conditions that are used in Sec. IV. A Lagrangian for
our field equation is given in Sec. VI, while concluding re-
marks comprise the final Sec. VII.

II. POINCARE GROUP REPRESENTATION

The representation of the Poincaré group appropriate
to one-particle states can be specified by values assigned
to the invariants of the Poincaré algebra:

[(J4,J =iy, , (2.1a)
[J9,PP]l=ie%eP, , (2.1b)
(P4, P’]=0, (2.1¢)

metric g,, =diag(1l,—1,—1) .

Here P“ and J“ are translation and Lorentz-rotation gen-
erators: P°=(H,P), J°=(—M,e’L’), with M generating
spatial rotations and L generating boosts. The constants
% and c are set to unity. In 2+ 1 dimensions, the invari-
ants are P2 and P-J and the natural choice for them is’
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(P?=m*)W=0, (P-J+sm)¥=0. (2.2) A=e'@” 2.11)
The first requirement is obviously the mass-shell condi- g . s
tion and the second, involving the Pauli-Lubanski scalar AP A - .
P-J, specifies the helicity, with s the (arbitrary) value of R, = (AT i) 10 ()¢ (2.12)
spin that we can assign to the particle. . ’ )
The solution to these equations is easily constructed. which explicitly reads
We take plane waves W(x)=W(p)e P> where p“ are the o a 1
momenta. The above equations apply to W(p) with P, (Rpp )= A +AMA Py —Apne)
rgalized as ia/.ax“ and replaced by the eigenvalue p,. +(n*— A, DA, (p)
Since p? is subject to the mass-shell condition, W(p) de-
pends only on p. W(p) carries a unitary representation + (A, — DAYA T p)A(p), (2.13)
for the little group of the rest-frame momentum vector
p “=(m,0,0), viz., the two-dimensional rotation group: where
J— —1 a a
U(R)¥(p)=D(R)¥(R " 'p) . (2.3) As(p)= 2T (2.14)
pmtm

U(R) is the unitary operator implementing the rotation
on ¥ and D(R) comprise the spin-s representation ma-
trices for rotations. Because planar rotations form the
Abelian U(1) group, ¥ in our case is always a one-
component object and D(R) is just the phase e "¢,
where o is the angle of rotation. The action of the uni-
tary operator U(A), representing a general Lorentz trans-
formation A on W, can then be constructed in the follow-
ing manner. Let B(p) be a Lorentzian transformation
that boosts p? from its rest frame:

B(pp=p . (2.4
We then have
U(A)W(p)=D(R, ,W(A"'p), 2.5)

where the (Wigner) rotation R, ,, depending both on A
and p, is defined as

R, ,=B A7 'p)A"'B(p) (2.6)

and its one-dimensional representative D(R, ,) is the

phase e R involving the Wigner rotation angle w, ,,
which is determined by p? and the parameters w“ of the
Lorentz rotation A. To find w, , note that the boosting
transformation B(p) is given by

iQ,(p)j°

B(p)=e R (2.7)
where j° represents the Lie algebra (2.1a) on vectors,
(P)ac=1i€," (2.8)
and
b
—. p’ o E+Ipl
Q,(p)=¢€pe 71 In—/——,
P be IP| n m
_ (2.9)
E=p0=\/!p12+m2 ,
with 1 defining the rest frame: 7°=(1,0,0). Thus
[B(p))=[B~'(p)],"
(p?~+nm)p,+m,m) 2p°
—5¢ — p 7 Po T P My 2.10)

m(p-n+m)

When the Lorentz transformation is parametrized by

One readily verifies that R, , is indeed a spatial rotation;
for infinitesimal Lorentz transformations (2.13) reduces
to

(Rp,)% =85 —i(j-m%a-Ap)+ -, (2.15)

and this identifies the Wigner rotation angle, for an
infinitesimal Lorentz transformation, as

wp, =0 Ap)+ - (2.16)

For later use let us remark that while the above devel-
opment is carried out in the three-dimensional vector
representation of the Lorentz group, formulas (2.6), (2.7),
(2.11), (2.12), and (2.15) hold in arbitrary representations
with the generator j¢ appropriately taken in that repre-
sentation. Also, since infinitesimally

(A" 'p)=pi+ew,p, , 2.17)

it follows from the definition (2.6) and the result (2.15)
that the boost B(p) in any representation satisfies

B Yp) |—ie®p, aac+j“ B(p)=j-mA° . (2.18)
p

Because rotations acting on a state as in (2.3) give rise
to the one-cocycle e ~*, the angular momentum genera-
tor M =—J° [with U(R)=-e ~“M] possesses, in addition
to the usual derivative term acting on the p’s in the argu-
ment of ¥, a contribution giving the spin s:

M=—ipX 2 +s .
op
The possibility of adding this arbitrary constant s to the
rotation generator reflects the obvious and well-known
fact that planar rotations commute and that the Abelian
rotation algebra allows an addition, viz., an arbitrary
spin. What is not so obvious and perhaps not as well
known is that the generators of the full non-Abelian
Poincaré group can be similarly modified by an additional
term proportional to s, and the Lie algebra (2.1) remains
intact. The addition is as in Eq. (2.19) for the angular
momentum; for the boost generators J it is given by

AJZSPL[H(P)—H(O)] .

(2.19)

; (2.20)
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Here the dependence of the Hamiltonian H=P° on P is
explicitly indicated.

The modifications in (2.19) and (2.20) may also be
presented in covariant notation, which puts into evidence
a relation to the magnetic monopole. The Poincaré alge-
bra (2.1) is not changed if —sA%p) is added to J°, where
A“1is given in (2.14). In particular, as is explicitly demon-
strated by the induced representation constructed above,
the Lorentz generators, which solve the helicity condition
in (2.2) on the one-particle momentum space, read

Ji=—iep, —sA%p) . (2.21)

c

Moreover, the wunitary operator acting on V¥ is

U(A)=e O , with the contribution involving derivatives
effecting the Lorentz transformation on the argument of
¥, and —sA? giving rise to the one-cocycle e BOAr  Evi-
dently the above induced representation indeed satisfies
the requirements of (2.2); it is appropriate to the orbit
p°>o0.

The addition in (2.21) is just what comes from a mag-
netic monopole (in three-dimensional momentum space
with Lorentzian signature). But since we are dealing with
SO(2,1) rather than SO(3), the addition is nonsingular;
(p-m+m) never vanishes and s need not be quantized. If
one adds the “monopole” field (s /2m *)e**’p,dp, Ndp, to
the standard symplectic form dx®Adp,, with p?—m?2=0,
one obtains the modified generators. For discussing the
point-particle mechanics of an anyon we can thus use any
action that leads to this symplectic structure, as has been
done by many authors.*” This does not however yield a
manifestly covariant field theory, which is our goal in this
paper.

For a manifestly covariant field theory we have to go
beyond the on-shell description given by the induced rep-
resentation. We have to introduce fields transforming
linearly as a spin-s representation of the Lorentz group
and satisfying a linear differential equation whose solu-
tions provide the desired induced representation. In gen-
eral this leads to many more field components than the
single physical state required by the above analysis. For
integer or half-integer s, one conventionally uses 2s+1
components, while arbitrary-s representations of the
Lorentz group require an infinite number of components.
Additional considerations are then needed to eliminate all
but one component. It is instructive to examine in detail
how this works in the familiar situations with spins 1 and
1.

III. FAMILIAR EXAMPLES

A. Spin }

The Dirac equation for a spin-1 particle,

iv9,Yytmy=0, (3.1)

may be realized in 2+1 dimensions with a two-
component spinor and 2 X2 y matrices that are multiples
of the Pauli matrices: 7/”:(—03,—1'02,1'01). Observe
that y?/2 satisfy the SO(2,1) algebra (2.1); calling them
J%

j‘=vis2, (3.2)

and noting that the translation operators are realized by
id, =p,, we can write (3.1) as

pjytsmy=0
or, with s ==+,
pjY+msyp=0. 3.3)

We recognize that the Dirac equation is precisely the
Pauli-Lubanski condition of (2.2), now applied to a wave
function.®

The positive-energy solution to (3.1) (we take the lower
sign for the mass term) involves only one function ¥(p),

(3.4)

Wp) ! [PX_"Py ]\I/(p) ,

 V2m(E+m) E+m
which provides a one-component spin-1 representation.
This can be explicitly seen as follows. Observe that (p)
of (3.4) may be presented as

YP=Bp) [y,

where B(p) is the boost (2.7), (2.9) in the representation
(3.2):

) (3.5)

B(p):eiﬂa(p)y /2
— . €pmyy
V2m P Vpn+m
Since the Lorentz generator J? acting on ¥(p) is
Ji=—ie"p, : +1v, (3.7a)
it acts on [ 0 as
Y(p)
B~ Y(p)J°B(p)
_ . 9
=B Up)| |—ie®p, p° 1y |B(p)
— : abc ) +B71( ) __:abc a +1 a B( )
=I€ Py p° p 167Dy p° 3V p
(3.7b)

From (2.18) we see that the last term in (3.7b) is 1A%O.
Consequently, the action of J on ¥(p) is by

Ji=—ie"p, —aa -+1A°,
/4
in agreement with (2.21) for s = 1.
Note that the mass-shell condition is not separately im-
posed; it follows from the Dirac equation by iteration.

(3.7¢)

B. Spin1

A more appropriate example for us is the massive
gauge theory. A massive spin-1 particle also requires
only a one-component field, according to the Poincaré
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group analysis. However, a linear representation of the
Lorentz group needs three components. We therefore
use a three-component field satisfying a subsidiary condi-
tion, in addition to the helicity condition, thereby elim-
inating the unwanted components. We shall see that the
subsidiary condition can also be solved in terms of gauge
potentials; the theory can then be rewritten as a gauge
theory, the subsidiary condition becoming the Bianchi
identity. The elimination of the extra field components
is, in this version, an expression of gauge freedom.

The minimal example of a massive gauge theory is the
topologically massive theory.” Its equations of motion
are usually presented in terms of the field strength F4:

9, Fbat —Zle“b‘Fbc =0. (3.8)
For our purposes it is preferable to write this in terms of
a dual field strength F¢ which is a three-component vec-
tor. With the definition

Fi=le"F,, (3.9)
(3.8) becomes'?
9,€"F,+mF®=0 . (3.10)

Again setting i3, =p, and recalling from (2.8) the spin-1
representation matrices for the generators of SO(2,1) we
see that (3.10) is again the Pauli-Lubanski scalar, acting
as a 3 X 3 matrix on the three-vector F¢ with s ==+1:

(p+j), Fb+msF°*=0 . (3.11)

A transversality condition follows from (3.10) or (3.11):

J

[N—IB‘l(p)J“B(p)N]a’,,,z[N—lB“(p)]“'an[ —iep,
3] .
— abc a
=—1l€ '
Py 3p° b
+(N"HY . [[B7Up) 1 o

Use of (2.18) allows replacing the last bracketed expres-
sion by A%¢€®?,.; when the remaining contractions with
N and N ! are performed, this becomes

0 a

-1 |p

Therefore the action on W(p) is by

Ja= "’iGabch — A9 s (3.16¢)

ap°
in agreement with (2.21) for s =1.
Let us observe that the subsidiary condition (3.12) may
be viewed as a Bianchi identity, which allows introducing

—Ii€

R. JACKIW AND V. P. NAIR 43

p.F*=0 . (3.12)

This gives a subsidiary condition, which reduces the
number of physical components, but it is not imposed
separately; rather, it follows from the postulated field
equation, as does the mass-shell condition by “squaring”
(3.10) and using (3.12).

Let us show explicitly how solutions to the three-
component equation (3.10) give rise to the spin-1, one-
component representation of the Poincaré group. The
solution to (3.10) (with upper sign for the mass) is

0 x4 : E+m
1 p*+ip?
Fa( == 1|+ —5+ x . .
p V5 ! i (E+m) f;y Y(p) (3.13)
This may also be presented as
F%p)=B“(p)N°.F§(p), (3.14)

where B(p) is the boost (2.7) in the vector representation,
viz. (2.10), N is the numerical unitary matrix

v2 0 0
Nt =—= :
=33 0 l.l_ (3.15)
0 —i i
and
0
Fy'=1| 0
Y(p)

The Lorentz generator J¢ involves the matrix action on
Fe

3 et
roa'a
617' LE" "y .

(I =—iep, (3.16a)
c
Therefore on F,“ the action is by
a a" :.a''a b"
8% ynt+i€® % |[B(PIN]” 4
“p, apca" i€ |[B(p)]Y" o (N, . (3.16b)

[
a gauge potential: a transverse vector can be written (in

topologically trivial space-time) as a curl:

Fi=¢%9, A, . (3.17)

Now the description possesses the gauge freedom of add-
ing 9,6 to A,. The emergent gauge principle, although
not essential to understanding one-particle states, is need-
ed to introduce interactions with charged particles. In
fact, the dual (3.10) or (3.11) of the topologically massive
equation (3.8) can be obtained from a local and manifestly
gauge-invariant Lagrange density: varying F?in

L=1FF,F —zlge”cha 3,F, (3.18)

yields (3.8); in contrast with (3.6) which is derived from a
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Lagrangian constructed from gauge potentials and con-
taining the gauge-invariant Chern-Simons term. Never-
theless gauge potentials must be introduced as in (3.17) if
charged matter is to be coupled to the gauge field. In to-
pologically nontrivial space-times (which we shall not
consider here) implementing (3.17) may encounter an ob-
struction, which then constrains the charges governing
matter-gauge field couplings (but not the mass m).!!

IV. THE ANYON EQUATION

We take the spin-1 gauge theory as a model and con-
struct a theory of anyons where the fields are infinite
component vectors carrying a linear (spin-A Xspin-1) rep-
resentation of the Lorentz group; the spin of the one-
particle states will turn out to be s=1—A. We impose
the helicity condition, which we call the Pauli-Lubanski
equation, and identify further subsidiary conditions that
pick out a single physical state from the infinite number
of components. In the next section we solve the subsidi-
ary conditions to exhibit the theory as a gauge theory.
As in the topologically massive case, the gauge principle
is expected to be useful in understanding interactions of
anyons.

For arbitrary A our theory is an infinite component
generalization of the topologically massive spin-1 model.
The field equations reduce to (3.10) when A is chosen
Zero.

We begin with a description of the relevant representa-
tions of SO(2,1). Concentrating on arbitrary values of A,
the representations we use are unitary, infinite dimension-
al and bounded on one side: they are members of the
discrete series of SO(2,1).!? The bound can be either
above or below; these are equivalent choices related by a
discrete symmetry. [For nonintegral values of A, we
have, strictly speaking, representations of a suitable cov-
ering of SO(2,1).]

We denote the Lorentz generators for these representa-
tions by K and the states by |A,n ), n=0,1, ..., . For
representations bounded below, the action of the K“s on
states is given by

KA, n)=A+n)|An),
KT An)=vV2r+n)n+DAn+1),

K |Aan)=V2r+n—1nlA,n—1), (4.1)
where K =K !F iK?2. (The sign reversal in our definition
of (+) derives from the metric.) The eigenvalue of K° for
the lowest-weight state |A,0), with K ~[A,0) =0, is A and
characterizes the representation.

For the representation bounded above we have

KoM n)=—(A+n)A,n),
KT An)=—VQ2r+n—1Dn|A,n—1),

K |[Mn)=—VQA+n)n+1)|A,n+1) . 4.2)

The representation is here characterized by the K° eigen-
value — A of the highest-weight state [A,0), K T|A,0) =0.

For both representations (4.1) and (4.2) the value of the
quadratic Casimir g,,K°K?® is A(A—1), and the two are

related by K?— —K*“T, where T denotes the transpose,
K®s being considered as infinite-dimensional matrices.
This is the basic conjugation symmetry of the theory.

There is a well-known and convenient way of charac-
terizing these representations in terms of functions of a
complex variable z.!*> One assigns a “wave function”
{z|A,n ) to the state |A,n ) by

(z|A,n)=WNz" (representations bounded below) ,
(4.3)
(z|A,n)=WNz ™" (representations bounded above) ,
(4.4)

where N is a normalization factor equal to
VT(2A+n)/T(n +1)L(2A—1),T being the gamma func-
tion. The monomials (4.3), (4.4) form a basis for holo-
morphic functions, analytic in the unit disc D, |z| <1 in
the first case and in D with |z| > 1 in the second case (ex-
cept for a branch cut of strength 2A). An arbitrary state
of the representation is thus a holomorphic function of
the type

f=S f.(zlan), “.5)
n=0

and on such functions K¢ are realized by differential
operators:
K°=2z9,+A, Kt=2%3,+2Arz, K~ =09, . (4.6)

The inner product of two holomorphic functions f(z)
and g (z) is constructed as

1 f*g
=—— | dz* , .
(flg? e fD z dz(l—z*z)z'z}‘ 4.7)
1 f*g
= dz*d , 4.8
(flgr=5— fﬁ =T (4.8)
with dz*dz=2ir dr d0 in radial coordinates. Equation

(4.7) applies to representations bounded below and (4.8)
to those bounded above. With this inner product the
realization (4.6) for K¢ is Hermitian, and the group repre-
sentation is unitary, but infinite dimensional.

Although the representations (4.1) and (4.2) can be
defined for any A, the above inner product requires A > 1.
This is necessary so that the potential singularity at
|z|=1 is integrable. For values A <1, but A#—N/2,
N=0,1,2, ..., one can still use the inner product (4.6) if
suitable analytic continuations are made.

Finite-dimensional representations arise when A takes
the exceptional values A=—N /2 in the representation
(4.1) bounded below. Since K *|—1N,N )=0 the repre-
sentation is also bounded above and we indeed have finite
dimensionality. Basis states are still represented by Nz ",
but now arbitrary states are polynomials in z of degree N.
It is clear that the inner product (4.7) cannot be used in
these cases because of the singularity at |z|= 1; also the
square roots in (4.1) now acquire factors of i =V —1. Ei-
ther way we see that the finite-dimensional representa-
tions are not unitary.

The fields of our theory in components are Fy(x),
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a=0,1,2 and n=0,1,..., 0. K% . ={A,n|K%A,n') are
infinite-dimensional matrices acting on the n' index of
F%. The spin-1 matrices for SO(2,1), viz,
(79 gran=1i€, 4, act on the vector index a’’ of Fg/".
Alternatively, by use of the functions (4.3) one can col-
lect F? into a vector F%x,z), which is a holomorphic
function of z, well behaved in the unit disc D, |z| <1, for
representations bounded below, and in D for representa-
tions bounded above. Explicitly,
Fix,z)= 3 Fi{z|rn) . (4.9)
n=0

K ®s act on F%x,z) as the differential operators in (4.5).
The Pauli-Lubanski scalar P-J is evidently given by

P-(K+j) since J=K + is the total spin contribution to

the Lorentz generators. Our proposed equation is thus

P-(K~+j)gp gnF& +msF,, =0, (4.10)

where the spin s is taken equal to 1—A. The index nota-
tion is as follows: P-K, ,o=P-K,b
Pjon ow=Pjud,,. Henceforth we
infinite-ranging » index.

We must also impose further conditions, which along
with (4.10) lead to the mass-shell condition and ensure
that only one polarization or component survives out of
the threefold infinity of components in F,. To state these
conditions, we define the operator

aa’s

suppress the

D, =€, P’K (4.11)
and demand that, in addition to (4.10), F¢ satisfy'*

€*D,F,=0, (4.12a)

D,F=0. (4.12b)

We first demonstrate that these conditions are ade-
quate by solving (4.10) and (4.12). We take plane-wave
solutions of the form

Fe=F9p)e "~ . (4.13)
For the amplitudes F“p), the same set of equations
(4.10), (4.12) holds with P replaced by the momentum ei-
genvalue p“ Taking the scalar product of (4.10) with p¢
we get (p-K +ms)(p-F)=0. The scalar product of (4.10)
with D, yields, by use of the algebra of the K%s,
(p-K)(p-F)=0. These two together require

p-F=0. 4.14)

The transversality condition thus follows from the postu-
lated equations, just as in the vector case.

To solve the subsidiary conditions (4.12), we introduce
a triad of unit vectors (ed,e{,e$): e§is a timelike vector
parallel to p9 and e{, e§ are spacelike and form a basis
for vectors orthogonal to p®. These satisfy

a  b,mn_ jab

b ¢ a
ene, 87" =g P

m€n = €mn €p >

(4.15)

a b — a
€m€n8ab = Emn> > € pc€

where the metric tensor g,,, governing the ordinal indices
{m,n,p}=1{0,1,2} is the same as in space-time:
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g, =diag(1l, —1, —1). Explicit expressions can be

a
o 1 S
eh=-"L=, c1=0,p"), e§=—=(Ipl.p'po) -

\/pl 2

N

(4.16)

The combinations e§ =e Fie§ and e{ are eigenstates of
(pjlay =1V pZe ey
(p-j)yeb =+VpZe?, (p-j)el=0. 4.17)

Equation (4.14) shows that F? has no component along
p¢ We can thus write

Fe=F_ e® +F_e% . (4.18)
Equations (4.12) can now be simplified to
K. F_=0, K_,F,=0, 4.19)

where K (.,=K_ e% are raising and lowering operators for
the eigenvalues of K, =K,e(, as may be seen from the
commutation rules. For a spin-A representation bounded
below, (4.19) can be satisfied if we choose F_ =0 and if
we allow for F, one nonvanishing component corre-
sponding to the lowest-weight state of K with
K _yF.=0. The nonvanishing amplitude is arbitrary.
The Pauli-Lubanski equation (4.10) is satisfied with this
component being arbitrary, provided Vp’=m, or
pr=m?2 (Recall that s=1—A.)

We conclude that the subsidiary conditions (4.12) along
with the Pauli-Lubanski equation (4.10) do indeed lead to
plane-wave solutions with a one-component amplitude,
i.e., one polarization, satisfying the mass-shell condition.
The solution we have found for representations bounded
below corresponds to a positive-energy solution in the
language of one-particle quantum mechanics. With our
choice of sign for the ms=m(1—A) term in the Pauli-
Lubanski equation, there is no negative-energy solution
for representations bounded below.

For representations bounded above, Egs. (4.19) have
the solution F =0, with F_ retaining one nonvanishing
component corresponding to the highest-weight state, an-
nihilated by K ,. In this case, the Pauli-Lubanski equa-
tion (4.10) can also be satisfied provided V p>=—m; in
other words, one has a negative-energy solution. The as-
sociation of the negative-energy solution with the repre-
sentation bounded above, which is the conjugate of the
representation bounded below under the K°— —K°T
transformation, is as expected. Also, if the sign of the
ms=m(1—A) term in (4.10) is changed, the role of these
two representations gets exchanged. This property again
parallels similar features for spins  and 1 that we have
discussed.

The nonvanishing amplitude for our solutions corre-
sponds to either the highest- or lowest-weight state of
K (). In the rest frame, K., and K ,, become K* and
K© as given by (4.1); the nonvanishing amplitude is then
F, , (or F_ ). The amplitude, for arbitrary p, can be
written as the Lorentz-boosted version of F,  (or F_ ).
The general solution can thus be written as

FA(p)=B,o(p)B(p)N®. f<Hp), (4.20)
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where
0 0
fw%+ﬁ(p):: 0 , Afc(*ﬂ(p)zz qﬂ‘*kp) ;
\I/( + )(p) 0

B,,(p) and B? (p) are the spin-A and spin-1 representa-
tions of the boost transformation, respectively, while N bc
is the numerical matrix (3.15). The ¥'*)(p) are arbitrary
functions, providing one-component representations for
the Poincaré group with positive (+) and negative (—)
energy. From the property (2.18), we see that the
Lorentz generators on W'*)(p) have the expected addition
—sA? as in (2.21). The solutions of our covariant equa-
tions (4.10) and (4.12) do indeed reproduce the induced
representation analysis of Sec. IL.

Finally, we note that, when A =0, the action of the
K®s is trivial and the equations become, as promised,
those of the topologically massive spin-1 theory. Other
equations, making use of nonunitary, finite-dimensional
representations, are obtained by choosing A= —1N, as
explained above. Thus for A=—1, N=1, the function
f(z) of (4.5) becomes f(z)=f,+ f,z, and Y ,=(f,f>)
transforms as a two-spinor. Because our theory makes
use of vector-valued states, we need to construct (4.9),
which now corresponds to F%x,z)=F{(x)+ F5(x)z, and
the two vectors F'{ , combine into the spin-vector WO ap-
propriate to a s =1—A=3 equation.

V. GAUGE-THEORETIC FORMULATION

We now turn to the interpretation of our anyon theory
given by Egs. (4.10), (4.12) as a gauge theory. A slight
modification of the basic equations is useful in setting up
the gauge-theoretic version.

We extend the vectorial quantities D? and F? to a
fourth component, labeled by the index 3, which can be
equivalently upper or lower. D3=D3 is defined by

D,=PK . (5.1)

The new field F*=F; is taken to transform as a spin-A
representation of the Lorentz group; just like F?, it is an
infinite-component vector. The field equations (4.10) and
subsidiary conditions (4.12) are altered to read

(Dy;+p-j+ms),,F*—D, F*=0, (5.2a)
€D, F,—iP°F3=0, (5.2b)
D,F*+D;F*=0 . (5.2¢)

Equations (5.2) are in fact equivalent to (4.10), (4.12), be-
cause F3 is just an auxiliary field, whose contribution, we
shall presently show, vanishes as a consequence of (5.2).
But first, we rewrite Egs. (5.2) in a more compact and
useful four-dimensional notation.

We combine F¢ F3? as FF=(F%F?) and D% D3 as
DH=(DD?), n=0,1,2,3. The metric for four-vectors
and tensors is g, =diag(1, —1,—1,1). We use the com-
pletely antisymmetric tensor €,,,s With €,,.3=€,,. Also,
we introduce P*#=(P90); P* is taken to be zero for the
time being, but this will be relaxed shortly. In this four-
dimensional notation, Egs. (5.2a) and (5.2b) can be com-

bined into
(D, +5Q,)F,—(D,+5Q,)F,=i€,P°FF, (53

where Q#=(0,0,0,m ).
comes

D, F*=0

Equation (5.2c) evidently be-

(5.4)

We now show that Egs. (5.3) and (5.4) [or (5.2)] are
equivalent to (4.10) and (4.12). From our definitions we
have PHD”ZO and P#Q“IO. Further, the algebra of
K ®s leads to the following commutation rules from the
D PACE

[D,,D,]=i€,,,3P*D" . (5.5)

puva,
Consider now the (four-dimensional) dual version of (5.3),
which reads

eaﬁw(D“+sQ“)F"=i(PaFB—PﬁFa) . (5.6)

Upon acting on this equation by D? and simplifying the
first term by use of the commutation rules (5.5), we get,
with the help of (5.4),

iD(P-F)+s€,,, Q"D F*=0 . (5.7)

auve

This equation further gives

(Q-D)(P-F)=0. (5.8)
The scalar product of (5.3) with P# gives
(D, +sQ,)(P-F)=0, which also implies

(Q-D+sm?)(P-F)=0 . (5.9)
Equations (5.8), (5.9) together require

P-F=0, (5.10)

which is of course the constraint (4.14) once again. Since
P-F vanishes, (5.7) leaves
Q*DYF®=0 .

€apvo (5.11)

The scalar product of (5.6) with Q7 gives, upon use of the
above equation and Q-P =0,

P,(Q-F)=0. (5.12)

Thus Q-F, which is essentially F3, is a constant and
D,(Q-F) is also zero. We see that Egs. (5.2), or
equivalently (5.3), (5.4), reduce to (4.10), (4.12); Q-F or F?
is an auxiliary field whose contribution vanishes for con-
sistency and Egs. (5.3), (5.4) define our theory of anyons.

Thus far the four-vectors and tensors we have intro-
duced are merely a notational improvement. However,
notice that we can write D, as

D,=PK,, (5.13)

where K, is antisymmetric and K;, =K, K, =€, K€
The tensor K, is anti-self-dual in the four-dimensional
sense. Its components are generators for one of the
SO(2,1’s in the decomposition SO(2,2)~SO(2,1)
XSO(2,1), SO(2,2) being the four-dimensional Lorentz
group with our metric g, =diag(1,—1,—1,1 ). We can
also relax the conditions P3>=0 and QHZ(O,O,O,m ), re-
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placing them by the four-dimensionally invariant require-
ments Q2=m?2, P-Q =0.

Consider Egs. (5.3), (5.4) with P#, Q" arbitrary except
for 0?=m?, and Q-P=0. One can reduce (5.3), (5.4)
with these constraints by choosing a representative Q¥,
say (0,0,0,m), whereupon we recover (5.2). From the
definition (5.13) for D,,, one can also check that the com-
mutation rules (5.5), which are necessary to show that
both P-F and P#(Q~F) vanish, are true even if P3540.
We can thus define our theory as the reduction to the
SO(2,2) orbit Q*=m?, Q-P=0 of Egs. (5.3), (5.4) which
are defined for arbitrary P¥, Q".

We now turn to the gauge-theoretic interpretation of
(5.3), (5.4). In looking for such an interpretation, one of
the equations must be regarded as the field equation,
while the other is to be regarded as the Bianchi identity,
which leads to the introduction of potentials. In analogy
to the topologically massive theory, we shall retain Eq.
(5.3) as the field equation and take (5.4) as the Bianchi
identity. Since the dual of F* with €,,,4 is a three-index
antisymmetric tensor, we may expect the potentials to be
a two-index antisymmetric tensor A4,5. Indeed, one can
easily check that a solution to (5.4) is given by

F,=D"A,,+iP'4,,, (5.14)
where ‘;f;w is dual to 4P
Ay =t€,p4° . (5.15)

The field strengths F, are invariant under the gauge
transformation

A, — A, =A4,,+t€,, D 0°—i(P,6,—P,0,), (516

where the gauge parameters (6,,0;)=0, transform as
spin-A X spin-1 and spin-A representations, respectively.
Equations (5.3) and (5.14) define the gauge theory of
anyons. It should be noted that the gauge potentials and
parameters are in general complex since the spin-A repre-
sentations are complex. The gauge symmetry is also evi-
dently Abelian.

The potentials 4,5 can be decomposed as two three-
vector potentials (A,,B,) via A;,=A,, A, =€,.BS,
each of them transforming as the spin-A Xspin-1 repre-
sentation of SO(2,1). When A and correspondingly K¢
are chosen to be zero, the potential B, and gauge param-
eters 0, can be consistently set to zero. The definition of
the field strength (5.14) and the gauge transformations
(5.16) become those of the topologically massive theory,
A, being the vector potential and 05 the gauge function.

We close this discussion by noting that a suitable
gauge-fixing condition on the potentials is given by
Ay =€4.B°=0. The gauge-fixed equations of motion
can be solved easily to show that 4, has one polariza-
tion, as expected.

We now rewrite the gauge theoretic equations in
another way that also clarifies why (5.14) is a solution to
(5.4). Given a closed algebra such as (5.15), we can define
an associated Becchi-Rouet-Stora-Tyutin- (BRST-) type
operator Q and a conjugate operator Q in a standard
way.15 Towards this end, one introduces ghosts Cy and
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antighosts ¢ # with the anticommutation rules

feuc,}=0, fche”}=0, {c,,c"}=8]. (5.17)
The BRST operators are then

Q=ct D#+§emﬁpﬁc7a] , (5.182)

O=2" |Dy+ S apPle e (5.18b)

It is easily checked that Q?=0=0 2.

The ghost fields c,, ¢# are assigned ghost numbers 1
and —1, respectively; correspondingly Q and Q are
operators of ghost numbers 1 and —1, respectively. We
can now introduce functions of the type G (x), ¢#G ,(x),
%E"E"G#v(x), ... of ghost numbers 0,—1,—2,...,
which are essentially exterior forms relevant to the D,’s
and the algebra (5.5);16 i.e., they stand in the same rela-
tionship to D,’s and (5.5) as ordinary differential forms to
9, and its algebra [3,,0,]=0. For F" we introduce the
three-form

7=§e#mﬁf ve ‘e BFH (5.19)
In terms of this, Egs. (5.3) and (5.4) become

QF+s(QFc,)F=0, (5.20)

0F=0. (5.21)

The Bianchi identify (5.21) is evidently solved by
F=QA, where A=1c#c"4,, is a form of ghost num-
ber —2. This is in fact the easiest way to see that (5.14) is
a solution to (5.4). The gauge transformations are
A —>A+Q0O, where ®=c"o,.

Q and Q are associated with the D, ’s; there is of course
an operator @ associated with the gauge symmetry (5.16)
and its gauge fixing. From A —>A+Q® we see that
there is a second-generation gauge symmetry
®—>®+Qf, where f has zero ghost number. In other
words, the gauge symmetry (5.16) is reducible in the
Batalin-Fradkin-Vilkovisky sense and @ will involve
second-generation ghosts and antighosts.!”

VI. ACTION FORMULATION

We shall now construct an action from which our field
equations can be derived as the variational equations.
The equations of motion, as they are, do not admit an ac-
tion formulation. The equations can be written as

[s4r,e4)=0, 6.1)
for arbitrary 84, (asterisk denotes complex conjuga-
tion); Ew'( A) is the equation of motion in (5.3). In order
to have an action formulation, we must be able to write
fBA Lv€"'"=28S; it can be easily checked that the integra-
bility conditions for this are not satisfied by the
(Q.F,—Q,F,) term in the equation of motion. We must

therefore modify the equation somewhat to obtain an ac-
tion.



A suitably modified set of equations is
(Dy+P-j),, F*+msF,—D,F,=0,
(6.2)
€D, F,+ms [ A™x,p)(€,0qDF)y)—iPF>=0,

¥y

where A% is the inverse of (D;+P-j),,, and F, is ex-
pressed in terms of the potential as in (5.14), so that (5.2c)
is identically true. These modified equations do admit an

action, but it is no longer possible to obtain €,,. D F°=0
from (6.2). We must supplement (6.2) with
€. DOF¢=0 . (6.3)

The set of equations (6.2), (6.3) can be derived from the
action

S=fd3x [F;F“-i—msf F}X(x)A™(x,y)F,(y)
y

+(DXF)(D XF),,U“”] : (6.4)

ab

where o is a field and

Hermitian tensor

S= [d’x (FiFt—ms[H}F+F H+H*D;+P-j), H*]+(D X H)|(D X H),o®} .
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(D XF), =€,.D°F° (dagger denotes Hermitian conjuga-
tion). The variational equation for 0 gives the con-
straint (D XF)Z(D XF),=0, which is equivalent to
(D XF),=0. The other variational equations, with this
condition, reproduce the field equations (5.2).

A term linear in (D XF), such as 0% D XF), would
also lead to Eq. (6.3), but would modify Egs. (6.2) by
terms involving 0. Requiring the square of (D X F), to
vanish seems to be the most economical way of obtaining
an action formulation of our equations. The technique of
requiring the square of a constraint as the most innocu-
ous way of obtaining it is known in another context, viz.
the Lagrangian for a chiral boson.!® It may be possible,
as in the chiral boson case,'® that this term can be elim-
inated in favor of a nonlocal Lagrangian.

The Lagrangian (6.4) has a nonlocal term involving
A%, in addition to any possible nonlocality that might
arise from elimination of the o term. One can rewrite
this term in a local way by introducing more fields.
Specifically, we can take as our action

(6.5)

H, is a gauge-invariant field, the elimination of which via its equation of motion takes us back to the action (6.4). No-
tice that the action (6.5) involves coupling the gauge field to H,, whose dynamics is essentially given by a Chern-

Simons-like action.

In (6.4) or (6.5), the fundamental fields are the gauge potentials (and H,, H*, 0°®), the equations of motion being ob-

tained by extremization with respect to these.

In the case of the topologically massive spin-1 theory, there is an alternative action (3.18) for which the (dual) field
strengths are considered as the fundamental fields. There is an analogous action for our theory given by

Squar= J d*x[F*4Dy+P-j+ms)yy F*+ V*4(D XF), + V*}D-F)+(D X F)| V+(D-F)'V3 (D X V)[(D X V), 0] .

V4, V3, their conjugates and 0% are again auxiliary or
Lagrange multiplier fields. (This version may have some
advantages with regard to quantization, since only
gauge-invariant fields are involved.)

Needless to say, (6.5) and (6.6) reduce, respectively, to
the potential and (dual) field-strength versions of the ac-
tion for the topologically massive theory when A is taken
to be zero.

In (6.4), (6.5), or (6.6), terms of the type F)F“ involve
summation over all components, e.g., FXF°
=3=_g.,F¥*Fb,. We can consider the fields as holo-
morphic functions on the unit disc D, |z|<1 (or D,
|z| = 1); the action would then involve integration over D
(or D) with the measures indicated in (4.7), (4.8).

VII. CONCLUDING REMARKS

We have obtained a relativistic theory of anyons with
manifest Lorentz invariance. Moreover, the extra polar-
izations are eliminated by suitable constraints. The
theory can be considered as a gauge theory, the con-
straints being the Bianchi identities. The solutions of the
field equations realize the one-particle states as the ap-
propriate induced representation of the Poincaré group.

(6.6)

[

The action requires auxiliary fields; the elimination of
these, or of the constraints they imply, would lead to non-
locality.

It is unlikely that one can obtain a simple local La-
grangian in view of the following. Even in 2+ 1 dimen-
sions, spin has to be an integer or half-integer for local
fields. Fields which carry charges associated with gauge
symmetries (with accompanying flux integrals at infinity)
are typically localizable only in spacelike cones; for such
fields fractional spins are admissible.’’ The method of
generating fractional spin by coupling point particles to a
Chern-Simons gauge field, with its nontrivial long-range
properties, exemplifies this situation. In our case too, the
nonlocalities which arise from the elimination of auxili-
ary fields, or from enforcing the corresponding con-
straints, are a reflection of this fact.

We can consider our theory to be a field theory defined
on a five-dimensional manifold M =M XN where M is
the three-dimensional space-time and N is either the unit
disc D, or D, or the union of both, if we want to treat
positive- and negative-energy solutions on an equal foot-
ing. The fields are of course holomorphic on N. The
modes such as F? for n=1, ..., « describe field excita-
tions on N and are similar to Kaluza-Klein modes, which
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arise in dimensional reduction from M to M. However,
for us, the modes on N are all gauge degrees of freedom.
We may thus think of our theory as a five-dimensional
field theory whose (gauge-invariant) dynamics is confined
to M. From this point of view there is an analogy with
anomalous gauge theories where the Wess-Zumino action
displays similar features.

We close with a remark about the quantization of the
theory. The one-particle states of our theory have arbi-
trary spin; the phases generated by exchange of particles
in a many-particle state must form a representation of the
braid group. The anyonic field operators, at least after
projecting onto physical polarizations, must therefore
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have very nontrivial algebraic properties. In particular,
the theory has, implicitly, enough information to con-
struct a representation, appropriate to the spin value, of
the braid group. Seeing explicitly how this is achieved
remains an open problem.
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