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BRST-invariant nonplanar primitive operators in the open-bosonic-string theory

T. Kobayashi, H. Konno, ' and T. Suzuki
Institute of Physics, Uniuersity of Tsukuba, Ibaraki 305, Japan

(Received 22 February 1990; revised manuscript received 1 October 1990)

We investigate nonplanar operators in the open-bosonic-string theory by means of the covariant
operator formalism based on the Becchi-Rouet-Stora-Tyutin (BRST) formulation. The detailed
evaluations of two nonplanar primitive operators, that is, nonplanar self-energy and nonplanar
two-loop tadpole, are presented. At the one-loop level, we show that the ghost contribution yields
a right measure factor to the physical amplitude. For the nonplanar two-loop tadpole operator, we
discuss the factorization of the nonplanar self-energy. In order to avoid multiple countings, the in-
tegration regions are suitably restricted by investigating the duality of the 5-Reggeon vertex and the
periodicity of the nonplanar self-energy operator. We also argue that only one singularity associat-
ed with the nonplanar self-energy part occurs in the nonplanar two-loop tadpole.

I. INTRODUCTION AND PRELIMINARIES

In string theory, we know some diAerent approaches
for computing multiloop amplitudes which are dis-
tinguished by the choice of covering space of moduli.
One of them is the Polyakov path-integral approach
which is based on Teichmuller space. ' In this covering
space, the complex geometrical structure of string theory
is well analyzed and a modular-invariant definition of
the amplitude is established. However an explicit expres-
sion for the amplitudes has not yet been obtained for
more than four loops at present.

On the other hand, in the covariant operator formal-
ism based on the Becchi-Rouet-Stora-Tyutin (BRST) for-
mulation, ' the moduli space is parametrized by the
Schottky parameters. Owing to this parametrization, it is
possible to derive an explicit expression for the multiloop
amplitude' ' and also to clarify the complex structure
of the moduli space; the holomorphic factorization
theorem is almost trivial. ' Another advantage of the
operator formalism is the factorizability, that is, all dia-
grams can be constructed from 3-Reggeon vertices and
propagators. In addition, if one makes the formalism
satisfy the duality property, it becomes possible to con-
struct arbitrary multiloop operators from some primitive
operators and trees. In the open-bosonic-string case, the
primitive operators are known to be the following four
operators planar tadpole, nonorientable tadpole, non-
planar self-energy, and nonplanar two-loop tadpole (Fig.
1). Along this line, in the previous papers, ' we have
proposed an operator formalism with operational duality
and have computed all the one-loop operators according
to this formalism. It is shown that the resultant ampli-
tude has a correct measure owing to the ghost contribu-
tions. Furthermore, by making a multiloop operator
from these primitive operators, one of the authors (H.K.)

has shown that this program really works well at arbi-
trary order in the planar case."'

In the nonplanar case, however, any systematic investi-
gation along this line has not yet been carried out; espe-

(&) (b) (c) (d)

FIG. 1. The primitive operators in the open bosonic string:
(a) planar tadpole, (b) nonorientable tadpole, (c) nonplanar self-
energy, (d) nonplanar two-loop tadpole.

cially the nonplanar two-loop tadpole operator has not
been calculated even in the old dual resonance model. In
this paper, we carry out the systematic constructions of
BRST-invariant nonplanar self-energy and nonplanar
two-loop tadpole.

We first show the calculation of the nonplanar self-
energy operator, as noted in Ref. 10. Although this
operator as well as other one-loop primitive operators
IFigs. 1(a)—1(c)] have been obtained by Gross and
Schwarz within the framework of the old dual resonance
model, they were subjected to the unphysical modes ap-
pearing in the loop diagrams. We will show that the
ghost sector correctly cancels these unphysical modes.

The nonplanar two-loop tadpole operator is another
element for constructing the nonplanar multiloop ampli-
tude. We will construct this operator from the reduced
5-Reggeon vertex by sewing two pairs of alternate legs
through the propagators. The expression turns out to be
similar to that of the planar two-loop tadpole operator '

because of the coincidence of the Riemann doubles of
both cases. The nonplanar two-loop tadpole has four real
Schottky parameters. The integration regions with
respect to these variables must be restricted to a certain
region so as to evade the overcounting of the same
configurations. We will carry this out by considering the
duality of the 5-Reggeon vertex and the periodicity of the
nonplanar self-energy part, which can be factorized in the
nonplanar two-loop tadpole [Fig. 1(d)]. We next analyze
the singularity which comes from the partition function.
It will be shown that, in spite of the superficial coin-
cidence between the planar and the nonplanar operators,
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the singularity structures of both operators are quite
different. We will argue that there is only one singular
point in the nonplanar two-loop case. This is a crucial
difference from the planar case, which has three indepen-
dent singularities. '

Before going into the details of the evaluation of two
primitive nonplanar operators, we here briefly review the
basic ingredients of our calculations which are the follow-
ing three BRST-invariant operators (A)—(C).

(A) 3 R-eggeon vertex (the CSV vertex):

3

( V)&3 ~

= (Oa;q =3~exp g —
—,
' g a,"D„' '( U, V, )a' —g g c„"D„'' ( U„V, )b'

r&s
r=1 n, m =0 n=2 m= —1

n =0, +1 r =1 m =0, +1

The SL(2,R ) elements U„, V„are Lovelace maps defined by

0 1
V =

Zr —1 Zr Zr +1

oo 0
U, =l V„

where Z„ is the Koba-Nielsen variable of the rth leg. The
notation of the infinite-dimensional representations of
SL(2,R) D„' ' and D„'" is defined in Appendix A. This
vertex is BRST invariant in the sense that

guarantee the Hermiticity of T.
The untwisted propagator is obtained by replacing the

integrand of the twisted propagator (1.3) as'

( v ~(g())+g(2)+g(3)) —() (1.2) P(x )~Sl P(x ), (1.7)

Qz" is the BRST charge associated with the rth leg.
(B) Propagators. There are two types of propagators.

One is the "twisted" propagator T, which is used for the
orientable diagram, and the other is the "untwisted"
propagator U for nonorientable diagrams.

The twisted propagator is given as

T=(b() b, ) f — P(x),
o x 1 —x

LoP(x)=x 'AS(x),

(1.3a)

(1.3b)

where II and S(x) are the twist and gauge operators re-
spectively, defined as

(1.4)

S(x)=(1—x) (1.5)

P (x)=P(x),
(b() b, )P(x) =P(x)(—b() b,)— (1.6)

Here L, =L, +L,", n =0,+1 are the generators of
SL(2,R ). The relations

where

A, =Be ', 0 =1 .

It is also Hermitian owing to the relations (1.6) with the
replacement (1.7). Notice that the Hermiticity of both
propagators guarantees the duality property of diagrams
as discussed in Ref. 10. Both of them have the correct
ghost number —1 and are BRST invariant after integra-
tion: I Q& T I

=
I Qz U ) =0.

Another BRST-invariant scheme is possible using the
Lo —1

propagator bo f dx x ' and the modified CSV vertex,
one leg of which is twisted by A . In this scheme how-
ever whether or not the duality can be maintained is un-
certain at this stage.

(C) Reflection operator. When one sews two legs with
the propagator, one of them must be adjoined. The
refiection operator plays this role. (In Ref. 14 an analo-
gous operator is introduced as a sewing operator. There
the geometrical meaning is also explained. ) It is given as

R23 & =(( v», ~n""~oa;q =0&) )

n =0, +1
(b„b„)exp —g a— ,a „+ g (c „b „+c „b „) ~oa;q =3&23 .

This operator makes the bra state into a ket state in the BRST-invariant way, since it satisfies the BRST invariance

(g"'+g,"))~R„&=o

The K-point extension ( V)~. . . )v ~
of the 3-Reggeon vertex ( V) z3 ~

is derived in the fourth paper of Ref. 4 according to
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the sewing rule of Lovelace. The duality property is crucial in the construction of multiloop diagrams from primitive
operators. We therefore introduce the "reduced N-Reggeon vertex" & V,2. . . ~~. ' It is derived from & V, z . . ~ ~ by put-
ting the constraints bo =b

&
on all the external legs. These constraints guarantee the duality in the reduced vertex. The

advantages of the reduced vertex are not only in its manifest duality but also in the simplification of practical calcula-
tions. It is given as follows.

dZ„8(Z„+,—Z„)
&v„.. . „l=f g " "+'„" &v"„.. . ~a&v~,".. .

r =1 r+ 1 r abc

where d V,b, is the gauge volume of SL(2, R ) defined by

dZ, dZbdZ,
dV~b~ =

(Z, —Zb )(Z, —Z, )(Zb —Z, )

and the orbital sector and the ghost sector are defined by

(1.10)

& V]2. . . ~~=&0, ~exp g —
—,
' g a„"D„' '(U„V, )a'

res n, m =0
(1.11)

& V(2. . . ~l=&q =3lexp & —& g c„"D„"'(U„V,)b' g "+' " [b" bo" —D—I "(U„V„)bo" ] .
res n=2 m = —1 r=I Zr+1 r

Although the constraints bo =6
&

break the manifest BRST invariance of & V&2. . . z ~, by attaching the propagators (1.3)
or (1.7) or physical states on all the legs, we can recover the invariance. We can therefore keep the cancellation of the
contribution of unphysical modes by that of the ghost modes in the following calculations.

In Sec. II, we give the calculation of the nonplanar self-energy. Vfe then show that the ghost sector gives the right
contribution to the measure factor in the on-shell physical amplitude. In Sec. III, we discuss nonplanar two-loop tad-
pole operator. This section consists of three subsections. In Sec. III A we construct this operator explicitly. En Sec.
III 8 we investigate integration regions with respect to parameters which characterize the operator. Finally, Sec. III C
is devoted to the discussion of singularity.

Some details of the notation and computations are given in the Appendixes. In particular, the notation throughout
this paper is given in Appendix A. %'e give the details of the calculation of nonplanar two loop tadpole in Appendix B.

Throughout this paper we are always at the critical dimension D =26 which comes from the nilpotency of the BRST
charge.

II. NONPLANAR SELF-ENERGY OPERATOR

In this section, we briefly demonstrate the calculation of the nonplanar self-energy operator discussed in Ref. 10.
This will become important for the discussion of the nonplanar two-loop tadpole operator in the next section. As illus-
trated in Fig. 2, it is constructed from the reduced 4-Reggeon vertex by sewing leg 1 to leg 3 with the twisted propaga-
tor:

d k
&4&X~ = J J Tr' [& V, 2z~(bo b, )P' '(u)& V—F34~RzF)S"'(u)S' '(u)(bo b', )P"'(u)~R„—+ ) ]

(2~)b o u (1—u } u (1—u)

d k
(2~)b o u 1 —u

(2.1)

where Tr' means the trace operation with respect to leg 1 and leg 3. The explicit expression of Tr' is given in Ref. 9.
We introduce the gauge operators S"'(u) and S' '(u) according to the sewing rule of Lovelace in order to make a 4-
Reggeon vertex & V, z3z ~. After taking the trace, Eq. (2.1) becomes

S(u}

2
'

s(u}

.4 s(f }

Su
. s(f}

FICx. 2. The diagrammatic construction of the nonplanar
self-energy.

FIG. 3. The operator combination of the nonplanar self-

energy in Ref. 20.



1904 T. KOBAYASHI, H. KONNO, AND T. SUZUKI 43

(2.2a)

where the orbital sector and the ghost sector are given by

„(2"I= Q (1 —~") («Iexp —,'k'»~ — & [(a "IU„+(p„lo(U,)][la)—IP)]k
n=1 r =2,4

I [(~"IU„+(p„lo(U,)](J—&„)[V, l~')+( V, )alp, )]
r, s =2,4

+(1—&„)(p, I [0(U„)0+,( V, ),] Ip, )+( I —~„, )(~ "I( U„),lp, )I, (2.2b)

1 —
U24(&s"I= Q (1—co") (q =3lexp — g [c"IU„(J—5„,)V, lb']+cross termsuu(1 —u) „2

uv(1 u) b„
24 - 1 V

(2.2c)

The notation of the exponents is given in Appendix A.
The variables co and a, /3 are the multiplier and the fixed
points of the loop generator P, respectively, where
P= V&P(U)U3 and J= gP P is the sum of all ele-
ments of the Schottky group generated by P. The cross
terms between the n ~ 2 and the n =0,+1 modes

oo 1

y c„D„'."b.
n=2 m= —1

in the exponent of the ghost sector may be neglected be-
cause they have no contribution to the physical quanti-
ties. Hereafter we will always neglect the cross term.

The result of the orbital sector is the same as the one
derived by Gross and Schwarz up to the following gauge
operations (see also Refs. 23 and 24):

with

(1+cog) co(1+g)V=
(1+/)(1+co'g) (1+~)(1+~/) (2.7)

P(z) =coz + 1

The above manipulations are depicted in Fig. 3. We will
use this configuration for discussing the factorization of
the nonplanar self-energy from the nonplanar two-loop
tadpole in the next section.

Owing to these modification, the situation is very
simplified; the new loop generator P = V 4

'P V4
=( V 2

'P V2) ' becomes equivalent to the one that ap-
peared in the planar one-loop tadpole" ' with the multi-
plier co and two fixed points a, f3:

V3 ~ V3 = V3S '( u ),
V„~V„=V„S(f), r =2,4 .

(2.3)

(2.4)
a—= V4 '(a)= V2 '(a)=

1 co
(2.8)

According to the gauge transformation (2,3), the prop-
agator variables changes as

u(1 —u)Q=Q, U=
1 QU

(2.5)

co (1—co)

1+co
(2.6)

These variables with tildes correspond to the variables
used in Ref. 20. The gauge parameter f in Eq. (2.4) are
defined by

co detP detP =uu 1 —
U(I+co) (TrP) (TrP)

(2.9)

In the ghost part, the additional gauge operator S(f)

on leg 2 and leg 4 yield the factor I/(1 f) in the-
n =0,+1 sector:

f3= V'(P) = V —'(P) =

The multiplier are rewritten in terms of these new vari-
ables as

")'&q =3l Q b" —b" + (1—f)'b"o
(1 f) uu- r=24 1 V

1 1 g (1— ") (q =3I / [b",—(1 — )b'] . (2.10)
(1—co) r =2, 4
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Because of the symmetries of the integrand, the in-
tegration regions with respect to u and 0 have to be re-
stricted to

P„, P„, P„ P„, P, P,

—,'(u 1, 0 U (2.11) X„„X X~X~ i

These restrictions are equal to 0((u(1, co(g(1 in Ref.
20. This argument of restricting the integration regions
will be used in the next section to discuss the nonplanar
two-loop tadpole case.

Finally we discuss the BRST invariance of 2~(XI. It is
satisfied in the following form before neglecting the cross
terms between n )2 and n =0, +1 in the ghost sector: P„.,

(a) P,

(yIT(2)T(4)Ig(2)+g(4)) 0 (2.12)

Here we drop the surface term, which arises due to the
restriction of the integration region, by suitably regulariz-
ing the divergence at the point co=1. The BRST invari-
ance implies the decoupling of the unphysical modes
from this operator. Indeed we can see the important role
of the ghost sector in the calculation of the physical am-
plitude. The factor I /( I —co) in (2.10) cancels the factor
(1—co) which comes from the Jacobian associated with
the change of variables from x; in the diagram of Fig. 4(a)
to u, of Fig. 4(b). Thus the amplitude has a correct mea-
sure. ' Similar cancellations were seen in the planar and
nonorientable cases. ' Furthermore the partition func-
tion in the ghost sector cancels two powers in the orbital
sector. In the nonplanar case, the two powers of the par-
tition function of the ghost contribution are important to
guarantee the absence of cut singularities in the limit
co~1, so that only the physical poles appear in the ampli-
tude. As these poles can be identified with the closed-
string excitation modes, we can maintain the one-loop
unitarity in the mixed system of the open and closed
strings.

P.

FIG. 4. The two dial'erent parametrizations of the N-point
one-loop nonplanar amplitude. They are transformed with each
other by a dual transformation.

been obtained even in the old dual-resonance model.
This operator is necessary for constructing an arbitrary
multiloop amplitude. As a simple example, we can easily
see that the nonplanar multiloop tadpole cannot be writ-
ten by using only one-loop primitive operators, i.e.,
operators given in Figs. 1(a)—1(c).

A. Construction

III. NONPLANAR TWO-LOOP TADPOLE OPERATOR

Now let us construct the nonplanar two-loop tadpole
operator shown in Fig. 1(d). This operator has not yet

Nonplanar two-loop tadpole operator ( 7" 'I is built
from the reduced 5-Reggeon vertex by sewing leg 1 to leg
4, and leg 2 to leg 5 with twisted propagators (see Fig. 5)
and is given as

(3.1)

The orbital sector is given by

', f ',f,"" f ',"' T"'T"'[(v»34, I(bo' —b', g("(u)(bo' —b') u'(u)IR„, ) IR )](2~)b (2~)b o u 1 —u o u 1 —u

) 2 dB du dx dy ( @2)xI ( ~2)shI
(2m)b (2m)b o u(1 —u) u(1 —u) x(1—x) y(1 —y)

=det (1 P, )det (1 P2)det —[1—(J, —1)—(J2 —1)](u, ' (u2'

X3(0aIexp ~ —,
'

i j =1,2
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g(1+2) 1

()+2)
(3.3)

g(1+2) J y(i) P ( ~ ~

)
1

1 (Ji 1)(J' 1)

The details of this calculation are given in Appendix B.
In this equation

P)V3V, P'"(u)U4V3t P2V3V2P'(v)U5V3

are generators of the Schottky groups G'" and G' ', re-
spectively. These generators correspond to the loops of
Fig. 5. The variables oi, , a, , 13, (i =1,2) are multiplier
and fixed points of the generator P, , and J, = gi P,
are the sum of all elements of the Schottky group G". In
the exponent of Eq. (3.2), we use the notation'

g(l+2) —(J 1)
1

1 —(J;—1)(J.—1)

g(l, l) p (
.+j)

oEG
(3.5b)

(1—"), (3 6)
~~G(1+2) ~ =1

In each equation, P are the elements of the Schottky
group G"+ '; this group is generated by P, and P2. The
summation g') is over all elements of G"+ ' which do
not end by P; or P; ', and g"J) excludes the elements
which begin with P; or P, ' and end by P or P
When we denote the multiplier of P by m, the deter-
minant part of Eq. (3.2) is rewritten as'6

det (1 P, )det —(1 P2 )d—et ~ [1—(J, —1)(J2 —1) ]

g (1+2) 1
v 1 —(J, —1)(J,—1)

(3.4)

g"~) P (i'�), (3.5a)

where g' denotes the product over all primitive ele-
ments of the Schottky group G"+ ', the elements cannot
be written as powers of other elements.

Now we go ahead with the calculation of the ghost sec-
tor:

(4'""l=Tr"Tr"[(v~2, 4, l(i o
—b'

, y'"(u)(b' —b' y""(U)l~ + ) lz„+ ) ],
=1 Q (1—co") (q =3lexp[ —[c Ir(J"+"—1)lb']] [b', —(1—i') )S,']

&C G(1+2 n =2
(3.7)

xy (1—x)(1—y)uv
(1—xy)(1 —u )(1—U)

(3.8)

Note that the partition function in the ghost sector ap-
pears from the modes n =2. This situation is the same as
that of the planar multiloop case. "' The expression of
the nonplanar two-loop tadpole operator is similar to that
of the planar two-loop tadpole operator. The reason is
that the period matrix, the first Abelian integral, and the
prime form characterizing the loop amplitude are defined
on the same Riemann double of the original open sur-
face, ' that is, the sphere with two handles. They are dis-
tinguished by the way of cutting the Riemann double to
the two open surfaces, as depicted in Fig. 6. It amounts
to the difterence of arrangements of the isometric circles
I, and I; ' of the Schottky generators P; (i =1,2) on the
real axis; in the planar case, the order is I, ,I, ', I2, I2 ',

1 g( )[l~ ) lP )]
—y(') y D(ol(1 P

a n=(

&n
n!

X(ct —P )

P;(z)
Qz z=0

(3.9)

where P;(z) is the first Abelian integral associated with
the ith loop, as shown in Fig. 7. They are given explicitly
in the Schottky parametrization as

z P(P,)—
y, (z) = y" ln

z —P (a;)
(3.10)

whereas in the nonplanar case it is I, , I2,I, ', I2 '. '

Finally we identify the coefficients of each term in the
exponent with these mathematical quantities on the
Riemann double mentioned above. This can be achieved
in the same way as the planar case."'

(a) The momentum linear term:

FIG. 5. The nonplanar two-loop tadpole operator: (a) the di-
agrammatic construction, (b) two generators.

(a)
FIG. 6. The Riemann double of (a) the two-loop nonplanar

diagram and (b) the two-loop planar diagram.
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where E (x,y) is the prime form defined by

FIG. 7. The canonical cycles.

f ~ dp, (z) =2~i o, , ft) d(t), (z) =21rir, , (3.1 1)

For the two canonical cycles 2;, B; (i =1,2) shown in

Fig. 7, they are normalized as

[z —P.(y) ][y —P.(z) ]E(,y)=( —y)
E G"+"r()! [z P—(z) ][y P—(y ) ]

(3.15)

Here 11"denotes the product over elements of G''+ ' ex-
cept for the identity, where P and P ' are counted only
once.

As in the orbital sector, the bilinear coefficient in the
exponent of the ghost sector can be written as

where ~, is the period matrix defined by
[I (J(1+2) 1)]gh—

eE 6 /I 1I

D,(, "(rP. )

n —2 m+1

1
6i inca,

2~i

1 a
(n —2)!(m +1)! ()x

a
By

[a, P(ct, )—][P, P(P, )—]+ y"~) In
a [(x, p(p )]—[p; —p (a )]

(3.12)
where

X Q(x,y)— 1

X V x =y=0
(3.16a)

It is easy to check that ~, is connected with the
coefficient of the momentum bilinear term.

(b) The momentum bilinear term:

Q,
' '[

~
a )

—
~ p, ) ]

—5, Into,
or

Q(x, y) =
t

—1

dP (y)

~ 6 (1+2)

1

x P(y )—
(3.16b)

=2m Imw . .tJ (3.13) (1+2)

dP (x)

y P(x)—
(c) The operator bilinear term. The coefficient of the or-

bital sector is + g c (x)y

[I (J(1+2) 1]x— D„(')(I P. )
m =0, +1

~ g(1+2)/I I I

&nm
n!I! Bz By

E (z,y)Xln
Z V z=y=O

m

(3.14)

In the second line, c (x) is a certain function of x. Equa-
tion (3.16) indicates that the bilinear coefficients n, m 2

are simultaneously the difterential coe%cients of the auto-
morphic form with a weight of —1 in y and 2 in x.

Vr'ith using these mathematical quantities, the nonpla-
nar two-loop tadpole operator is rewritten as

( ~2)~ 1 2 1 du du dx dy 1, 1
(1 „) (L) 2)d k d k oo

(2')" f (2m)h fo u(l u) U(1 U—) x(1——x) y(1 —y) 6 (, ~, )
1 —co

X (Oa;q =3~exp —
—,
' g k, k 2rrlmr, "—

i j =1,2
X X

J=1,2 n =1

n

QJ. (z)
az z=0

I
2

n, m =1

&nm ()
a„" n!rn t Bz

m
E (z,y)ln

Z z=y=0

1
" (n —2)!(m +1)! I3x

7

n 2

By

m+1

X Q(x,y)— 1

x=y=O
(3.17)
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Before neglecting the cross terms in the ghost sector,
( V 'l satisfies the BRST invariance in the form

This is also true after restricting the integration region, if
one makes the divergences at the boundary regularize
suitably as in the nonplanar self-energy case.

B. Integration region

In order to exclude a multiple counting of the same
physical configurations, we next consider to restrict the
integration region of Eq. (3.17). We will achieve this by
taking account of the duality of the 5-Reggeon vertex and
the periodicity associated with the loop part of the opera-
tor.

Let us first consider the duality property of the reduced
5-Reggeon vertex ( V,2345(x,y)l which is specified by the
two Chan variables (x,y) with integration region
0 ~ x,y + 1 as shown in Fig. 5. The duality of the reduced
5-Reggeon vertex ( V12345(x,y) l

means that under the
dual transformation

1 —x
, 1 —xy

1 —xy
' (3.18)

the following relation is satisfied (Fig. 8):

1 —x
( V„„,(,y)l = V„„, , 1 —y

1 —xy
(3.19)

By repeating this relation, it is easy to see the following
chain of the duality relations:

1 x
( V12345 (x~y ) =

V23451
1 —xy

1 —y
~34512

1 —xy

1 x
~4S&23

1 —xy

1
~S&234

1 xy

(3.20)

Note that each of the five configurations in the chain cor-
responds to one Feynman diagram. Furthermore one can
show that the integration region for (x,y) can be decom-
posed into the five regions which corresponds to these

~y 1

)+X

five Feynman diagrams as depicted in Fig. 9:
1 1

«12345 J dx I dy~ V12345(x,y)l
0 0
s= g j dx dy( VF (xy)l,

r=I
(3.21)

where ( VF (x,y)l (r =1—5) denotes the five vertices in
r

Eq. (3.20). Note also that the five-point Koba-Nielsen
amplitude has the poles corresponding to the five Feyn-
man diagrams at the five points (x,y)=(0, 0),
(1,1),(1,0), (0, 1),(1,1). Now it is clear that if one uses
the left-hand side of Eq. (3.21) as the building block of
the nonplanar two-loop tadpole, one has five times over-
counting inevitably. We thus restrict the region
0~x,y ~ 1 to one of the regions in Fig. 9. We chose, for
example, R, , which corresponds to the left configuration
of Fig. 8.

We next consider the overcounting originated in the
periodicity of the loop part. As can be easily found in
Fig. 1(d), the nonplanar two-loop tadpole includes the
nonplanar self-energy as a part of it. Let us consider to
factorize this part. For doing this, one should find suit-
able variables in the nonplanar two-loop tadpole, which
correspond to the two variables u and U used in the non-
planar self-energy. First note that due to the restriction
to R, , one can only consider the configuration illustrated
in Fig. 5. As discussed in Sec. II the Schottky generator
which corresponds to the nonplanar self-energy loop is

given by P(z) =viz+1 [see Eq. (2.8)j, where the multi-
plier co is defined in terms of u and U by Eq. (2.9).

From Fig. 5, one can guess the generator of the non-
planar self-energy part is given by the combination

2X—1
X'

FIG. 9. The five regions corresponding to the five Feynman
diagrams. Here the fixed point is x =y =( —1+&5)/2.

1 —x
1-xy

3

. 4

(3.22)

This turns out to be true, if one changes the variables u
and U in Eq. (3.1) to u and U in such a way that

IL u(1 —x)(1—y)
u =

1 —ux —uy + uxy
(3.23)

FIG. 8. A typical duality relation of the five-point vertex.
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These changes of variables are the results of the manipu-
lations

P,:—V, P(u)U~=( V, S '(x))P(u )I ( V~S '(y) }

P2 ——VzP( v) U5 = ( V2S ( u ) )P( v ) U5 .

(3.24a)

(3.24b)

P =
3

1 —
U

v(1 —u )
1

1 —
U

(3.25)

and that the multiplier cu3 of P3 is given by the same
equation as of the nonplanar self-energy:

The right-hand sides of Eq. (3.24) indicate that the use of
the new variables u, v in the nonplanar two-loop tadpole
corresponds to attaching the same gauge operators on the
same position as the nonplanar self-energy (see Fig. 3).
Then one can show that P3 becomes

(3.27)

Now following the argument in Sec. II, one has an
overcounting associated with this part, but this can be ex-
cluded in the same way by restricting the integration re-
gions of u and v to —,

' ~ u ~ 1 and 0 ~ 0 ~
—,
' [see Eq. (2.11)].

As will be shown in the next paragraph, no more loops
can be factorized from the nonplanar two-loop tadpole
simultaneously with the above nonplanar self-energy. We
are thus sure that there are no remaining symmetries
which yield the overcounting.

We finally derive a nonplanar two-loop N-tachyon am-
plitude by saturating ( T '~ with N-tachyon states
~p&p2

. p&) given by (2.18). In order to express the
measure in terms of the one appearing in the nonplanar
self-energy, we insert 1 =S (f)S (f )

' between the exter-
nal legs of the nonplanar self-energy part and the propa-
gators P(x) and P(y) of the 5-Reggeon vertex. The gauge
operator S (f ) changes the propagator variables x and y
to

x =$(f) '(x), y =$(f) '(y),
673 =u V(1 —v) .

(1+cv3)

This coincidence indicates the equivalence of P3 and P up
to a similarity transformation. In fact, one finds this
transformation can be generated by the gauge operator
$(f ) defined in Sec. II:

where

x 1— —1

etc.
1 xf —1

Then the amplitude is given by

(3.28)

~W tach(plp2 PÃ ) ~ + ~plp2 PN ~

dxdy(1 —xy) f & ~v3 f & dg f +
fbi x (1—x)y (1—y) 0 cv3 "3 P „=z

x
1 ~r (s~N

E(p„p„)exp —
—,
' g f dP, (2' 1m'); '. f d&J

ij =1,2 P„
(3.29)

C. Singularity

We here discuss the divergence originated in the parti-
tion function Q +„&(1 —co" } . As discussed in Ref.
21, the planar two-loop operator has only three sources
of divergences associated with the multipliers co&, co2, and
co,2, which can independently reach 1, although there are
an infinite number of primitive elements in the Schottky
group G ' ' '""'. The reason why this happens is due
to the existence of the linear dependence among the ele-
ments. In the nonplanar two-loop case, although the ex-
pression is superficially the same as the planar one except
for the measure factor, the singularity structure is quite
different; there may be only one independent source.
That is to say, there is a stronger linear dependence in the
nonplanar case. This may be seen first in the fact that the
two loops in the planar case can be decomposed to the

two one-loop tadpoles, while it is impossible in the non-
planar case. More minutely, this can be shown in the fol-
lowing way. In the nonplanar two-loop diagram, there
are three possibilities in the way of pulling out a tube,
corresponding to the three limits co&, co2, and co3 going to
1 as illustrated in Fig. 10. The tube may correspond to
the propagation of closed string. Note that the diagram
associated with the limit co3 —+1 just corresponds to the
case which we have discussed as the factorization of the
nonplanar self-energy operator. It is, however, not possi-
ble that these three occur simultaneously. This indicates
the linear dependence among the three elements P, , P2,
and P3. Indeed, by means of the isometric circles, it is
also possible to show that in the case that co3 can go to
one the other two multipliers cg&, co2 cannot reach one,
that is, if I3 ' and I3 are tangent with each other, the oth-



1910 T. KOBAYASHI, H. KONNO, AND T. SUZUKI 43

FIG. 10. The three possible ways of pulling a tube from the
two-loop nonplanar tadpole diagram.

er pairs cannot become tangent.
The more complicated case, for example, the case cor-

responding to the multiplier co",co3, also cannot reach 1,
because no tubes correspond to these limits are pulled out
independently from the above discussed case as in the
planar case. '

IV. CONCLUDING REMARKS

We have calculated the nonplanar self-energy and the
nonplanar two-loop tadpole operators according to the
BRST-invariant operator formalism of the open bosonic
string. They satisfy the desired BRST relations which
imply the decoupling of the unphysical modes from these
operators. In particular, in the one-loop amplitude we
have shown that the nontrivial ghost contribution makes
the result be a correct one. In the nonplanar two-loop
tadpole, we have determined the integration region by re-
stricting the symmetries originated in the duality of the
tree vertex and the periodicity of the loop part. It is,
however, a future problem to prove the unitarity of the
amplitude in such a determination of integration regions.
It is also interesting to compare this issue with the argu-
ment of the modular invariance.

We now finished the evaluation of all primitive opera-
tors in the open-bosonic-string theory. We can compute
all diagrams by using these operators and trees. In such
evaluations our method of par ametrizing the moduli
space in terms of the Schottky variables is more powerful
as compared with the Polyakov approach based on the
Teichmuller parameters. Actually the evaluation of pla-
nar multiloop diagram has already been carried out by
one of the authors" (H.K.) and Cristofano and co-
workers, ' and some rules for the computation of the gen-
eral multiloop diagrams including nonplanar and

nonorientable multiloops are obtained.
However, our task cannot be finished. The remaining

important problems appear in the unitarization program.
We may summarize them in the following two problems.

The first problem we must study is the analysis of the
singularity of the amplitude. In this paper, we have only
developed the use of the primitive operators. The argu-
ment for the singularities arising from the primitive
operators is unfortunately not enough to clarify the
singularity structure of string amplitudes. Some new
singularities can arise associated with more than two
loops. The determination of the number of independent
singularities has been confirmed only in the two-loop or-
der. We discussed in Sec. III C that, in the two-loop or-
der, three singularities in the planar tadpole and one
singularity in the nonplanar tadpole have a correspon-
dence to the independent ways of pulling out a tube. By
extending this consideration to the general case, we can
have a conjecture that in any type of amplitude-
independent singularities can only arise associated with a
set of loops from which tubes can be pulled out indepen-
dently. Then a planar g-loop amplitude, for example, has
2g —1 independent singularities. This conjecture is also
natural, in the sense that these singularities are originated
in the closed-string tachyon or dilaton tadpoles at zero
momentum for the planar and nonorientable diagrams
and closed-string intermediate states for the nonplanar di-
agrams. ' As far as regularization of the amplitudes
different schemes have been proposed in the one-loop lev-
el. It is shown that in order to cancel the divergences
each scheme yields a different gauge group. The investi-
gation of the regularization and the cancellation of the
divergences in more than two loops may give us an idea
to chose one of the schemes.

Even if we could overcome the above problem, we
must further solve the problem of how to sum up the
different diagrams in order to satisfy the perturbative uni-
tarity. Because we do not yet have any reliable string
field theory at present and there is no rule to determine
the relative weight among different diagrams in our
scheme, we must determine them such that the resulting
sum is perturbatively unitary. Recently, this problem has
been solved by introducing the completely symmetric ex-
pression of the X-point vertex in terms of the unified
propagator.
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APPENDIX A: NOTATION

We summarize here our notation and properties of the
SL(2,R) operator and its infinite-dimensional representa-
tions. All matrices appearing in the operator formalism
are the elements of SL(2, R ):

a b
detA= 1,

C
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with

az+b
cz +d (alp)= g a„P/&n

n =1
(A7)

The vector denoted
I g) whose nth component is

( I /V'n )g" satisfies

The infinite-dimensional representations of A are defined
using the general representation

dm+P
~(J,P —J)(A)—

(m +P)( d I+P
and

(pig) = —ln(1 —g'q), (A8)

(A9)

dA(z)
dz

))n+P
z=Q

(A 1) (2) Ghost sector:

D(i)(A) —~(),0)(A) (A 10)
(1) Orbital sector:

D„' '(A)—= )/m/n 2)'„' '(A), n, m ~1,

n

(A2)

(A3)

and we also use

[clAlb] =— g c„D„"'(A)b
n, m =2

(Al 1)

=()(A),

D00'(A) = lnldl —=0(A)0 .

We often use the notation

(alAla) —= g a„D„' '(A)a
n=1

n~1,

(A5)

APPENDIX 8: CALCULATION OF THK NONPLANAR
TWO-LOOP TADPOLE OPERATOR

We give here the details of the calculation of the non-
planar two-loop tadpole operator given in Sec. III A. We
begin by the calculation of the orbital sector, which is
given explicitly as

5 5

&0 '"I=Tr' Tr &Oalexp —& (a "I)L(„)——,
' & [a "IU„V, la')+p p, 0(U„V, )0] IR»+ & IR + &

res

5= &Oalexp —
—,
' g p„p, ,(U„V, ),—(a, lp, , ) W

res
r=l

(B1)

with p3 =0, —p, =p4 =k, ,
—

p2 =p, =k2. We used the notations
5

„)= g ( U„Vs )0ps ~

s=1
(sWr)

where

U, =P(u)U„U2=P(v)U2, V, = V, P(u), V2= VzP(v)

and

Ur = Ur, V, = V„ for r =3,4, 5 .

In Eq. (Bl), J8 is the trace. part given by

(B2)

5

JM=Tr' Tr &Oalexp —
—,'(a "IU„V, la )

—g (a "lp„) IR„~ &IR
r= 1

(X3)

= jd g'd qexp[ —
—,'z Az+z B]

with z'= [g'qual]. The matrix A and the vector B are given by

(B3)
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1 —U4 V1

U2 V1

—Us V1

1 —U1 V4

—U2 V4

U5 V4

U1 V4

—U4 V2

0

1 —U5 V2

—U1 V5

U4 V5

1 —U2 V~

0

~11 ~12
(B4)

B=

p, )+ U, V, la3)
—lp4) —U~ V3 Ia3 )

Ip2)+ U2 V31a3)
—Ips) —U, V3la3)

(B5)

After the integrations over g, g and g, g we get the trace part A, as

A=det A exp( —,'B A 'B) .

Then we estimate detA and A ' according to Appendix B of Ref. 16.

detA =det (1 PI )det—(1 P2)detI1 ——(J, —1)(Jz —I)],
where

(B6)

(B7)

P, = V, P(u)U4, J, = g P, P~= V~P(u)Us, Jq= g P ~ .
1 = —oo 1 = —oo

The inverse of A is given by

y—1

22 ~22 ~21~11 1

&12&22 &21&»

1

~21~11 ~12~22
(B8)

After the lengthy calculation with using the definition (B2), we get the exponent of (Bl) as

—,'B A B=—
—,'(a'I U3 J2 — — JI 1 V3 la3)

1 —(J, —1)(J2—1)

—(a'I U, JI Ip&4)
—(a'I U3Jz — — Ip2s)

1 —
( J2 —1)(JI —1) 1 —(J, —1)(J~—1)

where

(P14I(J2 1) — — II 14) (s il X (U. VI)'P')
1 —(J, —1)(J2—1)

—
—,'(p„l(J, —1) Ip„)—(p, l & (U, v, )'Ip, ) —(p„l Ip„),

1 —(Jz —1)(J,—1) o 1 —(J2 —1)(J,—1)
(B9)

Ipi4) —g P i UI Ipl)+» iU. i@4) Ip2s) X P2 U2 I@2)+ g P2Uslps) .
1=0 1=0 1=0 1=0

Inserting (B6) with (B7), (B10) into (Bl), we get the orbital sector (3.2), where we use the relations

~1 V3 ~1 V3 ~2 V3 ~ 2 V3

We turn to the calculation of the ghost zero-mode sector, which is given by

S

r=1 r+1 r r =1

xP,"'(u)(b,' —b', )Po"'(U)(bo —b'
& )I&„+&I&„+& (B10)

where Po(x) represents the zero-mode sector of D„'''(P(x) ), n, m =0,+1,
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Po(x) =

1

x (x —1)
1

x —1

x+1
x —1

(Bl 1)

x —1 x —1

The action of Po(x) under the constraint bo —b, is

b )
—bo~ x —1 xbo»o (bt —bo) .

x x —1
(B12)

Apply to the trace formula given in Ref. 9, Eq. (Bl 1) is reduced to

r+2 r 1 u 1 V 3 3 (]) V

&q =3l b' —bo'+D", , '(U, V, ) D", , '(U, V, ) D", , '(U, V, )
u v 1 —

V 1 —0 1

XDI't'(U2vl) D 11 (U4V3)bo
1 —u

(B13)

If we choose the set of Koba-Nielsen variables (Z, , Z2, Z3, Z4, Zs ), as (O, xy, y, 1, co ) corresponding to the choice of 5-

Reggeon vertex given in Fig. 5, Eq. (B14) can be written as

[b,——(1 —6 )bo]

with 6 being Eq. (3.8). The construction of n 2 mode of the ghost sector is the same as that of the orbital sector.
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