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A Lagrangian-based, completely geometric theory of gravitation with nontrivial dynamics in two
dimensions is possible with a non-Riemannian geometry for spacetime. A particular model with
these features is discussed. General solutions of the vacuum field equations are presented in a

variety of contexts (with and without singularities).

I. INTRODUCTION

Lower-dimensional theories of gravitation have elicited
considerable attention from theorists over the past de-
cade.! The rationale for those who wish to better under-
stand gravity in four spacetime dimensions is that an
analysis in fewer dimensions often enables one to see
more clearly general features which may have four-
dimensional (4D) analogs. Examples of the successful ap-
plication of this approach abound in nongravitational
field theory. One obstruction to its use for gravity stems
from the observation that for other field theories it is
often possible to model highly symmetric structures in
the laboratory and thus directly search for lower-
dimensional phenomena realized in four dimensions.
This is somewhat more difficult for gravitation, although
some cosmological applications (cosmic strings, domain
walls) may realize some of these effects.

The explosion of interest in two-dimensional (2D) o
models (string theory) provided much of the impetus for
the study of generally covariant structures of 2D base
spaces (string world sheets) and the later generalizations
to membranes, etc. Once the string action was identified
as the area of the world sheet, it was natural to add
higher-order geometrical invariants (such as curvature) to
form more general actions.?

Whatever one’s reasons for looking at gravity in 2D,
one immediately encounters a rather significant obstacle:
namley, the well-known triviality of general relativity
(GR) in two dimensions. The precise statement of trivial-
ity is usually glossed over in the literature (for a more
careful study, see Refs. 3 and 4). Writing the Riemann
curvature in terms of the Riemannian metric and its
derivatives, the so-called “second order” or “Hilbert” for-
malism,” necessitates imposing a metricity condition
upon the connection in the theory, forcing it to be the
Christoffel connection. An alternative to this approach is
the “first-order” or “Palatini” formalism,® in which the
metric and connection are both freely varied and are not
a priori taken to be metrically compatible. Metricity fol-
lows at the level of the field equations. In all numbers of
dimensions but two, the Hilbert and Palatini formalisms
yield precisely the same (unique) dynamical theory: GR.
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The 2D triviality of GR is, in its second-order form,

R p({ }(gs))z%gsaBRs({ P (1.1)

and so the Einstein (vacuum) field equations vanish iden-
tically. The Christoffel connection in (1.1) is completely
determined by inverting the metricity relation (‘“compati-
bility condition”):

. (1.2)
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O“gsaﬂ)y_gsal; ya |78, |By

In the above equations the subscript S is appended to the
metric g as a reminder that in Riemannian geometry
(GR) the metric tensor is necessarily symmetric.

Two comments about triviality need to be mentioned.
The absence of field equations for gy turns out to be a
great boon for the string theorist and/or o-model build-
er, for it ensures that the string dynamics is (at least clas-
sically) completely independent of the geometry of the
world sheet. Equation (1.1), and hence the (trivial) Ein-
stein equation which follows, is invariant under coordi-
nate and conformal transformations. The first invariance
follows from relativistic covariance. The second is pecu-
liar to 2D and has as its implication that all 2D Rieman-
nian spacetimes are locally conformally flat. Together
these symmetries account for the three degrees of free-
dom in a rank-two symmetric tensor in 2D. This pro-
vides another practical manifestation of 2D triviality.
The compatibility condition (1.2), however, is not
preserved under the action of a conformal transforma-
tion. Fortunately, the effects of the conformal transfor-
mation on the connection cancel in (1.1).

The aforementioned triviality of 2D GR requires that
‘“gravity on a line must be invented anew” (see Jackiw in
Ref. 7). Several authors have responded to this challenge
by proposing the constant-curvature equation

0=Rg({ })—A, (1.3)

as the vacuum-field equation appropriate to 2D gravi-
ty.”® As in GR, this is a geometrical second-order field
equation. Invoking the local conformal flatness property
of 2D Riemannian spaces, the metric appearing in (1.3)
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may be written in conformal form

gsaﬂ(x)ZeM("’na,; (1.4)
in which case the constant-curvature equation (1.3)
reduces to the Liouville equation for the conformal field
é(x), viz.,

0=7"¢ 5+ LAe? . (1.5)

This model is integrable (which serves to illustrate the
utility of the lower-dimensional approach), and so the 2D
Liouville theory of gravity is (in principle) completely
solved.

In order to derive the proposed gravitational field
equation (1.3) by means of a variational principle, an in-
variant action is constructed by introducing a Lagrange
multiplier field N (x):

ILiouviue:fdzx\/-gg(R —A)N .

Obviously, the field equation (1.3) follows from the § /6N

variation of I;,.ine- Less obviously, but fortuitously, the

variation with respect to g¢ leads to an equation of
pv

(1.6)

motion for N(x) which does not constrain the metric
(Liouville) solutions.” The (rather steep) price that has
been paid in order to apply the action principle is the in-
troduction of a nongeometrical field. That N (x) must be
dynamical for a nontrivial theory is related to yet another
manifestation of the 2D triviality of GR. In 2D the usual
Hilbert action Iy = [d?x1/ —gsRs({ }) is a topological
invariant (the Euler characteristic) and thus cannot possi-
bly yield nontrivial local-field equations.

A natural extension of the Liouville model to the non-
vacuum case is to replace A with 87GT (where T is the
trace of the energy-momentum tensor and G is Newton’s
constant) in the field equation (1.3), viz.,

R =87GT . (1.7

Models of this type exhibit many features analogous to
four-dimensional general relativity, including gravitation-
al radiation, Friedmann-Robertson-Walker (FRW)
cosmological solutions, a post-Newtonian expansion,
gravitational collapse, and black-hole thermodynamics.
However, it is still generated by a nongeometrical La-
grangian.>1°

General relativity is the unique completely geometric
theory of gravitation in Riemannian spacetime. In order
for alternative theories to be distinct, they must either
sacrifice the aesthetic appeal of a fully geometric formu-
lation (as seen above in the case of the Liouville model) or
must generalize the geometric structure of spacetime.
We choose the latter approach and construct fully
geometric, Lagrangian-based, non-Riemannian theories
of gravitation (in any number of dimensions) by means of
the method of algebraic extension'! (AE). In 1+ 1 dimen-
sions this provides us with the first ever (to our
knowledge) instance of a fully geometric and dynamical
theory.* In the non-Riemannian geometries described by
AE, the fundamental tensor (metric) is allowed to be non-
symmetric g,57°gp, as is the connection Iz 7T
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Clearly, then we are dealing with non-Riemannian
geometry.

In this paper we demonstrate how to construct a com-
pletely geometric Lagrangian-based dynamical theory of
gravitation in two dimensions and exhibit some exact
solutions of the theory. In Sec. II we review the method
of algebraic extension, with some specialization to the 2D
case. We derive the field equations using two indepen-
dent methods and demonstrate their equivalence. We
show that these equations have nontrivial dynamics even
if the cosmological constant is zero. In Sec. III we obtain
the most general possible exact solutions in conformal
gauge using ‘“null” coordinates. In Sec. IV we demon-
strate that solutions with event horizons exist, and we
construct some of these. One class of solutions is
equivalent to a class of black-hole solutions found in the
theory (1.7). Section V is concerned with the construc-
tion of more solutions in another coordinate ‘“gauge.”
Finally, in Sec. VI we explicitly demonstrate that our new
model does not contain the Liouville model. We summa-
rize in a brief concluding section.

II. ALGEBRAICALLY EXTENDED
HILBERT THEORY OF GRAVITATION
IN TWO DIMENSIONS

The method of algebraic extension'' (AE) was
developed so as to provide a framework in which non-
trivial geometric Lagrangian-based extensions of general
relativity could be studied. The “algebraic” in AE
derives from the fact that an algebraic structure is im-
printed upon the tangent space to the underlying space-
time manifold. Tensors and geometric objects (especially
the metric and connection) assume algebra values. The
“extension” is in part a recognition of the success that
GR has achieved in describing weak gravitational fields
(for example, solar system tests). Built into the AE pro-
gram is the requirement that GR is the AE theory in the
case that the algebraic structure is just 2. On the other
hand, extension is also a reference to the primary role
played by geometry in the generalization from Riemanni-
an spacetime (GR) to the fundamentally non-Riemannian
AE spacetime.

AE may be applied in any number of dimensions, and
since the algebraic structure is imposed upon the tangent
space, the dimension of the underlying manifold (space-
time) is unchanged. Enforcing compatibility between the
algebraic structure and the (extended) metric and connec-
tion restricts the number of possible choices of algebra to
just five: 7R the real numbers, € the complex, & the hy-
percomplex, @ the quaternions, and #f the hyperquater-
nions.

For the algebraically extended Hilbert theory of gravi-
tation (AHG) the specific algebra that we choose is & (the
hypercomplex). The canonical basis elements (genera-
tors) of & are {(1,e)le?=+1}. Note how this structure
differs from the complex algebra. Algebraic ‘“‘conjuga-
tion” is defined in the usual manner when acting on the
generators {(1*,e*)=(1, —e)}. In order that the space-
time and algebraic structures be compatible, it is neces-
sary that the “extended fundamental tensor” (hereafter
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called the “metric”’) be Hermitian under algebraic conju-
gation, viz.,

8op—Lpa - (2.1)

Clearly, then, the symmetric part of g5 is 72 valued,
while the skew part is e valued. The Hermiticity of g is
the AE generalization of the symmetry requirement (of
gs) in Riemannian gravitational theory (GR). A further
requirement that we impose is that the metrically compa-
tible connection also be Hermitian:

I =T2, (2.2)

which implies that only theories based on the & algebra
can satisfy positivity of energy requirements (in flat
space).'? It may be possible to discard the Hermiticity re-
quirement (2.2) and still have positivity of energy, permit-
ting use of the @ and @ algebras.!* The structure and
consequences of these non-Hermitian theories remain
largely unexplored.

The properties of the & algebra, coupled with the Her-
miticity of g and I', make it possible in practice to ‘“‘ig-
nore” the algebraic derivation and treat the AHG as a
completely real, nonsymmetric theory. This is tan-
tamount to requiring all other fields in the theory to as-
sume values in the real tangent space only. In the sequel
we take this viewpoint, but it will often be clear from
context how the algebra generators could be reinstated.
Now that g and I" are no longer symmetric (as they are in
Riemannian geometry), the order of indices in expres-
sions will assume a crucial importance. A fortunate as-
pect of the & algebra is that it is commutative. If this
was not the case, then the factor ordering of terms would
become significant also.

In keeping with the Hilbert principle, the (generic n-
dimensional) AHG gravitational degrees of freedom are
described by the metric g and its derivatives. The metri-
cally compatible connection is completely defined through
the AE analog of (1.2):

Ozgaﬁ,y _gaﬁr;'/a_gaargy . (2.3)
From the connection implicitly defined in (2.3), various
curvature tensors may be constructed in manners analo-
gous to the familiar Riemannian case.!!

There are, however, a number of technical points
which must be discussed. First is the definition of a con-
travariant g by identification with the “inverse” of the g
covariant:

gapgﬂpzﬁgzgpagpﬂ . (2.4)
Armed with (2.4), g*? and g, may be used to (carefully)
raise, lower, and contract indices. Second, the curvature
tensor is naturally defined by the following combination
of connection terms:

R aﬁ},S:Fg&y—F;’f&ﬁ%— F/}'SF?U“'I‘;',SF%U . (2.5)
The curvature tensor is [3y] skew by definition, but since
torsion is necessarily present in the connection [see (2.3)],
not all of the symmetries familiar from the Riemannian
case will now hold. Third, a specific instance of the ab-

sence of the familiar symmetries leading to richer possi-
ble structures occurs when one contracts the curvature
tensor. There exist two distinct ways to do this, unlike
the case in GR. One yields the AE generalized Ricci ten-
sor, while the other results in the so-called ‘“second cur-
vature”:

RSB:RABABZFQ‘S,A*F%&B*" ngrﬁg_rgsrgo > (26)

—_ A — 1A A
Pg,=R"p,=Tp ,—Tip- 2.7

In GR the trace of the Christoffel connection {%,} is a to-
tal derivative, and hence the “curl” in (2.7) vanishes iden-
tically, i.e., Pg,({ })=0. In AHG we do not use P in the
construction of the gravitational action for reasons hav-
ing to do with the 4D model.'” Finally, the curvature
scalar is the trace of the Ricci tensor:

R(I'(g))=g"R 4(I'(g)) . (2.8)

When we form the AE Hilbert action using R, we arrive
at an action which is purely real (or any e-valued parts
must be surface terms only), so as not to face the prob-
lems associated with a complex Lagrangian.

The AHG gravitational action is (generically)

Ip= [d"xV=gR(T). (2.9)
We make provision for more general action contributions
by allowing for a “cosmological constant” term and a
matter contribution:

I,=[d"xV=g(=A), (2.10)

Iy=[dxV=gL, . 2.11)
The sign of A is chosen so as to conform to the usual con-
ventions. When we vary the total action
Iy =Iy+1,+1, with respect to g"”, we get the AHG
field equations

Slunv =

5gh” (Rt X, — 38R +38,A—T,,) .

(2.12)
In this expression we have written T, as shorthand for
—(1/V —g )81, /5g"", while

X, =r,r,—-r,,—r.r,. (2.13)

The “‘torsion vector” Fa=l‘[ka“ is the trace of the tor-
sion. The torsion is tensorial since it corresponds to a
difference between two connections.

The field equations (2.12) are, even in the vacuum case
(i.e., T,,=0) and for a vanishing cosmological constant,
very complicated and unhappily not a completely in-
dependent set. Coordinate invariance, the backbone of a
relativistic theory, implies that there exist Bianchi identi-
ties relating curvature components and hence the field
equations (FE’s). AHG has been shown to possess con-
sistent Bianchi identities,'* where the notion of consisten-
cy is between the set of identities derived by insisting that
Iy 4 be invariant under infinitesimal coordinate transfor-
mations (which vanish on the boundary of the spacetime,
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so as to make the contributions due to surface terms
equal to zero) and the set of identities which result direc-
tion from the symmetries of the generalized curvature
tensor. In 2D the situation is markedly different, because
in 2D the Bianchi identities are identically satisfied, and
thus the four (in 2D) gravitational FE’s contained in
(2.12) are independent. The easiest way to argue this is to
note that the Bianchi identities may be expressed so as to
depend on three index antisymmetry, which (in 2D)
makes them devoid of content.

At this stage we begin to exploit the considerable sim-
plifying power which arises as a consequence of working
in 2D. In particular, we adopt a “GR-plus” (GR+) for-
malism to no small advantage in the sequel. GR+ is like
a background-field approach, in that one writes the full
non-Riemannian theory (AHG) expressed entirely in
terms of Riemannian- (GR-) based theory and its covari-
ant objects. For ali other dimensions higher than two,
writing the “plus” bits in terms of Riemannian covariant
objects gets exceedingly complicated, and success is limit-
ed to the use of “perturbative methods”, where the
higher-order skew contributions are discarded. In 2D the
GR + treatment is exact, and no (seriously) restrictive as-
sumptions need be made about the size of the “plus” bit.

In 2D there is but one independent antisymmetric
component of the full covariant metric:

gaﬁ:gsaﬁ+w6a[j’ ’ 601:+1 )

=gs, T —

®
es . es =V —8s€qup -
Py —gg o

(2.14)
The Levi-Civita (permutation) symbol €, is a tensor den-
sity of weight —1, and so eg 5 transforms as a tensor

(weight zero). The determinant of g5, so necessary for
the volume element and the calculation of the inverse, is

0)2

—8s

—g=—gsto’=—gs |1— (2.15)

Equation (2.15) will (with our Minkowskian conventions)
be positive (zero, negative) for /v —gs <1 (=1,>1).
Our fondness for Minkowski space leads us to confine
ourselves to the w/1/ —gg < 1 regime. The contravariant
g, formed using the definition (2.4), turns out to be

aff — —8&s

-8

af

g es , (2.16)

By O
gs“+
\/—gs

where g¢®® is the inverse of gg . es%'=¢€"/
Qj

V' —gs=—1/1"—gs, and the sign of the skew term
follows from the transpose implicit in (2.4).

The factors of (—gs/—g)=(1—w?/—gs)"!, which
will occur often in GR+ expressions, coupled with the
restriction w/1/ —gs <1, suggest a natural representa-

tion _in_terms of Thyberbolic functions, viz.,
w/V —gs=tanh(6):

gaB:gsaﬁ_’_tanh(e)esaﬂ 9 (2.17)

gP=cosh?(9)[gs*’+tanh(8)es*] . (2.18)

Furthermore, a very convenient quantity for the exposi-
tion and solving of the FE’s is

A =In[cosh(0)] . (2.19)

The compatibility condition (2.3) may be inverted and
the full connection solved for.* In our GR+ notation,
the result is

a

rz,= [/3’7/ ]+K§§A;p—8i‘§ry+8$l“ﬁ . (2.20)
The Christoffel connection found in (2.20) is formed in
the usual manner, from the Riemannian metric gg. The
term K‘/;iﬁ:[ZgSBVgS“P-SESQ’,—B?S‘,}] is a (By) symmetric
combinatorial factor familiar to those who have studied
the perturbative expansion of a gravitational field on a
curved background. The bar (|) denotes covariant
differentiation with respect to the Christoffel connection.
Of course, since A4 is a scalar, the covariant derivative
with respect to any connection is simply the partial
derivative, and so this distinction need not be made yet,
but we do so to emphasize the GR+ approach. The full
torsion is provided for by the final two ([By ] skew) terms,
with the torsion vector given in terms of the hyberbolic
parameter 6 by

Lo=—gs_ es0), - .21
At first glance this would appear to be a surprising result
(that the entire torsion can be written in terms of its
trace), until one realizes that in 2D they each contain the
same number of independent components.

Now that the full connection has been determined, the
sourceless AHG action may be constructed using the pre-
viously derived equations. It is

IHA=fd2x‘/‘—g(R —A)
= [d’xV —gge [Re([ })+2054 —e 24A].
(2.22)

Note that (2.22) manifestly obeys the AE dictum that the
action be real. The Riemannian ‘““box operator” (Cg) act-
ing on A4 is

1 —
Os A =gsPA|,5=——=—==0,V —gs8sP3p4), (2.23)

\/-gs

coinciding with the usual definition of the (Riemannian)
Laplacian acting on a scalar function. Implicit in the for-
mula (2.22) is the relation

R(D)=e?4[Rg({ })+2054] .

(2.24)

The non-Riemannian cosmological constant has become,
by virtue of the skew contribution to the volume element,
a “cosmological variable” from the GR-+ perspective.
Even in the case of vanishing A, the “kinetic(like) term”
for A4 in (2.22) will impart dynamics to the theory.
Remaining true to the GR-+ perspective, we vary
(2.22) with respect to the fields g¢#” and A4, which ac-



43 EXACT SOLUTIONS OF A DYNAMICAL THEORY OF GRAVITY ...

count for the (four) degrees of freedom in the model,
81
8—’;" —0=Rs({ })+405 4 +2g5P A, Ag+e 24A ,

(2.25)

once we have discarded extraneous solutions (A4 — — oo
and V/ —gs=0):

SIya aff
=0 =B, 4 _ A
Sgs,uv K,l“’(e )laﬁ uv e A|aA|/3
+18s,.e A, (2.26)

discarding the possibility of 1/ —gg=0. The expression
for Kfjf was given above; [ﬁf]=8fj8€+8$‘85 —gswgsaﬁ
=gs gS“B—Kfjﬁ is a combinatorial factor whose form
15% —
arises from the g5 variation of v/ —gggs® [and which,
%%

if contributing to the connection (contracted with a vec-
tor field), is generically associated with the presence of
conformal symmetry]. Some care must be taken in the
derivation of (2.26); in particular, one must take the sym-
metrized derivative and account for the identity (1.1).
The (three) distinct equations embodied by (2.26) are use-
fully split into trace and traceless parts, viz.,

g5 (A g+ A g A1p)+e 2 A=0=0O5(e ) +e ™ “A,
(2.27)

ap
uv

aB

(A|a6+3A1aA|[3)=0= v

(€>M)ap - (2.28)

Two (equivalent) means of representation have been pro-
vided for the gg¢ FE’s for later convenience. Substituting
the trace of the g¢ FE into the 4 FE allows the elimina-
tion of the explicit A dependence:

0=Rg({ })+gs™P(3A |5+ A1, 4)p) . (2.29)

Another readily determined consequence of these two
equations is that

R—A=0, (2.30)
the AHG analog of the constant curvature equation in
the Liouville model.”® Because of the non-Riemannian
nature of R, the content of Eq. (2.30) differs dramatically
from the Riemannian Liouville theory (1.3).

Obviously, in order for the GR+ approach to be suc-
cessful, the full AHG FE’s (2.12) must agree precisely
with the above GR+ FE’s [Egs. (2.27)-(2.29)]. As a pre-
liminary, we note that

R, (D) +X,,(T)=(R+X),([)=R,,(Ts), 2.31)

where g, =TI, is the symmetric part of the full con-
nection. We see from (2.31) that the presence of the X
(“extra”) term in the AHG gravitational field equation
serves to precisely cancel the direct torsion contribution
from R,,. Indirect contributions from the skew sector
enter via the non-Christoffel part of I'g. Furthermore,

1843
(R "’X),w:%gsts({ )= Ay, —34,4),
+2g5, 85 Ajgp+ A Ajp) (2.32)
again invoking (1.1). The full (AHG) trace of X .5 is
X=gPX s=e>"gP(A g+ A1aA)5) . (2.33)
The full AHG vacuum (so T, =0) FE is (2.12):
0=(R +X),,—38,,(R —A) . (2.12")

The full (AHG) trace of (2.12’) yields at X + A=0, which
is precisely the content of (2.27). Now, the traceless part
of (2.12°) reads

0=(R+X),,— 38, (R+X) . (2.12")

The skew part of (2.12"”) provides 0O=R +X =R —A,
which exactly reproduces Egs. (2.29) and (2.30). Finally,
the symmetric part of (2.12”) is the Einstein-like equation

0=R W(rs)—%gswgsaﬂzea,,,(rg) , (2.34)

which is not trivial because the symmetric connection has
a non-Christoffel part. Analysis of (2.34) shows that it
reduces to Egs. (2.28) when written in GR + notation.

Therefore, we have explicitly demonstrated that the
GR+ system of FE’s is identical to the set obtained
directly from the AHG variation specialized to 2D. The
set of equations that we choose to consider for the pur-
poses of solving them are comprised of (2.27)-(2.29).
These (four independent) equations are not related by Bi-
anchi identities as discussed earlier. In the remainder of
this paper, we construct sets of solutions to these field
equations.

III. CONFORMAL SOLUTIONS

The freedom to choose coordinates allows us to every-
where (locally) write gg 5 in conformally flat form [cf.,

Eq. (1.4)],

g—sa,,ze”"””na/s , Map=diag(—1, +1),

(3.1)
with respect to ‘“natural conformal (C) coordinates”
(x%%1). In fact, the “everywhere” in the preceding
statement refers to regions free of singularities and/or
event horizons. Such singular points are mapped to « in
the conformal coordinate system. The X ¢ coordinates
are not optimally suited for the analysis of our problem,
and so we perform a linear transformation to “null con-
formal (NC) coordinates™:

x*z;%(?x%xl). (3.2)
Under the transformation to NC the metric (3.1) reads
01
= _2¢(%)
gSaﬁ e 1 0 . (33)

The inverse (3.3) is just
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ggPB=c 2% 01 (3.4)
The Christoffel connection in NC coordinates is
a a~0 aQo aso = =~ ao
B*;/ = B’}/ ¢’U—(8/387+8y53—"g§37g5 )¢’g (35)

The form of this expression is canonical for conformally
flat representations. We note that our NC system of
coordinates is harmonic, since g‘sﬁy[gg ]=0. The Ricci
tensor is

R, ({)=—8s, &5b op=—8s, Os¢ (3.6)
where the second equality follows as a consequence of the
harmonic nature of the coordinate system. Of course,
Eq. (1.1) holds and simplifies the left-hand side of (3.6).

The feature which makes the NC system most advanta-
geous is the simplification which ensues from

Bs0=e 420 )

for any scalar function Q. In (3.7) the comma signifies
partial differentiation with respect to the following (in-
dex) argument(s). It is cumbersome to write the commas
explicitly, and we will be most often dealing with scalar
quantities, so often that we will drop the commas, in
which case the index subscripted onto the scalar denotes
the derivative. It will be clear from context, and in the
event of ambiguity, we will restore the commas.

When the field equations from Sec. II are expressed in
their NC form, ¢ occurs only in the combination 4 —¢,
which we denote by B. In addition, we will write 4 =Ina
and B = —1lnb, where it serves to make the expressions
simpler. The field equations (2.27)-(2.29), when special-
ized to the present case, read

(3.7

0=2a_,+Aab , (3.8)
0=2B_, +1Ae™ %8, (3.9)
a_
O0=A__+2B_A_+A_A_, 0=b? - |
(3.10)
2| 4+
0=4,,+2B, A, +A, A, , 0=b T .
+

(3.11)

As was stated above, the subscripts in (3.8)—(3.11) signify
partial differentiation with respect to the appropriate
coordinate variable.

The first solutions that we will construct are ones
which have A=0. The most important aspect of this
analysis is the demonstration of nontrivial (vacuum) grav-
itational dynamics even in the case of vanishing cosmo-
logical constant. Next, we will tackle the A0 case.
Naturally, these solutions will possess a greater richness
of structure than the A=0 solutions.

In the case of vanishing A, Eq. (3.8) and (3.9) are great-

P. F. KELLY AND R. B. MANN 43

ly simplified, while (3.10) and (3.11) remain unchanged.
The solutions to (3.8) and (3.9) are easily obtained:

(3.12)
(3.13)

a=m(x N+pxt),
B=M((ix )+Px "),

for (four) unknown functions {m,p,M,P}, each of only
one coordinate. Substitution of (3.12) and (3.13) back
into (3.10) and (3.11) results in

O=m__+2m_M_ , (3.14)

0=p,,+2p,. P, . (3.15)

The partial derivatives in (3.14) and (3.15) are now (in
fact) total derivatives. Both of the above equations in-
tegrate immediately to

k_=eMm (3.16)

ky=e¥m_ , (3.17)

for nonzero constants k_,k,. (Here the subscripts
denote the respective constants.) In the event that one
(or both) of these constants actually vanishes, the impli-
cation is that the solution being constructed is indepen-
dent of that coordinate.

Having proceeded as far as is possible by integration,
the remaining task is to ensure the consistency of the
solutions. Let

k=k_k, =e*M*Phyy p,=ePm_p, , (3.18)
and hence
B=—1lnk 'm_p.). (3.19)

Recalling that 4 =Ina and ¢= A4 — B, the general solu-
tion for 2D (vacuum) AHG in NC “gauge,” and with
A=0,is

A=In(m +p),
(3.20)
2¢=In[k Y m+pPm_p,],
for two arbitrary functions m (X ~),p(X 7). It is clear

that while R(T") must equal zero [recall Eq. (2.30)], the
solutions (3.20) do not reduce to triviality. In fact,

4k

Rg({ D=+ )4=—2["jSA (3.21)

(m+p
is nowhere zero, without violating the conditions which
ensure freedom from singularities.

While the introduction of NC coordinates has allowed
the problem to be solved, the physical nature of the solu-
tions is (to say the least) somewhat obscure. One con-
clusion that we are able to draw is that a restriction of
the solutions (3.20) to a GR plus infinitesimal case over
an extended region (such as a small non-Riemannian per-
turbation about a GR background) requires an unnatural
accommodation. To wit, coshf—1 requires (m +p)—1,
but m and p are each functions of a single (different) coor-
dinate variable, and so they must each tend toward con-
stant values. In this case their derivatives approach zero,
and hence 2¢— — o0.

Now we examine the situation in which the theory is
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independent of one of the coordinates (X ~, say). Equa-
tions (3.8)—(3.10) are consistent only if A=0 and have no
content. The remaining Eq. (3.11) is integrable (provided
b%#0), with the result that a . =kb. Hence the general
solution is

A=Ina ,

(3.22)
2¢=In(k 'a%a,),

for a=a(x ) arbitrary. The above is also true if one
tries to take 4= A(x 1), while leaving B=B(x ~,x T)
li.e., p=¢(X ~,% *)] since one soon discovers that B (and
hence ¢) are forced to be X ~ independent.

Motivated by an analysis of 2D AE Palatini gravity,
which has a trivial g¢ sector and w/V ‘“gs=const,4 one
may wish to attempt to set 4 =const here. In this case
the field equations require A=0, just as in the above case
of one coordinate independence, and only (3.9) has physi-
cal content: 0=B_, and so

é=M(x T)+P(x"). (3.23)

(We have absorbed some constant factors into the arbi-
trary functions M and P.) The result (3.23) is consistent
with 2D triviality since we have R (I')=0 from (2.30),
Rs({7})=0 by combining (3.23) with (3.6) and (3.7), and
f1g 4 =0 by assumption. A more complete analysis of
the A=0, 4 =const case will be undertaken in Sec. IV.
The task of solving (3.8)—(3.11) when A0 begins with
the recognition of (3.9) as the Liouville equation for B.

This equation integrates to (we write B = — 1lnb)
F_(X7)G(x7)
b= , (3.24)
[1+(A/4)FG]?

where F(G) is an arbitrary function of ¥ (X 1) only,

and the subscripts on the functions in the numerator

denote partial differentiations. Dividing (3.10) and (3.11)

by b%#0 allows for immediate (partial) integration:
a_ a

= - (3.25)

for functions of integration f(X ~),g(X ¥). The set of
functions {F, G, f,g} cannot all be arbitrary and indepen-
dent. Relations between them follow from the remaining
field equation (3.8). After a careful analysis, we get

= KF+LG+M[1—(A/4)FG]
1+(A/4)FG ’
where K,L,M are constants, and F,G appear in (3.24).

The “physical quantities” 4 and ¢ are determined from
(3.24) and (3.26) to be

(3.26)

KF+LG+M[1—(A/4)FG]

A=In 1+(A/4)FG

>

(3.27
{(KF+LG+M[1—(A/4)FG]}’F_G

[1+(A/4)FG]*
Equations (3.27) comprise the complete, most general set

of (vacuum) solutions to 2D AHG expressed in NC coor-
dinates (singularity-free). Note that the A—>0 limit of the

2¢=In
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solutions (3.27) reproduces the A =0 solution set (3.20).
To illustrate the nontriviality of (3.27), we calculate

Rs({})=e *44KL +AM?)+2Ae 214, (3.28)
205 4=—e *YA4KL +AM?)—Ae 24, (3.29)

Recalling (2.24), we see from (3.28) and (3.29) that R =A
as required by (2.30).

Again, the physical interpretation of the solutions is
hampered by the “ungenerous nature” of the NC coordi-
nate system. Any attempt to posit solutions which are in-
dependent of one of the coordinates cannot be accom-
plished here (while keeping A70). Trying to fix bound-
ary conditions in order to restrict the arbitrary functions
which appear in (3.27) quickly becomes a daunting task.
The reason is that the physically comfortable ideas of
large spatial distance “asymptotic” behavior is nearly im-
possible to express in NC coordinate terms.

IV. SCHWARZSCHILD-LIKE SOLUTIONS

In order to accommodate singularities (at coordinate
values other than F o), we choose coordinates so that

1
— 0
8sch,, ™ Y ’

B
0 U

4.1)

which is analogous to the standard coordinates used in
exhibiting the Schwarzschild solutions in (3+1)-
dimensional GR. The coordinates we use here are la-
beled (¢,7) for distinction from the previous cases. The
Schwarzschild metric is szatic (i.e., gsen =0). One-

dimensional ‘“‘spherical symmetry” may be imposed by
restricting r to strictly non-negative values or replacing
by |7| in the solutions to be obtained. This is a nontrivial
modification of the problem because it is predicated on
the existence of the point in spacetime about which the
symmetry holds. Such a point must be a &-function
“source” for the field equations; i.e., there is a ‘“‘gravita-
tional charge” located at the origin of the spherical sym-
metry, and this integrates to give the |r| behavior of the
symmetric solutions.

The determinant of the symmetric metric (4.1) is
—&scn = 1, while the inverse is simply

—U 0
8sen ™= 1 4.2)
U
The Christoffel connection is found to be
] 10 ri_ 10,
w2 U’ || 2 U’
t 1 U ri 10
[rr 2T M*E‘J’ “3
| ri_1]1 1
{rr — Ut n]w 7] ﬂ

Here, as usual, the subscripts denote partial derivatives.
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Applying (4.2) and (4.3), we form the Riemannian curva-
ture

1

Rs({ N=U,— | 4.4)

rr

The Schwarzschild coordinate ‘“‘gauge” is not harmon-
ic, and so the Riemannian box operator is not as simply
expressed as it was in the conformal case (C or NC). In
fact, the expression for the Schwarzschild Laplacian is
(acting on some scalar function Q)

Lo,

U (4.5)

OsQ(t, r)EgschaﬁQ\aB:( —UQ,),+

¥

Now the necessary tools have been assembled, with
which we proceed to write the generally (GR+)-
covariant AHG field equations in their Schwarzschild
form:

0=[—Ule?),],+ [iUwA), +e A, (4.6)
1
O=(e3A)n+F(e3A),, , 4.7)
0=[U(e®*1),],+ U? i(e“), , (4.8)
U t

0=[U,—U34,~UG3A,+4,4,)]

_ 1

34,—

¥

1 1
o o (34, +A4,a,) | .

rr

(4.9)

Even with the simplification which ensues from the use
of a static metric, these equations are at best quite tedious
to solve in general, and so we further restrict ourselves to
an examination of the fully stationary case. Fully station-
ary means AHG stationary (viz., g,5,=0). In the GR+
notation, this entails

U,=0=4,, (4.10)
for the GR+ (Schwarzschild) fields U, A. Condition
(4.10) is perhaps not as Draconian as it may at first ap-
pear, since the general 2D vacuum solution in regions
free from singularities is known from Sec. III of this pa-
per; the “Schwarschild gauge” solutions need only be ap-
plied to (small) regions enclosing (coordinate)
singularities—with appropriate matching at the boun-
daries. It is always possible to define a stationary coordi-
nate system in such a region.

Under condition (4.10) the field equation (4.8) loses all
meaning, while (4.7) leads to

0=(e31),, , 4.11)
which can be immediately integrated to determine

A=1In(c+kr), (4.12)

for real constants c,k. Equation (4.12) appears ingenu-
ous, but must be treated carefully. Whatever the signs of

¢ and k, there will be some region (with boundary) for
which ¢ +kr =0 if we allow r&(— w0, o). However, if
we impose S° symmetry (i.e., replace r by |r|), then we
can avoid imaginary A by choosing k >0, but at the cost
of restricting r to the half-line. If kK =0, ¢ >0, then 4 is
constant for all ». This particular case is examined in de-
tail later in this section.

We seek to examine the behavior of (4.12) in various
limits, without restricting r. For convenience we intro-
duce g=(c+kr)!"/® and study the limits g— + ,1,0
and the case g <0. From the definition of A4, we see that
w/\/—ggz(l—q_z)l/z. In the limit of ¢g-— oo,
©/V —gs— 1. This limit is equivalent to a large +r
limit and demonstrates that the 2D spacetime is not
asymptotically Riemannian at large distances from the
origin. Fortunately, the GR+ treatment is exact in 2D;
otherwise, this result might have case serious doubts
upon the validity of a perturbative approach. The behav-
ior of w/Vv —gg is at least softer than the linear
(confining) potentials that often occur in 1D problems
(since the field lines cannot spread out). In the limit of
qa1+, a)/\/—gs—>0*, the Riemannian limit. There-
fore, the 2D AHG Schwarzschild space is = Riemannian
in the vicinity of ¢ +kr—17", which is in the small 7 re-
gion. This is completely unlike the situation in four di-
mensions. The final limit that we wish to consider is that
of g—0; however, we see that once ¢ <1, then
w?/—gs <0 and the analysis (the theory) breaks down.
Furthermore, as ¢ —0, w2/~g3—>—oo, which is very
pathological. Although (4.12) is incapable of accommo-
dating negative values of g, we see that the physical quan-
tity o/ —gg is unaffected by g — —g. [The same will
be true for the symmetric part 1/U; see (4.14).] Hence
there are two physical regions of parameter space:
g=<—1 and ¢g= +1 separated by an excluded region
—1<g < 1. By shifting the coordinate variable r, we can
collapse this singular region to the origin (in 7 space).

We shall assume that we are in one of the physical re-
gions (say k,r>0) and proceed with the analysis of the
remaining field equations. Together, (4.10) and (4.12)
turn (4.6) into

0=Alc+kr)~ 13+ iU[<c+kr)“3],‘ . @413)
which upon integration becomes
1,3 23, 1k -2/3
=—A— - = k . .14
¢, 2Ak(cﬁLkr) + U 3(c+ r) (4.14a)

The constant of integration is labeled ¢;. Rearranging
(4.14a), we obtain the solution

1__1,

U ) (4.14b)

2
3 (c+kr)*3+c i(c-i—kr)y3 .
k "k

The above solutions for 4 and 1/U together satisfy the
final remaining field equation (4.9), subject to (4.10).
There are three particular cases of these general solu-
tions (4.12) and (4.14b) that we will now examine in some
detail. The first case occurs if the constant k appearing
in (4.12) and subsequently is equal to zero [contrary to
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the assumption made in deriving (4.14b)]. l'he second
special case arises when we set A=O0, while keeping
¢,70, k70, and the third is ¢, =0, while A, k0.

When we attempt to set k =0 in the process of deriv-
ing (4.12), we arrive at the solution 4 =const. The field
equation (4.6) then demands that A=0 in order to remain
consistent. We recall that this same result occurred in
the conformal case. Here we will undertake the more de-
tailed analysis postponed earlier. In order to obtain an
equation for 1/U, we turn to (4.9), which now reads

(4.15)

U

rr

Therefore, the Schwarzschild-like solution in this particu-
lar case is (recall A=0), for a,b real constants,
A =const ,

—(1]—=a+br .

If b =0, a0, then gg, 5 is just constant and can be sim-

(4.16)

ply transformed into 7,5 We choose b >0 without loss
of generality.

The solutions described by Eqgs. (4.16) are rather unin-
teresting, since they correspond to ‘““flat space.” By recal-
ling (2.30) we can conclude that R (I")=0 here, but this is
not a sufficient condition for flatness. By comparing (4.4)
with (4.15), we discover that Rg({ })=0. This is 2D,
and so the entire Riemannian curvature tensor has
but one independent component R s({ })=3[87gs,

"5§gsy5]Rs({ }), and we conclude that the spaces de-

scribed by (4.16) are Riemannian flat. The full AHG cur-
vature R %, (") is a GR+ combination of R%,s({ })
plus terms which depend on derivatives of 4. Clearly,

then, the solutions (4.16) are flat.
An alternative means by which the Riemann flatness of

1/U =a +br may be demonstrated is to consider the fol-
lowing transformation of the canonical flat-space line ele-
ment ds*=—dT?+dR?

2,

2 >

L
St

The result is precisely the Schwarzschild form with
1/U=a++br. 1t is easy to argue that if 1/U=(a +br)/,
only the case where f=1 is equivalent to (Riemannian)
flat space.

Recall the discussion of spherical symmetry and gravi-
tational charge at the beginning of this section. If r is re-
placed by |r| in (4.16), then the solution corresponds to
the solution of the (Riemannian) field equation (1.7) in the
case of a point mass at the origin®!® and, in fact, may be
understood as the ‘“AHG extension” of that type of
Riemannian solution. The parameter b is the gravitation-
al charge (the mass). A complete discussion of this sort
of AHG solution would require the introduction of an
AHG (nonsymmetric) energy-momentum tensor. We

T=%(a +br)2sinh

(4.17a)
R =%(a +br)%cosh
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shall not pursue this point any further.

The preceding dismissal of solutions (4.15) as flat, and
hence uninteresting, was predicated on the assumption
that there were no singularities. Whether the k=0
Schwarzschild metric will have singular behavior de-
pends crucially on the sign of the constant a. (Actually,
it depends on the relative signs of a,b, but we have
chosen b>0.) If a>0, then there are no ‘event
horizons” —points at which the diagonal metric
coefficients change sign, and hence the roles of timelike
and spacelike coordinates reverse. There are no singular
points, because as was demonstrated above, the Rieman-
nian and AHG curvature tensors vanish everywhere. If
a =0, then the point r =0 has a coordinate singularity,
but given our hypothesis of “spherical symmetry,” the
metric is not extendable through the origin, and so the
“event horizon” at » =0 is physically irrelevant. If a <O,
then there is an event horizon at the coordinate distance
r=|a/b|. We note that the transformation to flat space
(4.17a) breaks down at this point. If we restrict (4.17a) to
the coordinate region r > |a /b| and supplement it with

o — 1/2¢; b
T'=-—(—a—br) “sinh 31‘

’

L
2 b

for the region r < |a /b|, we see that we have two flat re-
gions: d82=+dT2—dR * and ds’=—dT?*+dR?, joined
at r=|a/b|. Note that the sense of timelike (TL) and
spacelike (SL) coordinates has been interchanged.

The second special case is that of A=0, but k,c;7O0.
The steps leading to (4.12) are unaffected, while (4.13) and
(4.14) are simplified by the elimination of their A depen-
dence. Thus

SN

(4.17b)

R= )1"2cosh

SHIS)

(—a—br

A=1In(c +kr),

1

3
(4.18)

1 3

—(j:cl ;(c +kr)?3 .

Since A=0, these solutions must have R (I')=0 accord-

ing to (2.30), but neither Rg({ }) nor R, (T") are zero

(except in the limit as 7 — o0). In fact,

R({ ])=2c1§(c+kr)“‘/3 . (4.19)
A naive analysis of (4.18) would suggest that in analogy
with the case first considered there will be no singularities
in the model for ¢ >0, a singular point at »=0 if ¢ =0,
and at »=|c /k| for ¢ <0. (Recall that we choose k >0.)
However, we see from (4.19) that the singularity at
r=|c/k| for ¢ <0 is a point of infinite curvature. This
singularity does not have an event horizon associated
with it because (---)*? is an everywhere positive-
(in)definite quantity. Recalling the discussion following
(4.12), |(c +kr)| =1 for physical solutions, and we avoid
the pathological singularities.

The third special case is the complement to the second:
k >0, A0, ¢, =0, with the solution
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A=1n(c +kr),
2 (4.20)
1__ 1,1k 473
0 2A 3 (c+kr)

The GR curvature is

Rs({ D=2A(c+kr)~2/3, (4.21)

and using this result, the full AHG curvature R (I')=A
is easily verified. The same comments about the singular-
ities in the previous case [Egs. (4.18) and (4.19)] hold also
in the present case [Egs. (4.20) and (4.21)]. The only
point to be noted here is that the gg, parts of
(4.18)—(4.21) rise and/or fall-off with different powers of
r.

The different rates of change with r for the two special
cases discussed above allows the formation of a bona fide
event horizon in the general case [Egs. (4.12) and (4.14)].
Specifically, 1/U in (4.14) passes through zero at the
point 7, determined by
3 2/3— ﬁ
X (c+kry) A
This point r, will exist, provided that the signs of ¢, and
A are the same, thereby making the right-hand side of
(4.22) positive. By examining (4.14) the A term dom-
inates at large values of 7 (and thus determines the
asymptotic TL-SL sense of the coordinates), while the ¢,
term dominates for r <<r, (determining the TL-SL sense
in the vicinity of the origin).

The AHG curvature is everywhere constant, while the
GR curvature is given by the sum of (4.19) and (4.21),
viz.,

(4.22)

Rg({ })=2c1%(c+kr)‘4/3+2/\(c+kr)‘2/3. (4.23)
Atrg,
33 A?
Rs({ D=5 % o (4.24)

which is perfectly finite (and well behaved), leading to our
identification of »; as an event horizon. Since A and ¢,
are of the same sign, Rg({ }) will everywhere be positive
or negative, while monotonically decreasing or increasing
to zero as r approaches infinity.

V. COSMOLOGICAL SOLUTIONS

Another ansatz which bears examination is the
“cosmological” (FRW) form for the GR metric:
-1 0
8w, = | o ©2 (5.1

Again, we label the coordinates (¢,7). This choice for the
form of the symmetric metric may also be described as
“synchronous gauge.” As in the (3+ 1)-dimensional
FRW case, we demand that the spatial cross sections
defined by constant ¢ be maximally symmetric. This
turns out to be the familiar assumption of global homo-
geneity. With the stronger assumption of global isotropy,
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the FRW metric (in N dimensions) is canonically decom-
posed into a temporal part, a radial part, and a (N —1)-
dimensional spherically symmetric part, viz.,

1

ds?=—dt*+ U*(1) sdri+r?dQ* | .
1—kr

The “cosmic scale factor” is labeled U(¢) in the follow-
ing. The factor of 1/(1—kr?) which appears in g,, is
necessary to account for the possible geometries (open,
flat, closed) of the homogeneous N space. In 1+1 dimen-
sions, however, the maximally symmetric subspace is one
dimensional (S® symmetric), and so there is no angular
part to the line element. The r-dependent factor in g,,
may then be safely absorbed by means of a coordinate
transformation (scaling) of r alone, and thus we may as-
sume that 8FRW is completely independent of the spa-

cial coordinate. Another way to see the validity of this
assumption is to realize that since the spacelike subspace
is only one dimensional, it does not have an intrinsic cur-
vature, and so we can always choose a (locally) r-
independent metric on it. However, there is a topological
effect. For a closed universe the domain of r is compact
(circular topology), while for the flat and open cases the
domainis —o <r<ow.

The determinant \/ —gpgw = U(¢), and the inverse of
(5.1)is

-1 0
0 U ?

gFRWaB (5.2)

The Christoffel connection for the FRW metric is easily
deduced from its definition (1.2):

o[- bl- G-

(5.3)
t ¥ U,
‘rr =UvU;, [tr :—U‘ ’
The Riemann curvature scalar is
Utt
Ry ({ })=2 U (5.4)

The FRW coordinate system is not harmonic, leading to
the following expression for the Laplacian:

1 1
DSQ(t’r): "F( UQt )t + Fer .
The vacuum field equations for the FRW-gauge
GR +representation of 2D AHG are

1 1 A

(5.5)

Oz—E(Uat)t‘f‘—U—za”-f—”a* , (5.6)
_ U, 1 1
0=2 U —?(U:&A,),—A,A,+F(3Arr+A,A,) ,
(5.7)
- 1, 3
0=U|—(a”) , (5.8)
U rt
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_ |1 1
0=U U(ah, +?]—2—(a3),,. (5.9)

t

Despite the promising fact of (5.8), which determines the
form of a to be

a=UW[f()+g], (5.10)

the rest of the equations have proven impervious to solu-
tion. In order to simplify (5.6)—(5.9), we insist on AHG
homogeneity and set

A,=0=a, . (5.11)

With this restriction, (5.8) loses its status as an in-
dependent field equation, and (5.6), (5.7), and (5.9) be-
come

O=a,,+%a,—% , (5.12)
_ U, 1
0=2 U —F(U3At),—A,A, , (5.13)
0= iU(a3), (5.14)
t
The final equation (5.14) leads to
kU=(a%), , (5.15)

for some constant of proportionality k0. The precise
value of the constant is irrelevant for the following. By
differentiating (5.15) we can express U, /U in terms of a,
and thereby (5.12) becomes an equation for a alone:

0=(a?),—A . (5.16)
The solution of (5.16) is
a’=cytc;t+1A1?, (5.17
where ¢, | denote constants of integration.
In terms of ¢ the cosmic scale factor is
kU=3(cotc t+LAtH) (¢, +At) . (5.18)

The field equation (5.13), which has hitherto been ig-
nored, is satisfied for a and U given by (5.17) and (5.18).
That this is so is also consistent with the constancy of the
AHG curvature (2.30). The Riemannian curvature fol-
lowing from the FRW scale factor U is

1
R —— (5.19)
s a’ 2a?

(c1+At)2]
3IA+——5r—7— | .

In order that the solutions (5.17)—(5.19) be (physically)
interpretable [e.g., a% >0 for mathematical consistency or
the stronger requirement a2> 1; cf. (2.19)], there will be
relations among the parameters cg,c;,A, and/or restric-
tions on the allowed ¢ domain. These features will be ap-
parent as we analyze the three distinct cases of AHG vac-
uum cosmology determined by the sign of A.

The above analysis did not depend critically on the
value of A, and so it suffices to take the A—O0 limit of
(5.17)—(5.19) for our first special case. When A=0,

UN(C0+CII)1/2 N

172
)e,

a~(cotet (5.20)

Rg({ })~a *~(co+c,1)7?

Taking the positive roots and assuming that c¢; >0, this
describes a ‘““softly”” expanding universe. If the constant
¢, is negative, then this universe collapses. Either way,
the domain of ¢ values is restricted. For positive ¢,
t> —cqy/c, is the weak limit (from U), while the stronger
limit (from a) is ¢ >(—cy+1)/c,. The results for ¢, <0
follow by symmetry. Later, we will comment on the
different limits on ¢ arising from the symmetric/skew sec-
tors. For the moment we simply note that the
weak restriction allows U—0, which coincides with
Rg({ })— o and pathological behavior for a, whereas
the stronger restriction (on a) cuts out the geometrical
singularity. We also note that a grows without bound as
t — o, and so the far future of this spacetime is essential-
ly non-Riemannian.

If A>0, then
A 172
U~ co+c1t+—2—t2J (c; +At)~t?,
172
A >
a~ c0+clt+—2—t ~t, (5.21)

Rg({ P~+t72.

This case is like de Sitter space except that the “inflation”
is of a power-law variety rather than the exponential be-
havior which arises in 3+ 1 dimensions. The particular
features of this cosmology (big bang or bounce?) depend
on relations among the parameters. An analysis of the U
behavior of the solutions must also include consideration
for the a behavior as well.

Zeros of U will occur at

1 2e0A 172
ty=——|1£ |1—— ,
1
and at t;= —c,;/A. The first two ¢, enumerated above

are also zeros of a (pathological). Aside from the behav-
ior of a, these roots change the sign of the argument in
the square-root factor appearing in (5.21) (unless the root
is a double root, in which case all three ;= —c,/A).
An imaginary U changes the sign of U? (in the line ele-
ment), which changes the signature of the spacetime
metric. For positive A the asymptotic spacetime is non-
Riemannian with Minkowskian signature. At the time of
the first singularity, the spacetime suddenly becomes Eu-
clidean. This “new” spacetime evolves and experiences a
(Riemannian) metric singularity at its half-time. (An ex-
treme form of “midlife crisis.””) The curvature is well
behaved at this point, and a is nonzero, and the TL-TL
sense of the (Euclidean) spacetime is unaltered. Finally,
at the third singularity the spacetime transforms back to
a Minkowskian signature (Riemannian). Curvature
singularities occur at both the birth and death of the Eu-
clidean spacetime, along with very singular a behavior.
In the A=0 case above, U? changes sign only once (with
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strongly singular behavior) and the interpretation is of a
spacetime irrevocably changing its signature. It may be
possible to (in some manner) interpret these solutions in
terms of nucleating vacuum bubbles, but at present this
has not been investigated.

For the evolutionary scenario just described to be real-
ized, all three roots of U must be real. The sufficient con-
dition for reality is

2COA <

ct

(5.22)

Otherwise, if (5.22) does not hold, then a does not have
zeros, and U=0 only at t;=—c;/A. Obviously, it is
also necessary that a?>0 (equivalently, that U is real).
Fortunately, the failure of (5.22) will guarantee this. In
the present case, ;= —c,;/A may be thought of as the
“beginning of the universe.” At this ¢, the metric is
singular, but a is at some nonzero minimum value, while
the Riemannian curvature is finite and at an extremum.
The Universe is then essentially non-Riemannian and for-
ever expanding.

A loophole which will provide for a benign interpreta-
tion of the de Sitter case in general is to (by fiat) insist
upon initial conditions tg,a(ty),U(zy) such that the
singular behavior is avoided. This is unsatisfying, be-
cause it must necessarily make appeal beyond the model
to account for these initial conditions.

If A <0, then much of the preceding analysis holds, but
in the obverse. Equation (5.21) describes (with A <O
now) the spacetime. The Riemannian curvature will
differ in sign, and its particular form will be slightly
different [cf. (5.19)]. This case corresponds to ‘“‘anti—de
Sitter space” in that the effect of negative A makes a col-
lapse inevitable (a Minkowskian big crunch). The formu-
las provided above the zeros of U and a are equally valid
for negative A. In this case, however, the physical inter-
pretation is of a Minkowskian universe, formed at the
first singularity. This universe then evolves, also ex-
periencing a “midlife crisis,” which fortunately does not
alter the TL-SL senses of the coordinates, and finally ex-
pires in the final singularity. It is not possible to alter
this interpretation by avoiding the singularities and still
describe a universe with a Minkowskian signature.

The usual cosmological assumption of homogeneity,
extended to full AHG in (5.11), is not the sole approach
that one may try to solve the field equations (5.6)—-(5.9).
A mathematical (rather than physically motivated)
simplification is to substitute (5.10) into (5.9), multiply by

U, and demand that the result be (¢,7) separable. It turns
out that
U? ﬂ =const (5.23)
U |, ’

is required. Provided that U= const, condition (5.23) is
equivalent to setting the Riemann Christoffel curvature
equal to a constant. Precisely this restriction and its
consequences is the subject of the next section.
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VI. LIOUVILLE-LIKE SOLUTIONS

A natural question which arises is the following: Do
there exist circumstances in which the solutions of 2D
AHG reduce to the Liouville model in the gg sector? In
other words, can 2D AHG accommodate the Liouville
model? A quick perusal of the general solutions thus far
described [Egs. (3.20), (3.21); (3.27), (3.28); (4.18), (4.19);
(4.20), (4.21); (4.14), (4.23); (5.17)—(5.19)] shows that in
every case Rg({ }) is not a constant (with the exception
of the flat solutions: Rg({ })=0and 4 =const in (4.16)).
Solutions (3.22) are restricted and Riemannian flat, and
so it is impossible for them to accommodate (interesting)
Liouville-like models.

Here we will force the issue and demand that the
Christoffel curvature be constant, and investigate the
consequences. The condition that we impose is (the Liou-
ville equation)

0=Rs({ })—L . 6.1)

Working in the NC coordinates described in the third

section, this equation has the solution
F_G,

[1+(L/4)FG]*’

as determined in (3.24). Imposing (6.1) on the AHG field
equations (2.27)-(2.29), we see that it is (2.29) which is
most greatly affected. In fact, it becomes a Klein-

2¢— (6.2)

Gordon(-like) equation for g=a!/}=e4/3:
O=ﬁsq+%q . (6.3)

The other field equations are less dramatically modified
and read

0=¢°05(¢g>)+A,
le 2%(g°)_1_=0=[e *(¢°), ], .

(6.4)
(6.5)

The following argument will describe explicitly how
(6.3)-(6.5) cannot be solved in general, except for
g =const, the flat case. The first step is to partially in-
tegrate (6.5), introducing functions of integration f(X ~)
and g(x )

e (g% _=g, e Mg, =f. (6.6)
An important corollary of (6.6) is that
glgM i =f(g"_ . 6.7)

The —,+ derivatives of (6.7), when n =1, allows us to
write the Laplacian of g in terms of f,g, viz.,

Osqg=r""2(gg+)+=g '2(fq-)_ .

Our Klein-Gordon(-like) equation (6.3) allows us to invert
(6.8), leading to

(6.8)

f:_ie~2¢2(gq+)+ =_£e_2¢2(fq,)_

L 4 » & L q >
(6.9)

which can be substituted back into the defining relations
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for f and g. Already, this causes concern because [in or-
der that (6.7) is maintained] we must have

2gq+—_—Lq10+c=2fq_ , (6.10)

10

for some constant ¢. The functional form is quite con-
strained, and we have yet to exploit one of the field equa-

tions (6.4). When we apply the above results to the
remaining equation, it boils down to
7 6 4c —4 3A
=—gf+ g 2 6.11
0O=5e e T 1D

Clearly, this equation has only ¢ =const solutions, violat-
ing the assumption made at the outset of this analysis.

VII. CONCLUSIONS

Using the technique of algebraic extension, we have
constructed and derived the field equations of a complete-
ly geometric Lagrangian-based dynamical theory of grav-
itation in two dimensions. The theory is dynamically
nontrivial, even if the cosmological constant vanishes. In
NC coordinates we found the most general exact solution
of these field equations. Such solutions do not contain
any singularities or event horizons. Solutions with these
features are discerned among those constructed in the
“Schwarzschild” and “cosmological” gauges of Secs. IV
and V.

The results of our investigation leave us with mixed
feelings. On the one hand, we have ‘“invented a new
theory of gravity on the line,” yet we are disappointed by
several aspects of this new theory. In retrospect our ina-
bility to reproduce the Liouville model except in its most
trivial form is perhaps a consequence of demanding too
much of 2D AHG. We want “to have our cake” (a new
distinct model) and “to eat it too” (reproduce the Liou-
ville results of Refs. 7—10). More seriously, though, is
the manner in which the symmetric and skew degrees of
freedom do not decouple (as we had hoped). A natural
accommodation of models in which 4 —0" would have
greatly pleased us, as well as guaranteed mathematical
consistency [cf. (2.15)]. We may summarize by stating
that the non-Riemannian geometry of 2D AHG does not
lend itself to asymptotic “Riemanness.”

It should be pointed out, however, that the same sort
of behavior occurs in 4D AHG (which we proposed as an
alternative theory of gravity). Briefly, the static spheri-
cally symmetric solutions of 4D AHG admit flat-space
asymptotic behavior, but not the Schwarzschild behavior
which is necessary in order to agree with solar system
data.’” By means of a perturbative expansion of the
theory upon a curved Riemannian “background” space-
time,! this behavior has been understood to arise from a
coupling between the skew field (a Kalb-Ramond scalar
field'?) and Weyl tensor component of the background
Riemannian curvature. Hence 4D AHG is only able to
comfortably match to asymptotic Riemannian geometries
which are conformally flat. A parametrized post-
Newtonian expansion of 4D AHG (Ref. 16) has corro-
borated this result. Even though the Weyl tensor does
not exist in 2D, we have seen that 2D AHG does not ad-
mit uncoupled asymptotics.

It is precisely the existence of the skew field which is
responsible for the nontrivial dynamics of the model.
Other approaches (e.g., Liouville) must add the “extra”
field(s) by hand, whereas in the case on non-Riemannian
theories all of the fields are of geometric origin.

We close by pointing out that further generalizations
of this theory are possible. We could have included
matter effects as considered in Eq. (2.12) and mentioned
in passing in Sec. IV, but have not done so, since it is un-
likely that the qualitative behavior of the vacuum solu-
tions will be altered. Another possibility is to include the
trace of the ‘second curvature’ term (2.7) in the action
(2.9). Such a term violates the positivity of energy re-
quirements for (skew) wavelike excitations in the flat-
space limit in four dimensions. However, in two dimen-
sions such considerations are irrelevant since such excita-
tions vanish. The inclusion of this term will have the
effect of modifying the coupling of the A4 field to the sym-
metric metric.
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