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Nonlinear wave solutions to the planar vacuum Einstein equations
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We use the 3+1 split of spacetime and the York splitting into free and constrained variables to
set up initial data and solve the vacuum Einstein equations in plane symmetry. We present numeri-
cal solutions for free data in the form of traveling waves in both the linear and nonlinear regimes.
No evidence of nonlinear wave propagation is found and we demonstrate that for our class of
metrics the nonlinearity lies in the "Coulomb" or nonradiative components of the Riemann curva-
ture tensor.

I. INTRODUCTION

For all the progress in recent years in finding solutions
to the classical Einstein field equations, many basic issues
remain unresolved. One of these areas is the basic non-
linear physics of the gravitational self-interaction. For
example, what is the mechanism of nonlinear interactions
between two waves? How do waves distort the back-
ground cosmological model through which they propa-
gate? And do traveling waves steepen to form shocks or
spread out through dispersion? These are some of the
questions we address in this paper.

We have begun a program to study the simplified prob-
lem of one-dimensional (1D), i.e., one spatial dimension
plus time, plane-symmetric solutions. ' In particular,
we study the initial-value construction and evolution of
linear and nonlinear plane-symmetric gravitational waves
in an expanding universe described by the Gowdy T
(Refs. 4—6) class of metrics. We write this metric in the
3+1 split as

ds = —(a P I3 )dt +2/ Pdz—dt

+P (dx +h dy +dz ),
where a, P, P, h are functions of z and t only. We use units
in which the speed of light c =1. The metric variable h
describes transverse anisotropy, and P is the conformal
factor. The lapse function a and shift vector P determine
the evolution of the coordinate system off the initial
spacelike slice. The system we consider is periodically
identified in the spatial coordinate z. Thus all variables
must be periodic with period equal to the identification
length L. This metric is well suited to the study of plane
gravitational waves.

Our approach uses a combination of analytic and nu-
merical techniques. On the one hand, we carry out a per-
turbative treatment of the equations to second order. In
addition, we construct a numerical code to solve for fully
developed nonlinear solutions. We will not discuss this
code here, but will refer the reader to companion pa-
pers' where we have presented our numerical tech-

II. GRAVITATIONAL-WAVE QUANTITIES

To describe gravitational-wave phenomena, we have
found it instructive to compute the Newman-Penrose sca-
lars and the Bel-Robinson superenergy tensor. In this
section we briefly describe these quantities and present
more explicit forms for the metric (1.1) in the Appendix.

Newman and Penrose introduced a formalism leading
to a compact set of equations which characterize the ten
independent components of the Riemann tensor in vacu-
um by five complex and scalars. These scalars are the fol-
lowing null tetrad components of the Riemann tensor:

Vo=R p ~k mPk~m

% =R k lPk~m'
1 apy5

4'2= ,'R & s(k l~krl ——k l~mrm ),
0 =R l kpl~m'

3 npy6

e4 ——R.p„I. mPt&m',

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

where we denote the vectors making up the null tetrad
basis as k, 1, m, and m, and an overbar denotes complex
conjugation. Lower-case Latin letters represent spatial
indices and Crreek letters denote four-dimensional space-
time indices. The vectors m and m are obtained from a
set of real orthogonal unit spacelike vectors a„and b„ in
the x-y plane:

niques in detail along with some interesting solutions to
the field equations. We have tested our code extensively
against both exact and perturbative (first- and second-
order) analytic solutions. The results of such tests, which
may be found in Refs. 1, 2, and 3, indicate that our code
is accurate, reliable, and robust enough to study highly
nonlinear problems without the code breaking down. We
will rely heavily on our code to generate solutions and
help analyze our results.

43 1S25 1991 The American Physical Society



1826 PETER ANNINOS, JOAN CENTRELLA, AND RICHARD A. MATZNER 43

m = —(a +ib )= —[O,g, ibad, O],p ~ p, p

m = (a ib—)= —[O, P', —ibad', 0] .
p ~ p p,

(2.6)

(2.7)

The Bel-Robinson "superenergy" has been suggest-
ed ' '" as a useful quantity in tracking gravitational-

11wave disturbances. The superenergy tensor is defined as

We define the vectors 1 and k by adding and subtracting a
spacelike unit vector r (orthogonal to a„and b„) and a
unit timelike vector n normal to the time slices:

where

apys T~( apyv+p s + +apyv p s (2.10)

k = —(n +r )= —[PP —a, 0, 0, $ ],v'2 v'2 (2.&)

l = —(n r)= ——[ —PP —a, 0, 0, —P ] . (2.9)v'2 v'2

For the metric (1.1), 40, Vz, and V4 are the only non-
vanishing scalars. These scalars were given the following
physical interpretation by Szekeres: %0 and %4 represent,9

transverse waves propagating along the —r (negative z
axis) and the +r (positive z axis) directions, respectively,
while the %2 term is the "Coulomb" component dominat-
ed by nonradiative time-dependent gravitational fields.

npy6 2 y 5 pvap ' (2.11)

It has been demonstrated' ' that this tensor has prop-
erties remarkably analogous to those of the
electromagnetic-field tensor, allowing a definition of a
kind of gravitational Beld "energy density" via T & &.
The superenergy density scalar E, associated with a
spacelike hypersurface with unit normal n is'

F-, =T.~y, n n~n&n'.

Although E, depends on the slicing of spacetime, it is
non-negative on any spacelike hypersurface and its van-
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ishing implies Aat spacetime. We can define a corre-
10, 11sponding Poynting vector

ds = —dT +T '+T 'dy +T 'dz (3.1)

p~= T &
&n~n~n y ", (2.13) where the Einstein equations restrict the constant param-

eters p1, p2, and p3'.

which, together with the superenergy, may be used to
define a local velocity field p1+p2+p3 = 1 ) (3.2a)

p p P
(2.14) p1+p2+p3 =12 2 2= (3.2b)

III. TRA VELING YVA VKS
AT SECOND PERTURBATIVE ORDER

In Ref. 3 we establish an analytical framework describ-
ing linear high-frequency waves by a perturbation expan-
sion about the spatially homogeneous solutions to the
vacuum field equations. These background solutions are
the spatially homogeneous Kasner metrics and are usual-
ly expressed in terms of proper time T as

These solutions fit our metric form (1.1) with the choices
a= 1 and P=O plus the restriction that p& =@3. There
are two such axisymmetric Kasner models: (1) p,
p = ——' (axisymmetric vacuum expanding cosmology)2 3

and (2) p &
=0, pz = 1 (Rat space in expanding Milne-type

coordinates).
In this paper we deal mostly with the axisymmetric

Kasner model. For this case the perturbation expansion
is
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FIG. 2. Same as Fig. 1 except for moderate-frequency (L =LH ) perturbations.



ND RICHARD A. ATZNERJOAN CENTRELLA, ApETER ANNINOS 43

(3.3e)

$828

(3.3a) —(l+ICi+ 2

(3.3f)

(l+h +h, ) ~

t

1/3( i+/)+$2

7l t( i—+'9~+»
t (l+g ++2),

e,=0.001
er ~~ ~

004. -

0.02-

0.00

—0.02 -.

I

(3.3b)

(3.3c) and

/3 =0+/3 &
+P2

(3.3g)(3.3d) ~= i+vI+&2

withof tIIis exPan»ion Is quantities w
arameter &

etnc (3 1) ~lt p &

—
T - and g are «for the me r

'
rvature, and q an

«l„„tr1n I

curvature. '
=O, which means t a

acetimesd and perturbed sPboth tge backgrounSllceS 1n

curvature.
&(l,

the same mean cu
defined by ~~ H

have e
'

I, frequency Is e
is the

Tbe lim1«f "'g
.

w»elengt»
borizon size. SInce

d l, the l1igh-frequencyt e~/3 R f 3) jn tbe Kaa .
b aye number) l for perturb& wa

) tbe following
itis«

on otber solutIPnsRe, w3 e found (amo g
h' bigb-frequency reKasner soluti pn$1n t 1Srst-pr er

gime:
0QQ-

0
~ I

200 250
~ . . ~ - ~ -' -' ' '

'100 15050
zone

and

„„(k,—3kt'")1

t 1/3)[sin( kz+ 3«
2(3kt

(3.4)

rw I ~ e II I ~ ~

oq(kz —3kt I '

IlD ]/3 )]/2[cog( kz + 3(kt2v'3

(3.5)

05-

0.0

resultspais«Ph perturb at1on pam l1tudewhere
en th

'
ns with

e two equal streng
psite directipn

describe w
ves traveling 1n oppo

that a slowlye coordinate speed q
attern is obtained.+] /6) standing-~a~e l

b ber-order
timevary g

d to Investiga
s fpr the

&ext, we procee
d-order equations ob solving the seep

'
h higl1-frequency

correct1ons, y '
h and '92 in t eerturbations 2

equations aslim1t.
' . We write t eseequ

(3.6)
I —(rj+hj91—0.5-,

~ I

250
) ~

100 15050
ZOD.

0

the case of modera~

n velocity «r t e
shown

FIG. 3. The +el-Rob»so
h K asner mode=L ) perturbation
' ' '

1 data with smal
ns of t efrequency (L

lots for jn tia
'

in
2 We present p

de perturbations in
in Fig.

form of Gaussian packets e ne

and

h, ——h)h')'32= »' 2t t
+—'g~ ~y3

(h', )'

2
(3.7)

er terms In t~etl1e lowest-o«
'

ns «
ave kePt Pn y

e these equatIP»
where we

. We can comb1ne
atipn

fI equency exp
-order partial diffe

ansjon. e . '
rential equaobta1n a

'
ngle second

for hz.



NONLINEAR WAVE SOLUTIONS TO THE PLANAR VACUUM. . . 1829

h2
h, +

t

h
I I
2

t 4/3
912+ 4/3 hlh1

The right-hand side of Eq. (3.8) is known in terms of the
first-order solutions presented in Ref. 3. Substituting
those solutions into (3.8) results in

2p, pf,
+P,h', . (3.8)

h2
h, + (aL))'k

cos(6kt 'i
) .

t 4/3 3t 5/3 (3.9)
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where u =2kt and A2p and c, are integration constants
defined by h 20

= h 2 ( t = t 0 ) and

g 2D 2

c
&

= tph 2p
— sin2ktp,

2
(3.12)

of the coordinate z. This allows us to assume a spatially
constant solution for h 2 with 9 h 2/Bz =O. The resulting
equation has the solution
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FIG. 5. Evolution of (5.1) plotted in the solid line is used to
characterize high-frequency L =0.05L~ traveling pulses with
a =0.001 for the free data (4.1). The dashed lines give the decay
of the wave amplitude predicted by our first-order high-
frequency perturbation solution for the Kasner model (Ref. 3).

which may be approximated by'

7T Cos Q
Si(u) =——

2 u

(3.13)

(3.14)

Bh l Bh 0h+
gt2 t 3t Bz2

(BD) k
cos 2kt (3.10)

Equation (3.9) is simplified somewhat by introducing the
variable substitution t =3t ' to rewrite it as in the high-frequency limit (kt )&1). Applying this limit

to the integral equation (3.11), we have

Note that the source terms in (3.10) are not functions
cos6kt '

Q2 =c&ln
] /3 c2 i/3 3

t p 6kt
(3.15)
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FIG. 6. Group velocity for high-frequency pulses moving
across the grid in the Kasner model for the case shown in Fig. 5.
The analytical solution t ' is given by the solid line. Trian-
gles denote code solutions which are obtained by tracking the
world line of a single wave peak.

g 2D 2 cos6kt pC3-
6ktp

+~ 2P (3.17)

We note that the first- and second-order equations for the
Aat-space [pi =0 and p2=1 in (3.1)] perturbations have
similar solutions for h. The only difference is that 3kt'
is replaced with t in Eqs. (3.4) and (3.15)—(3.17). The
second-order solution (3.15) is not a traveling wave. In-
stead, it produces oscillatory behavior in time of the
"background" spacetime with frequencies equal to the
harmonics of the first-order standing-wave solution, in
addition to providing a monotonic increase in its expan-
sion rate. To second perturbative order we find no evi-
dence of nonlinear nave interactions. In the remaining
sections of the paper we use numerical techniques to ex-
plore the solution space of the field equations. Our
findings support the analytic results.
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IV. INITIAL-VALUE
PULSE WAVE SOLUTIONS

Here we present solutions to tho e initial value equations
in he form of localized wave ulses. Te pu ses. o assure lineariza-

s ability ' we choose our free data in the form

—(2 —20 ) (2w )
(4.1)

where zo =L/2 locates the pulse peak at the grid center,
w =0.03 defines the pulse half-width as 3'7 fi as o o our grid

th
eng, a is the variable pulse amplitude d de, an o. enotes

e background spacetime: o.=+1 for Aat space and

In thi e
o. = — or t e axisymmetric expanding Kasner m d 1o e.

's section and for the remainde f th'er o is paper, we
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lar in nature to
ur simulations of Oat-space perturbations r dns prove simi-

ar in nature to the Kasner case. Note that Eq. (4.1) is
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tions. However thee perturbation term drops exponen-
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at is sufficiently fiat (vanishing first derivative

i y at periodicity is guaranteed for practical
purposes in the numerical solutions.
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a e constraint equations reproduce th he e s arp profile
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the nonlinear ca
a a. owever,
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FIG. 9. Evolution of (5.1) for the same case as Fig. 8.

turbation and background are indistinguishable. In addi-
tion, the larger-amplitude case contributes to a larger
averaged conformal factor and thereby increases the "en-
ergy" of the spacetime.

Results for perturbation lengths of order of the horizon
size are similar to those in the high-frequency case. The
nonlinear perturbation (a =0.6) interacts with and
modifies the background spacetime, resulting in solutions

quite different from the form of the free data. From Fig.
2 we see that the linear amplitude (a =0.001) which pro-
duced no visible effect in the high-frequency limit now
produces a slight but noticeable distortion in the form of
a less than exponential Aattening of the pulse boundaries.
This shows that small-amplitude perturbations may still
act as non-negligible sources for background curvature if
the characteristic perturbation length is not small com-
pared to the horizon size. '"

The large-amplitude solutions of Figs. 1 and 2 are qual-
itatively similar, differing only in their numerical scales.
These nonlinear wave distortions were predicted from
our analytical solution for P with pulse wave initial data.
This solution was based on a particular form of a local-
ized pulse in the free data which easily allowed a first-
order analytic solution. In setting the free data, the grid
was split into three parts. The center piece contained the
wave pulse, while the two outer regions were set to the
value of the Aat-space background. The conformal factor
P had exponential solutions in the regions outside the
wave pulse domain. These regions were distorted by the
wave pulse and given a nonvanishing curvature similar to
that shown in Figs. 1 and 2 as a result of satisfying the
continuity conditions for P and P' across the different re-
gions along the grid.

The local Bel-Robinson velocity field shown in Fig. 3
for the case I, =I.~ indicates that there exist fluxes of en-

ergy moving in opposite directions symmetrically. The
small-amplitude case shows that only the portion of the
grid containing the perturbation has a velocity field in the
positive and negative z directions. The distinction be-
tween the pulse and background is clear, indicating that
our data set is a superposition of two wave pulses which
propagate in opposite directions along the z axis. In the
nonlinear case one cannot separate the pulse from the
background; the entire grid has a nonvanishing Bel-
Robinson velocity field. We will discuss this velocity fur-
ther in the next section when we consider the propaga-
tion of these wave pulses.

These solutions may also be characterized by the
Newman-Penrose scalars +o and 414, which represent, re-
spectively, the leftward, and rightward-propagating
pieces of the Riemann tensor. We display %'o and %4 in
Fig. 4. Note that apart from an overall scale factor, the
profiles of 4'o and O4 in the sma11- and large-amplitude
cases are similar. However, the Coulomb part 0'2
displayed in Fig. 4 shows a marked difference in the
linear and nonlinear regimes. The traveling gravitational
waves are dominantly linear in the initial-value construc-
tion, and the nonlinearity of the Einstein equations is
confined to the nonradiative or Coulomb part of the ini-
tial data. This behavior is expected since the momentum
constraint is linear in 2, while the Hamiltonian con-
straint is nonlinear in P.

V. EVOLUTION
OF PULSE WAVE INITIAL DATA

In this section we evolve the pulselike initial data
presented above for the case L, =0.05L,~ and a =0.001.
For all the simulations discussed here, we found it neces-
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with a solid line, in Fig. 5. The amplitudes of the large
spikes, which represent moments of collision of the

sary to use 400 zones to achieve su%cient resolution to
suppress numerical dispersion. As expected from the
previous section, this initial data set consists of two oppo-
sitely traveling waves superimposed on the grid center at
t =1. They then separate and travel across the grid in
opposite directions. The periodic boundary conditions
wrap the spatial grid to connect and match z =0 with
z =L„producing a toroidal geometry. As a result, when
a wave reaches the grid boundary, it reemerges on the op-
posite side traveling in the same direction.

We characterize the evolution of the metric component
g by plotting the quantity

pulses, are twice the amplitude of the individual peaks
described by the regions between the spikes. This indi-
cates that the wave pulses are behaving in a linear
manner during the collision since their combined ampli-
tude during the interaction period is a linear superposi-
tion of their individual peaks. The dashed lines of Fig. 5
are plots of the function bt ' where b =a for the top
curve and b =a/2 for the bottom showing that the peak
amplitudes decay as t ' as predicted from our first-
order high-frequency wave solutions for the Kasner mod-
el 3

Note also that the distance between the spikes in Fig. 5
is gradually increasing, indicating that the coordinate ve-
locity of the wave peaks is decreasing. This behavior is
predicted by our analytic solutions (3.4) and (3.5) describ-
ing the propagation of small-amplitude high-frequency
monochromatic traveling waves. We showed that our
metric variables are given by solutions of the form
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initial data at t =1.
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W(a) is the dispersion relation. From these equa-
cities are thetions we find that the phase and group velocities

al to t . We note that this is also the
coordinate velocity for photons propagating in e

eneous Kasner model, indicating that wave pulses are
11 1 s to first order. This result sug-traveling along nu ines o

aves such as sma-ave ll-ges s at that any group of linear wave,
amplitude pulses, will propagate with a time- pe-de endent

We now show that the group velocity produced by the
with this analytical expression. Figure 6

lots the analytic solution with a solid ine an
1 The computed results were ob-results with triang es. e

sin le eak and
'

ed b tracking the world lines of a single pea antaine y ra
moves with uni-kin the assumption that the pea m

form velocity between collisions (this assump
'

tion is not
1 1'd and is responsible for the slight discrepan-

' . 6. Veloci-cies between theory and computation in ig.
ties were ca cu a e e1 1 t d b tween moments of collision by

~(t)ei(kz+3kt ) (5.2)

re denotes any metric or momentumm variable and
(t) is a ower-law denot-the time-dependent amplitude y't is a p

wave art of (5.2) is describe ying wave decay. The wave p
th oscillating piece whos pe hase we eno e ye
0=kz+3k ' . For an arbitrary phase g, z t) we can
define' the local wave number

Az I /2n+ I/2)
code gt tn+I (5.5)

where', /2 is the distance between collisions which occur
at the grid center and edges at time t and "+' hnd t"+' (the in-
teger n denotes the nth collision).

The fIat-space perturbations have solutions of the form

1.00, -
X=X(t)e i (,kz+kt)

(5.6)
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also noticed by Ove' who has studied similar initial data.
The difference between the smooth regions before and
after the wave front diminishes with time. This is attri-
buted to the expansion of the Universe and the growth of
the horizon size which together decrease the ratio L/LH,
resulting in more linear behavior. The metric component
g,„also displays this type of behavior (see Fig. 8 to be
discussed below).

The difference between the smooth regions in front of
and behind the wave pu1ses is sensitive to the size of the
characteristic perturbation length relative to the horizon
size. To verify this we evolved small-amplitude
(a =0.001) initial data identical to the previous case ex-
cept with L =LH. We plot the quantity (5.7) in Fig. 8.
Dashed lines refer to the initial data at t =1 and the solid
lines to t =2. This figure is to be compared with Fig. 7
for which L =0.05L&. The high-frequency small-
amplitude pulses in Fig. 7 behave more like linear travel-
ing waves. The propagation of lower-frequency waves

affect the background regions of spacetime more visibly
as seen in Fig. 8.

We also present, in Fig. 9, the evolution of the quantity
(5.1) for the case L =LH, which shows very noticeable
dips following the large spikes at early times. Initially,
differences in the background spacetimes following and
preceding the wave fronts are large. However, these
differences diminish dramatically in time as the waves de-
cay and the cosmology expands and L becomes smaller
than the horizon size LH.

We present profiles of the Newman-Penrose scalars
and Bel-Robinson velocity in Figs. 10 and 11 for the case
of small-amplitude perturbations with L =LH at time
t =2 when the two pulses are well separated in space.
These graphs are to be compared with Fig. 4 where we
have plotted the corresponding initial-value quantities at
t =1. Note that the space profiles of %'0 and %4 describ-
ing the individual pulses at t =2 may be superimposed on
the corresponding profiles at the initial time t =1 to yield
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qualitatively the same shapes. They differ only by an
overall scale factor attributed to the cosmological expan-
sion and evidenced in the conformal factor. We also note
that %2 exhibits a difference in background values on ei-
ther side of the wave fronts. This suggests that the two
traveling wave pulses interact linearly while the Coulomb
part %'2 behaves nonlinearly as we observed in the previ-
ous section.

In addition, we find from Fig. 11 that the velocity U

defined by the ratio of superenergy to Aux is a useful
quantity in tracking our wave solutions. We present a
plot of the maximum value of U across the grid versus
time in Fig. 12. Triangles represent the code solutions
for the value of v at the peak, and a solid line graphs the
analytic expression of the group velocity =t — . The2/3

peak of the Bel-Robinson velocity across the grid is equal
to the coordinate speed of light and is thus a measure of
the wave propagation speed for a pulse as it travels along

the z axis.
Finally, we mention that our work included large-

amplitude (a =0. 1 —0.5) pulse waves with high
(I. =0.05LH ) to moderate (L =LH ) frequencies. Our re-
sults for these cases are qualitatively similiar to the
smaller-amplitude (a =0.001) cases with the correspond-
ing frequencies. Figure 13 shows the Newman-Penrose
scalars for the initial data (4.1) with a =0.1, w =0.03,
and L =0.05LH, and Fig. 14 displays their profiles at a
later time when the two pulses are well separated in
space. One can see that the propagating pieces %0 and O4
display no evidence of any nonlinear interaction, while
the nonradiative component V2 is visibly altered as the
wave pulses separate. The wave pulses distort the space-
time through which they propagate in a more complicat-
ed fashion than the corresponding small-amplitude case
in addition to affecting the level of the smooth or back-
ground regions through which they travel.
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VI. CONCLUSIONS

We have presented linear and nonlinear solutions for
"wave packet" free data to the Einstein equations in an
expanding Kasner cosmology. Although we have not
presented graphical illustrations of fIat-space perturba-
tions in this paper, we note that they possess the same
qualitative features as the Kasner perturbations. To aid
in understanding the numerical solutions, we computed a
number of diagonstic quantities, including the Newman-
Penrose scalars and the Bel-Robinson velocity, both of
which provide useful characterizations of wave proper-
ties.

We found that both the perturbation amplitude a and
the ratio L/LH of perturbation length to horizon size are
important parameters. The linear high-frequency regime
is the limit of a, I /LH « 1. In this limit solutions to the
initial-value equations reproduce the localized nature of
the free data, and one has the picture of a distinct wave
pulse propagating on an otherwise undisturbed back-
ground spacetime. In the nonlinear regime a, L/LH —1,
'perturbation" and background are indistinguishable in

the metric components. Our results indicate that our
perturbative analysis breaks down at a, L/LH-0. 05,
where nonlinear behavior is clearly evident (see, for ex-
ample, Fig. 7) and not modeled by our analytic methods.

For the small-amplitude (a =0.001) moderate-
wavelength (L =LH ) case, we found a dominantly linear
wave behavior, since the shapes of the two waves before,
during, and after their interaction are qualitatively the
same. The nonlinearity shows up in the single Newman-
Penrose scalar +2, which exhibits very different profiles
when the two peaks are separated and when they are in-
teracting. Furthermore, large length scale perturbations
have the peculiar property that background regions in
front of and behind the waves are different. This behav-
ior is evident in our plots of +2. It appears that the non-
linearity of the Einstein equations is evidenced in the
nonradiative of Coulomb part of the curvature tensor
R apy5'

To lowest order linear high-frequency waves travel
without dispersing (co=k for liat space and co=kt
for the Kasner model) along null lines with coordinate ve-
locities equal to the velocity of light. We presented nu-
merical evidence of this through the computation of the
Bel-Robinson velocity and the tracking of the world lines
of the wave peaks. While we have not obtained a disper-
sion relation to second order, we were able to derive some
analytic results in the nonlinear regime. Our analytic
second-order solution shows that a first-order standing
wave produces a homogeneous oscillation with frequency
equal to the second-harmonic frequency of the linear
wave and increases the expansion rate. The detection of
wave dispersion is complicated by artificially induced nu-
merical dispersion attributed to finite differencing. How-
ever, we have demonstrated that numerical dispersion
for our case vanishes with higher resolution as —(b,z)
and is therefore a controllable problem and not
significant in the cases presented here. We have found no
numerical evidence of su%ciently well zoned waves
dispersing, nor have we found any tendency of waves to

steepen and shock. Wave pulses propagate essentially
linearly.

We have also evolved large-amplitude waves in the
moderate- and high-frequency regimes for both the Aat

and Kasner backgrounds. The results in those cases
proved similar to the small amplitude moderate-
frequency perturbations which showed a dominantly
linear wave propagation. Nonlinear behavior was found
only in the Coulomb field.
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APPENDIX

In this appendix we present results for all geometrical
quantities necessary to describe our three-metric defined

by (1.1) as

1 0 0
O h O

0 0 1

The nonvanishing Christoffel symbols for the metric (Al)
are

(Al)

r' = —2& r' =2& +"
11

~
r 23

r' =2& r' =2&
13

p
& 33 (A2)

r' = —2h' —hh',
22

where primes refer to differentiation with respect to the
coordinate z. Using these, we derive the components of
the Ricci tensor:

R = —2 —2 —2
(p')'

11

P "h (P'h )
22

R = —4 +4 —233

h'

h

—4 —hh",

h' P' h"
h P h

(A3)

and the corresponding scalar curvature

R= —8 —8 —2
h' P' h"

y5 hy5 hy4
(A4)

+n&n E &+n e„&B~&—nl3e„&B"

+n e„&B"—n e„&B"+e IJ„E"e ~ (A5)

We have found it convenient to decompose the vacuum
four-dimensional Riemann tensor R I3&&

into its "elec-
ric" E ~ and "magnetic" B ~ parts' ' a

R ~&z&
= n ~ n &E&z

—n ~n zE&&
—n&n &E~z
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where

Eap =n R yap5n
y 5

yp A, v
Bap 2~a n ypRq~y

(A6)

(A7) V Y11Y22
(Ep3+ I E —I 23 +E). (A 11)

with ey"=ay" pnP and yp=gp+n np, where g p is the
full four-dimensional spacetime metric defined by (1.1).
The unit normal vector field to a given time slice is denot-
ed by n and e py is the completely antisymmetric Levi-
Civita tensor density. The tensors E p and B p are useful
because they can be constructed from our local three-
metric y p and the extrinsic curvature tensor' ' as

1
0

=1
4

Ezz

. y22

Ezz

yzz

E»
y11

B

+Y11Y22

B,E11

+YiiY22
(A12)

The Newman-Penrose scalars are written in terms of
E pandB pas

E;.= —R; —EK; +K, E
1mn kB; =y, ly ke D, K

(A8)

(A9) 2 2 y33

where Latin indices denote spatial components and
Epp

=B0p
=0. The nonzero comPonents for our three-

metric (Al) are written as

and the Bel-Robinson variables as

R

y»
B1z Ezz

'Y 22

E»
(A13)

Ezz =(E ~) —EE 2—
yzz

Rzz

y22
(A 10)

y22y»

E E» + 22 E33
2

(B&2)+
y»yzz

R33E33 =(E 3) EE 3— where Y is the detertninant of (Al).
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