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Topological quantum mechanics
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The quantum theory of a type of generally covariant field theory, that has no local degrees of free-
dom, is described. Physical observables that capture topological properties of the manifold are
identified and a representation of their Poisson algebra is constructed to obtain the quantum theory.
A non-Abelian generalization to SU(2) is also discussed in a similar way.

INTRODUCTION

There has been renewed interest in 2+ 1 gravity recent-
ly following the work by Witten, ' who showed that this
theory can be described by a Chem-Simons action for the
group ISO(2, 1). Horowitz has presented a class of exact-
ly solvable diffeomorphism-invariant theories that are of
a similar type. These theories are finite-dimensional
dynamical systems in which, when viewed from a canoni-
cal point of view, the diffeomorphism constraints on the
phase spaces of the theories do not appear explicitly.
Rather, the diffeomorphisms are generated by linear corn-
binations of other constraints (that arise naturally) on the
phase spaces. It is this fact that makes this class of
theories, which includes 2+1 gravity, exactly soluble
classically and quantum mechanically. It also appears at
present (from the known examples) that this type of
simplification (diffeomorphisms appearing implicitly)
occurs only if the theories are finite-dimensional. For ex-
ample, this situation does not arise in 3+ 1 gravity.

For four-dimensional diffeomorphism-invariant theo-
ries, there is another way of dealing with diffeomor-
phism constraints in the quantum theory. This is via the
loop representation for the quantum theory, which was
developed for general relativity in the context of the new
Hamiltonian variables discovered by Ashtekar. The
representation space is the space of complex-valued func-
tions of loops on the spacelike surfaces. In this represen-
tation, it is possible to construct, via the Dirac procedure,
a class of physical states for general relativity. These
states are functions of knot classes of the loops.
Specifically, the functions of knot classes of loops are
diffeomorphism-invariant and it turns out that these are
also annihilated by the Hamiltonian constraint.

In this paper I first discuss the quantization of an
Abelian topological theory via the loop representation.
A non-Abelian generalization to SU(2) is then described.
The motivations for this work are (i) to study the loop
representation in a four-dimensional generally covariant
theory that is much simpler than general relativity, (ii) to
see explicitly what quantum-mechanical systems result by
constructing a representation of a Poisson algebra of to-
pological observables, and (iii) to see what differences (if
any) occur in the characterization of the physical states if
the diffeomorphism constraints are treated explicitly as

opposed to implicitly as discussed above (where the
diffeomorphisms appear as linear combinations of other
constraints, and the Dirac conditions for these latter con-
straints are used for canonical quantization).

ABELIAN THEORY

Consider the (Abelian) theory described by the action

FRB .

Here F =d 3, the curvature of an Abelian connection
"3, and B is a two-form. The action is invariant under
the usual gauge transformations 3 —+3 +dA, and also
under B~B+du where A and co are, respectively, arbi-
trary functions and one-forms on the manifold. The
equations of motion are

F=O, dB =0 .

Assuming the spacetime topology to be X XR, where X is
a compact three-manifold, one finds, upon performing a
3+ 1 decomposition, that the canonically conjugate pair
is 3, and E'=e' 'Bb„where A, and B,b are the pull-
backs to X of A„and B„,and e' ' is the Levi-Civita
tensor density on X. The fundamental Poisson brackets
is

I A, (x),E "(y) I =5,5 (x,y)

and the constraints (obtained by pulling back the equa-
tions of motion to X) are

F, =0, B,E'=0 .

In this form, these constraints are of the same form as
those of 2+1 gravity. A pair of physical observables
(phase-space functions that have weakly vanishing Pois-
son brackets with the constraints) can be defined for the
theory. These are parametrized by loops and closed two-
surfaces in X and are

T [yl(A)=U (s) and T'tS](E)=i I d cr n, E', (4)

where U (s)=P exp( I 2) is the holonomy of A around
the loop y with the base point y(s) and S is an embedded
two-surface in X specified by the normal n, . The Pois-
son brackets of these observables is nonzero only when
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the loop y intersects the surface S. It is

IT [y](A), T'[S](E)j=ih(y, S)T [y](A),
where

b(y, S)= f ds f d o y '(s)n, (o )5 (y(s), S(o )) .
y S

The structure function b, (y, S) is a (diffeomorphism-
invariant) constant that measures the linking number of
the loop y with the surface S.

One can construct the linear combination of the con-
straints

C, =E F,„—A, B E

and verify that

[C(N), C(M) j =C(X&M) and I C(N), 3, j =X&3, ,

where C(N) = JzN'C, and X denotes the Lie derivative.
A similar equation holds for the Poisson brackets of
C(N) with E '. This shows that the C, generate
diffeomorphisms. At this stage it is important to point
out that the constraints (3) imply the diffeomorphisms (6),
but the converse is not true. Thus the constraints F,I, =0,
although the same in number, are in this way "stronger
than diffeomorphisms. " The observables (4) are of course
diffeomorphism-invariant.

I now describe the canonical quantization of this
theory using a loop representation in a way similar to
that used for 2+1 gravity. There are two ways to do
this. One way is to use the constraints (3) and physical
observables (4) and find a realization of the observable
algebra on functions of loops (loop space representation).
The other way, which is discussed briefly later, involves
replacing the constraint F,b

=0 by the diffeomorphism
constraint C, . It may be argued that doing the latter is
not relevant to the original theory since the
diffeomorphism constraint does not arise directly in the
3+1 decomposition of the action (1). While this is true,
it is also true that the theory is diffeomorphism-invariant
and investigating the differences in the resulting quantum
theories may help in understanding a similar issue in
3+1 gravity. [This issue is the following. In the La-
grangian basis for Ashtekar's variables due to Samuel,
the action is the integral of a four-form. In its 3+1
decomposition the diffeomorphism (and Hamiltonian
constraints) do not arise directly but are derived as the
C, was above. There is, however, another Lagrangian
formulation for which this is not the case. '

]
Considering first the situation with the constraint

F,b =0, one sees that on the constraint surface, the non-
trivial observables To[y] will depend only on the set of
noncontractible loops y in X. Analogously, since the
Gauss-law constraint is the same as B(,Bb,)

=0 (vanishing
"curvature" of a two-form), the nontrivial observables
T'[S] depend only on the set of closed, noncontractible
tie surfaces S in X. T-he term noncontractible here, and
in the rest of the paper, is used to signify nontrivial
homology, since the constraints select the classes of loops
and closed two-surfaces that are not boundaries.

[iz ]A [I3]=A [cto P] (8)

and

"T'[S]A[a]=iiib (a,S)A [a], (9)

where ctoP is the homotopy class of the loop formed by
composing the loops a and P (via their common base
point). Note that in this realization of the algebra, the T
is diagonal. From (8) and (9), the commutator is

[V [y], 7'[S]]=—A'b(y, S)V [y] (10)

using 6(ct&&P,S)=b,(o., S)+b(P,S). It follows from this
that the Poisson algebra is recovered in the classical limit

lim [, ]=[, j.1

There is a natural inner product on this space, namely,
that the functions of homotopy classes that are different
eigenfunctions of V' are orthogonal. The 7 and '7' are
analogous to the raising and number operators for the
simple harmonic oscillator as may be seen by comparing
Eq. (10) with [a,N] = —a .

I now turn to the specific examples for spatial topolo-
gy, S XS' and T, and specialize the representation (8),
(9) for these cases.

For the topology S XS', there is only one (homologi-
cally) noncontractible loop (that which wraps around the
S'), and so there is one basic observable of the type T
that I will call T [a]. (There are more operators based
on this loop labeled by integers n, T [na], but it is
sufficient to consider only the "generators". ) Similarly,
there is only one noncontractible closed two-surface in
this space, namely, that which wraps around the S . The
corresponding observable is T'[S ]. [Note that while
any genus surface may be embedded into S ' XS, any ex-
tra handles on the noncontractible S may be shrunk
away on the constraint surface without obstruction.
Also, H, (S'XS )=H~(S'XS )=Z. ]

The loop space states, ~n ) ( =
~

n) ) are labeled —by in-
tegers corresponding to the winding numbers n around

There are thus as many T 's as there are generators of
the first homology group Hi(X) and as many T's as
there are generators of the second homology group
Hz(X). To see if these observables can form a basis for
the phase space, one must check that the loop and sur-
face observables are the same in number (since the phase
space must be even-dimensional). That this is so follows
from a theorem that Hi(X) and Hz(X) are isomorphic
for a three-manifold (Poincare duality). This will become
clearer when some specific topologies are discussed
below.

To construct a representation of the observable alge-
bra, and hence obtain a quantum theory, consider
complex-valued functions of the homotopy classes of
(homologically nontrivial) loops, A [y ], that satisfy
A[y]=A[y '] and A [a UP]=A[a&&P]. These rela-
tions reflect the parametrization invariance of the loops
and the Abelian nature of the holonomies. The actions of
the opevator observables T are defined by
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It is easily verified that the correct commutation relations
are satisfied. The inner product is simply (m~n ) =6„

The T case is a bit more complicated. There are three
basic noncontractible loops (those that wrap around each
S' in T ). There are thus three T observables, one for
each loop: T [a], T [b], and T [c]. Similarly, there are
three basic noncontractible two-surfaces and hence three
T' observables. These correspond to the three two-tori
in T so that these observables may be specified by pairs
of noncontractible loops: T'[a, b], T'[b, c], and T'[a, c].
[Note that H, (T ) =H2(T ) =Z . ]

The loop space is defined by the states
~n» n2n 3)(=

~
n&—, nz, —n3) ), wi—th the three integers

n; corresponding to winding numbers around each S'.
The six operators corresponding to the observables N
and T' act on these states as

7 [a]~n, , n2, n3)=~n, +l, nz, n3)

and

V'[a, b] ~n &, n2, n3 ) =iri(n &+n2) ~n &, nz, n3 ), (12)

with similar definitions for the others. It is again easy to
verify that these satisfy the correct commutation rules
(10). In particular, one finds that

[7 [a],7'[a, b]]=—iris' [a]
and

[7 [a], 'T'[b, c]]=0 .

(13)

The inner product is ( m, , m, zm~n3, , n n23 )
=5 „5 „6 „.The Hilbert space for T is thus

three copies of the one for S'XS .

NON-ABELIAN THEORY

I now describe, along similar lines, a non-Abelian gen-
eralization of this theory. The action (1) is now replaced
by Tr f F RB where F is the curvature of a connection
A„where the indices i are internal Lie-group indices.
The two-form B„' also acquires an internal index. The
canonical breakdown shows that the phase-space vari-
ables are (A,', E") with E"=e' 'B&, . The constraints
are

F,'b =0, D E"=0
a

the S'. The definitions of the operators V'(8), (9) become
for this case

7 [a]~n ) = ~n +1) and 7'[S ]~n ) =fin~n ) .

where D, is the covariant derivative. There are again
two sets of physical observables. One set is parametrized
by loops, and the other by loops and closed two-surfaces
in X. These are

To(y](A)=Tr[U (s)]
and

T'[[P],S](A,E)=i f d a'n (a )Tr[E (o )U&(, (a)] .
S

The second observable T' requires some explanation.
Consider a loop P(o ) (in X) attached to the surface S at
the point o., and at this point construct the trace
Tr[E (o )U&( )(a)]. This quantity is clearly invariant
under the transformations generated by the Gauss-law
constraint. Consider now a neighboring point o. ' on S
and define a loop /3( a) based at this point as follows: in-
troduce a curve y that connects o. and o. ' and let
P(o. ') =y '& P&& y(o ') where o denotes the usual composi-
tion of loops and y

' is the opposite traversal of the seg-
ment y. (This, in fact, is the construction used to estab-
lish the isomorphism of the fundamental groups based at
different points. ) After constructing the holonomy asso-
ciated with this new loop, the trace with E is constructed
as before. The base point of the original loop is smoothly
extended in this way to all points of S, the holonomies at
each point constructed and then traced in the above way.
The integral is then a sum of all these contributions de-
pending on the extended set of loops denoted [I1I.

A few remarks are in order regarding this construc-
tion. Firstly, the Ui3(cr) are in this way extended to all
points o' in S. In particular, the construction does not
change the homology class of the original loop. Second-
ly, this extension involves introducing arbitrary curves y
(for each point on S) which appear to imply an infinite set
of such observables. This is true oQ the constraint sur-
face only. As will be pointed out below, for a specific
spatial topology, there is always a finite number of these
observables on the constraint surface, where one is con-
cerned only with loops that are homolog&cally nontrivial.
Lastly, there is an ambiguity inherent in the definition of
T' when the two-surface S is other than S . This arises
because there is more than one way of setting up a loop at
a point o. ' given one at o., due to the arbitrary nature of
the curve y that connects these two points. In particular
one may choose another curve y' such that the closed
curve y o y is noncontractible. This situation is avoid-
ed for S where all such closed curves are contractible.
The remaining discussion for the non-Abelian theory is
therefore restricted to the spatial topology S' XS .

To see that T' has vanishing Poisson brackets with the
F=O constraint, we first observe that

[F(A),n, ( )Ex'(x)] =e'"'n, (x)D&A', (x)

[where F(A) = jze' 'A,'Ft„]. Therefore,

[F(A), T'[[PI,S]]= f Tr[U~(d„A, +[~,, A, ])]~' dn' a
S

= f Tr [d, ( U&Ab )
—

( d, U& )Ab + U& [ A„Ab ] ]dS'b
S

= f Tr[A, Db U&]dS'"=0, (16)
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[T [a],T'[[PI,S]]=ih(a, S)(T [ao [/3[] —T [ao [P] ']),
[T'[[aI,S],T'[[P],S']]=id(a, S')(T'[[aoP],S]—T'[[aoP 'I, S])—ib(/3, S)(T'[[Poa],S ]

—T'[[Poa '],S']),
(17)

(18)

where dS'"=e' 'n, d o. The third equality follows because U&Ab is a one-form and hence fzd, (U&A&)dS' =0, and
the last follows from the equation satisfied by the holonomy, namely D, U& =0.

Specializing now to the SU(2) case and using the fundamental representation for the traces, one finds that the observ-
ables form the following closed Poisson algebra

where

T'[[a Po],S]=I d on, Tr.[U
~

~(o', o)E'(cr)U
~

~(o, o'')Ut3~ ~(o', o')]
S

(19)

and 5(a,S) is as defined in Eq. (S). The precise path
along the combination ao/3 between the surfaces S and
S' that occurs in the Poisson brackets is indicated
in Eq. (19). The relation Tr( A r') Tr(B&') =Tr( AB)—Tr( AB '), where A, B are SU(2) matrices and r' are
the Pauli matrices, has been used in calculating the Pois-
son brackets.

As for the Abelian case, on the constraint surface these
observables depend only upon the noncontractible loops
and closed two-surfaces in X. A representation of their
algebra may again be realized on complex valued func-
tions of homotopy classes of loops, A[@]. However,
there are now relations between the states induced by the
equation Tr( A)Tr(B) =Tr( AB)+Tr( AB ') for SU(2)
matrices, namely, A [a U/3] =A [ao P]+A [ao P ']. The
representation is defined by

gy. It is not clear what these are.
The physical observables defined in Eq. (15) may be ap-

plied for any non-Abelian group. However, in order to
calculate the Poisson brackets and see if the algebra is
closed, one would need trace identities for the relevant
group, analogous to those used for SU(2). It is these iden-
tities that determine the action of the observables in the
loop representation. Furthermore, the number of these
observables on the reduced phase space appears to be in-
dependent of the group since the reduction via the con-
straints depends only on the spatial topology. However if
the trace identities for the relevant group are such that
the Poisson algebra no longer closes, then there will be
other observables generated via the Poisson brackets.
The question of how many observables there are will then
depend on the group and a hint toward the answer pro-
vided by the details of the Poisson brackets.

[a]~[/3] =~ [ao P]+~ [ao P ] (20)

7'[S,a]A [P]=A'A(P, S)(A [ao P]—A [aoP ']) . (21)

The '7' observable is now not diagonal (as was true for
the Abelian case). Using these definitions it is straight-
forward to verify that the commutator algebra reduces to
the Poisson algebra (17), (18) in the classical limit.

For the topology S'XS, on the constraint surface,
there are again only two observables: T [a] and T'[a, S].
The representation (18), (19) specializes for this case with
the definitions

2 [a]ln &
= In +1&+ In —1),

&'[a,S]In ) =An (
I
n + 1)—

I
n —1) ) .

Using these one can verify the commutator
[V [a], T'[a, S]]= fi(V [a ]

—7 [o ]—), where 7 [o ]
=2 and o denotes the zero loop. The other commutators
are zero. This is consistent with (17) and (18) for which
the right-hand side (RHS) vanishes if the loops and sur-
faces are the same (as is the case here). The inner prod-
uct may again be taken to be (mIn ) =5 „. However,
neither operator is diagonal in this basis.

As pointed out above, the observable T' ceases to be
well defined for any spatial topology for which the em-
bedded noncontractible two-surfaces have genus greater
than zero (S ). Since the phase space for all cases is
even-dimensional, there should exist observables linear in
the momenta that are partners of the T for any topolo-

CONCLUSIONS

To conclude, I discuss briefly an alternative way of
viewing the quantum theory for the Abelian case. This
comes about by using the diffeomorphism constraints C,
(6) explicitly, rather than F,t, =0, to carry out the quanti-
zation. Consider now complex-valued function als of
loops (not homotopy classes of loops) A [y], the physical
states are determined by imposing the diff'eomorphism
constraints on this space via the Dirac procedure. The
result, as for 3+1 gravity, is that the physical states are
functions of the knot classes of loops on X. Further, on
the constraint surface, the observable T would depend
on the knot classes as well, and T' on the diff'eomorphism
equivalence classes of closed two-surfaces in X. From
this point of view, though, it is not clear at present how
to define a representation of the observable algebra analo-
gous to (8) and (9). The physical states that appear in this
way seem, at first sight, to be the same as (at least a sub-
set of) the ones for quantum gravity. However, the loop
space that one starts from in 3+ 1 gravity is different in
that the internal group there is SU(2), which results in
certain linear relations among the unconstrained states.
In the case of U(1) however, there are no relations. But it
is not clear how the physical states, the functions of knot
classes, retain information about the original internal
group.

To summarize, the quantum theory of a particular gen-
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erally covariant field theory has been described by con-
structing a representation of the Poisson algebra of its
physical observables. Non-Abelian generalizations can
be similarly discussed with some restrictions. It seems
possible to quantize other topological field theories along
these lines.
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