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We examine the structure of the spacetime singularities formed during the radial infall of a
coherent stream of charged "photons" —a piece of the charged Vaidya metric. Under the assump-
tion of homotheticity, we are able to give an essentially complete account of the singularities which
develop. The model derives its usefulness from the very rich structure it exhibits, including the gen-
eric appearance of naked singularities.

I. INTRODUCTION

The now classic theorems of Hawking and Penrose'
have established the existence of singularities, in the sense
of tirnelike and null geodesic incompleteness, under con-
ditions appropriate to general-relativistic cosmology and
gravitational collapse. The true nature of these singulari-
ties remains unclear. Progress, however, can be made
from the study of known exact solutions of Einstein's
equations modeling various collapse scenarios. Unfor-
tunately, only a few such solutions are presently known,
and these are characterized by a number of simplifying
assumptions. Therefore, adopting them as candidates to
describe realistic collapse is a dubious procedure. Never-
theless, they do offer the opportunity to explore the prop-
erties of singular spacetimes and, in the case of curvature
singularities, to address issues such as global or local
nakedness and strength. From this perspective it is
clear that the more solutions we have available the better.
It is in this spirit that we present here an essentially com-
plete analysis of the singularity structure associated with
the homothetic spherical collapse of a charged null
Auid. We do not claim that the radial infall of a "self-
similar" stream of charged "photons" represents a physi-
cally realistic collapse scenario (see also note added).
Rather, the usefulness of the model we present derives
from the rather remarkably rich structure it exhibits.

Our discussion is organized in the following way.
After a brief review of the model in Sec. II, the restriction
to homotheticity is imposed in Sec. III. We discuss
boundary conditions in Sec. IV, and Sec. V presents the
global features of the model which we discuss in Sec. VI.

where m =m (v, r), )t)=g(v, r), d 0 =—dg +sin gdg, and
r ~0 is an alone parameter along the null generators of
the v=const null hypersurfaces. The function I has an
invariant meaning. In particular, it is deAned by
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Moreover, I is related to the gravitational energy within
a given orbit of the SO(3) group.

The model considered in this paper is obtained from an
energy-momentum tensor of the form

T"=pl"I +E", (3)

where l = —5„' (so that l„lt'=0), E)' is related to the
electromagnetic tensor F„ in the familiar way
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and F„obeys Maxwell's equations 7't F„ I
=0, and

V F „=—4'„,where J„ is the four-current vector.
For the metric (1) Einstein's field equations reduce to
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and g(, ), i=1,2,3 are the spacelike Killing vector fields
obeying the algebra of SO(3):

II. SPHERICAL COLLAPSE
OF A CHARGED NULL FLUID

8711 = —4wr T,',
BT

(5b)

We consider the radial infall of a coherent stream of
charged "photons" —the charged Vaidya metric. To re-
view the dynamics we work in ingoing Bondi coordi-
nates (v, r, 8, $), which give the line element

=4~rT rr

Without loss of generality we take the vector potential

(5c)
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where e ( v ) is arbitrary. As a result, the nonvanishing
components of F„, are F„,= F—,„=e(v)/r, and it fol-
lows from (4) that

e (v)E", = diag( —1, —1, 1, 1) .
8~r4

g=v +ra a
c)v BT

generates infinitesimal homothetic motions. That is,

VA-+ V.4=2g"
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From (3), (Sb), and (7), then,

m =F(v)—e (v)
2p'

where F is arbitrary. In addition, with (5a) and (8),
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r
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However, as was shown elsewhere, " if a homothetic
geometry admits null geodesics which are simultaneously
orbits of the infinitesimal generator, then as long as at
one point along such an orbit KWO and R &g /~&0, the
orbits necessary (if incomplete) terminate in a strong cur-
vature singularity. (For the model considered in this pa-
per, KWO, but R &Pg~ can be 0.) To apply these results
we note that the null orbits obey

where an overdot denotes d jdv, and finally, with (Sc),
P=tt(v), which allows us to set /=0 in what follows.
Note that

Pg =J[2—f(J)J]=0,
where J =v/r and

(16)
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while the remaining Maxwell equations and Bianchi iden-
tities are automatically satisfied. Thus there exists two
degrees of freedom describing the injection process: F (v)
and e(v) describe the injected mass and charge, respec-
tively. However, we should point out that the resulting
stress tensor does not in general obey the weak-energy
condition. In fact, it is straightforward to show that for
every vector field k, k k = —a, the following equality
holds:

T k~k =p(l„k")'
2

[g ~2 [(ke) +(k~) sm 6)]] .
8~ p4

(11)
Thus local violations of the weak-energy condition take
place in the regions of spacetime characterized by p (0. '

With (8), the Kretschmann scalar (K—=R
& sR

R & s the Riemann tensor) for the metric (1) reduces to

f (J)=p J 2M+—1 . (17)

The orbit J—:0 is an incoming one and essentially corre-
sponds to the null (geodesic) generators of the v =0 initial
null hypersurface. ' On the other hand, it is easy to veri-

fy that any solution of the algebraic equation

fJ —2=0 (18)

corresponds to an outgoing null orbit. Furthermore,
along any solution of (18) we have

V„(Pg ) = —2( —
A,J +J —3)g„, (19)

and so every null orbit is a null geodesic orbit. Further-
more, they are complete' ' provided

AJ —J+1=0 . (20)

Thus, by studying the spectrum of solutions of the alge-
braic equation (18) in combination with (19) and (20), the
structure of the central singularity is exposed. However,
before doing so, let us describe the model in more detail.

and so for F and e&0 the metric is scalar-polynomial (SP)
singular along r=O. Further analysis of the structure of
this singularity is initiated by a study of the transverse ra-
dial null geodesic equation

dr 1 2F(v) e (v)
dv 2 p y2

(13)

We consider the metric (1) in the range 0 ~ v ~ v, and
m given by Eq. (8) with F =A, v ( A, =const )0) and
e (v) =p v ()tJ, =const). It follows that the vector field

In general, Eq. (13) does not yield to analytic solution. If,
however, F ~ v and e ~ v, Eq. (13) becomes homogene-
ous and can be solved in terms of elementary functions.
This simplification in fact has an invariant geometrical
significance to which we now turn.

III. HOMOTHETICITY

IV. BOUNDARIES TO THE NULL FLUID

For v(0 we take F(v)=e(v)=0, and for v ) v, we
take I' =e=0, but F and e positive definite. Thus, before
the inAux of charged null Auid, we have Minkowski
space, whereas after we have a piece of the Reissner-
Nordstrom solution. Whereas much progress has been
made recently in the study of singular null surfaces, ' the
surfaces v=O and vi considered here are simply bound-
ary surfaces. In particular, for metrics of the form (1)
with m given by (8) and /=0, it follows that the coordi-
nates (v, u, 0, $) are admissible (g &

E C') across X defined

by v = v —n=O, where u is defined by

u —v F(v)v e (v)v
2 0
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FIG. 1. Essential properties of the spacetimes. Some characteristic loci are shown in the 4p -4k plane. The loci, which are not
drawn to scale, are defined as follows: Along 1 and 2 p =(A, ——,

' )[1+[1—16K. (A, —16)/3(A, ——,'s ) ]' /3I with + along 1 and-
along 2, p =k along 3, k= ~p, ~(1 —

~p~) along 4, and p =7,[1+(1—8A, )'~ ]/4 along 5. Some representative points are indicated.
Note that 2 intersects 3, 4, and 5 at (4p, 4A, )=[(—),—'], (17—12&2, 8V'2 —11), and (4/5, —,), respectively. Null orbits of the

group are given by roots to g (J)=Jf —2=0. Along 1 and 2 there are two distinct roots, the coincident root being the largest along 1

and the smallest along 2. The loci intersect at ( —', —'), where g =[(J—6)/3] /4. Outside the loci there is one root, whereas inside

there are three distinct roots. The locus 4 gives complete null orbits and these have J =1/~p~. When there is more than one null or-
bit along 4, the largest root gives the complete orbit. The weak-energy condition is violated for J ) A, /p —=Jo. Along the locus 5, Jo
is a null orbit, and when there is more than one null orbit along 5, Jo is the largest root. For the orbits Jo alone, R &@/~=0. Within
the locus 5 Jp is timelike, whereas outside the locus it is spacelike. The local violation of the weak-energy condition is summarized in

Fig. 2. Penrose diagrams for various regions of the 4p -4A, plane are shown. Our conventions are the following: A double line indi-
cates a singular boundary which, if it is null, is referred to as "shell focusing. " The heavy boundary represents 2+ (only the region
within the Cauchy development is shown). The null boundary surface is indicated by a solid arrow. Null orbits are indicated by open
arrows, the number of which gives the degree of degeneracy of the orbit. (That is, one for a root, two for a double root, and three at
the intersection of locus 1 and 2.) On and below the locus 3, the roots to f (J)=0 are indicated. The corresponding trajectories J are
spacelike within the null boundary and null exterior to it. Case a covers the region above 3 outside 1 and 2, b the locus 3 to the right
of 2, c below 3 to the right of 2, d the intersection of 3 with 2, e along 3 to the left of 2, f along 2 below 3, g below 1 to the left of 2

above 3, h below 3 to the left of 2, i the intersection of 1 and 2; j along 2 above 3, and k along 1 to the left of 2. Also shown are the
Vaidya cases p=0; l for A. ( —,', I for X= —,', and n for A, ) —,'6.
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as long as F and e are continuous. ' For v ) v, then,
with the homothetic inAux, we take F =A.V1 and
e =p v 1. From the properties of the Reissner-
Nordstrom solution, it follows that for p ) A, all outgo-
ing radial null geodesics which cross v, reach J+. For
p (k outgoing radial null geodesics which cross v1 with
r )U, /A. [1+(I p /X —)'~ ] reach J+.

Figure 1 summarizes the essential global properties, and
the caption gives an essentially complete discussion of
these. Figure 2 demonstrates the extent to which these
solutions violate the weak-energy condition.

VI. SUMMARY

V. PROPERTIES OF THE SPACETIMES

The previous sections make clear the meaning of the
spacetimes for which the metric is given by (1) with /=0
and m given by (8), with

0, v(0,
+(U)=, AU, 0 V V)

AV1, V1 V

0, v(0,
(u) —.p U, 0 U Ut

2 2 A( (
P V1& V1 —V

FIG. 2. Local violation of the weak-energy condition. Along
with the conventions of Fig. 1, the shaded region indicates a lo-
cal violation of the weak-energy condition. The region is

bounded by r=0, v =a) 0 and p'U = A,r. (a) This shows the re-

gion associated with the locus 5 in Fig. 1. The region is visible

from 2+. (b) The region associated with the interior of the
locus 5. [Along locus 1 the orbit shown is a double root, and at
the intersection of 1 and 2 it is a triple root (see Fig. I).] In all

cases the region is visible from 2+. (c) The region associated
with the exterior of the locus 5. Along the locus 3 the lower
boundary corresponds to f=0, whereas below 3 it is given by

f = 1 —
A, Ip, . In these two cases alone the region is not visible

from 3+. Note that at no time does the region under considera-
tion encompass the "shell focusing. "

We have examined the central shell-focusing singulari-
ty accompanying the collapse of a charged null Quid.
Our analysis is based on the assumption that charged
"photons" do not feel Coulomb repulsion, and conse-
quently the mechanism responsible for the formation of
the central null singularity is the same as the one charac-
terizing the uncharged Vaidya model. (However, see also
note added. ) In the limit p —+0 our results reduce to
those obtained previously' (all results concerning the
nakedness of the shell-focusing singularity characterizing
the uncharged Vaidya model can be read from the p—=0
axis of Fig. 1). However, as Fig. 1 shows, the presence of
charge alters the global structure of the spacetime.

The model offers a very rich structure, as can be seen
from Fig. 1. There are both incomplete and complete
null orbits, the former being generic. Further, whereas
R &@/~&0 is the generic condition of the model,
R &Pg~ can be zero (s'ee locus 5 of Fig. 1). This has the
consequence that the shell-focusing singularity is weak
(as measured with respect to radial, but nonhomothetic,
null geodesics) for p =1/5 and A, =2/5 . Otherwise, it
is strong (except along the single null orbit J =1,/p
along the locus 5). This behavior warrants further study
in a more general context. This is under investigation. '

It is also worth pointing out that our model shows that
violation of the weak-energy condition does not neces-
sarily prevent the formation of spacetime singularities.
This further indicates that semiclassical gravity (where
one expects violation of the weak-energy condition by the
renormalized stress tensor) may not remove spacetime
singularities. A full quantum theory of gravity may be
needed.

Note added. After this paper was submitted for publi-
cation, we received a paper by Ori. ' In this paper Ori
carefully analyzes the equation of motion of null
"charged photons. " He shows that in general there exists
a Lorentz force acting among the charged photons.
When this force is taken into account, he concludes that
the region where violation of the weak energy condition
occurs ti.e., for r (r„p(r, )=0; see Eqs. (9) and (11)j is
avoided by the null shells. The spacetime is completed by
joining along r = r, to another piece of an outgoing
charged Vaidya solution.

In this regard we may note that neglecting the Lorentz
force makes our model unrealistic. (However, we should
keep in mind that it is a self-consistent solution of the
Einstein equations which exhibits a remarkably rich
singularity structure. As such, it may be valuable when
one attempts to formulate the notion of cosmic censor-
ship in concrete mathematical terms. ) In addition, we
may note that the global structure of the spacetime ob-
tained by Ori is different than the one we have exhibited.
However, the homothetic collapse still exhibits naked
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curvature singularities. In fact, by inspection of the con-
formal diagrams (see Figs. 1 and 2), it is easy to see that
for any values of (A, ,p), for which the familiar interpreta-
tion exhibits naked singularities, the new interpretation
will exhibit one too. (Of course, globally, the two solu-
tions are characterized by a different structure. )
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