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The conventional separation of “valence”- and ‘“‘sea”-quark distributions of a hadron implicitly
assumes that the quark and antiquark contributions to the sea are identical in shape, although this
cannot be strictly correct due to the exclusion principle. A new separation of ‘“bound-valence”- and

-“non-valence”

- quark distributions of a hadron is proposed which incorporates the Pauli principle

and relates the valence component to the wave functions of the bound-state valence constituents.
With this new definition, the non-valence-quark distributions correspond to structure functions
which would be measured if the valence quarks of the target hadron were chargeless. The bound-
valence-quark distributions are not singular at small x, thus allowing for the calculation of sum
rules and expectation values which would otherwise be divergent.

I. INTRODUCTION

Deep-inelastic lepton scattering and lepton-pair pro-
duction experiments measure the light-cone
longitudinal-momentum distributions x =(kJ+kZ)/pg;
+pf) of quarks in hadrons through the relation

Fi(x,0)=3 exG, 5(x,0%) . (1
q

F f (x,0?) is the leading-twist structure function at the
momentum-transfer scale Q. Four-momentum conserva-
tion at large Q? then leads to the identification
x—xB]—Qz/Zp q. In principle, the distribution func-
tions G,y could be computed from the bound-state solu-
tions of QCD.! For example, given the wave functions

n/H(x,,kli,k[) in the light-cone Fock expansion of the

hadronic state, one can write the distribution function in
the form?

_ dx;d’k,
Gon,@0=3 [T — 5 W Crpk, 1)
X 3 8(x,—x) . (2)
b=gq

Here x;=k;" /pg =(k?+k7)/(pf+pF) is the light-cone
momentum fraction of each constituent, where 3 ,x;, =1
and Ztkii =0 in each Fock state n. The sum is over all

Fock components n and helicities A;, integrated over the
unconstrained constituent momenta.

An important concept in the description of any bound
state is the definition of ‘“valence” constituents. In atom-
ic physics the term ‘“valence electrons” refers to the elec-
trons beyond the closed shells which give an atom its
chemical properties. Correspondingly, the term “valence
quarks” refers to the quarks which give the bound-state
hadron its global quantum numbers. In quantum field
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theory, bound states of fixed particle number do not exist;
however, the expansion Eq. (2) allows a consistent
definition of the valence quarks of a hadron: the valence
quarks appear in each Fock state together with any num-
ber of gluons and quark-antiquark pairs; each component
thus has the global quantum numbers of the hadron.

How can one identify the contribution of the valence
quarks of the bound state with the phenomenological
structure functions? Traditionally, the distribution func-
tion G, 4 has been separated into “valence” and ‘‘sea”
contributions:* Gy/u —G"" +G, 7y, where, as an opera-
tional definition, one assumes

3 (x, Q=G5 (x,0%)
and thus G%y(x,0%)=G, y(x,0°)—G, ,(x,0%). The
assumption of identical quark and antiquark sea distribu-
tions is reasonable for the s and 5 quarks in the proton.
However, in the case of the u- and d-quark contributions
to the sea, antisymmetrization of identical quarks in the
higher Fock states implies nonidentical g and g sea con-
tributions. This is immediately apparent in the case of
atomic physics, where Bethe-Heitler pair production in
the field of an atom does not give symmetric electron and
positron distributions since electron capture is blocked in
states where an atomic electron is already present. Simi-
larly in QCD, the g7 pairs which arise from gluon split-
ting as in Fig. 1(a) do not have identical quark and anti-
quark sea distributions; contributions from interference
diagrams such as Fig. 1(b), which arise from the antisym-
metrization of the higher Fock state wave functions,
must be taken into account. Although the integral of the
conventional valence distribution gives correct charge
sum rules, such as f(l)dx[Gq/H(x)—Gq/H(x )], it can give
a misleading reading of the actual momentum distribu-
tion of the valence quarks.

The standard definition also has the difficulty that the
derived valence-quark distributions are apparently singu-

(0<x<1) (3)
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(b)

FIG. 1. Structure function contributions from the three-
quark plus one pair Fock state of the proton. The dd pair in di-
agram (a) contributes to the sea distribution, but diagram (b)
due to antisymmetrization of the d quarks cannot be separated
uniquely into “valence” vs “sea” parts.

lar in the limit x —0. For example, standard phenome-
nology indicates that the valence up-quark distribution in
the proton behaves as G%, ~x R for small x** where
ag ~0.5.° This implies that quantities that depend on
the (1/x) moment of the valence distribution diverge.
This is the case for the ‘“‘sigma term” in current algebra
and the J =0 fixed pole in Compton scattering.® Further-
more, it has been shown’ that the change in mass of the
proton when the quark mass is varied in the light-cone
Hamiltonian is given by an extension of the Feynman-
Hellman theorem:

aM p2 1 dx

5 p(x,0%) . 4)

om q2( Q2) f 0 X q p
In principle, this formula allows one to compute the con-
tribution to the proton-neutron mass difference due to the
difference of up- and down-quark masses. However,
again, with the standard definition of the valence-quark
distribution, the integration is undefined at low x. Even
more seriously, the expectation value of the light-cone ki-
netic energy operator

f x(k 2)+m?

Gy/p(x,Q) (5)
is infinite for valence quarks if one uses the traditional
definition. There is no apparent way of associating this
divergence of the kinetic energy operator with renormal-
ization.® Notice that a divergence at x =0 is an ultravio-
let infinity for a massive quark, since it implies
kt=k°+k?=0; i.e., k*>— . A bound-state wave
function would not be expected to have support for arbi-
trarily large momentum components.

Part of the difficulty with identifying bound-state con-
tributions to the proton structure functions is that many
physical processes contribute to the deep-inelastic
lepton-proton cross section: From the perspective of the
laboratory or center-of-mass frame, the virtual photon
can scatter out a bound-state quark as in the atomic-
physics photoelectric process, or the photon can first
make a gg pair, either of which can interact in the target.
As we emphasize here, in such pair-production processes,
one must take into account the Pauli principle which for-

bids creation of a quark in the same state as one already
present in the bound-state wave function. Thus the lep-
ton interacts with quarks which are both intrinsic to the
proton’s bound-state structure, and with quarks which
are extrinsic, i.e., created in the electron-proton collision
itself. Note that such extrinsic processes would occur in
electroproduction even if the valence quarks had no
charge. Thus much of the phenomena observed in elec-
troproduction at small values of x, such as Regge behav-
ior, sea distributions associated with photon-gluon fusion
processes, and shadowing in nuclear structure functions
should be identified with the extrinsic interactions, rather
than processes directly connected with the proton’s
bound-state structure.

In this paper we propose a definition of “bound-
valence-quark” distribution functions that correctly iso-
lates the contribution of the valence constituents which
give the hadron its flavor and other global quantum num-
bers In this new separation, G,,(x,0%)=G2) (x,0%)

7 /p(x Q?), non-valence-quark distributions are
1dent1ﬁed with the structure functions which would be
measured if the valence quarks of the target hadron had
zero electroweak charge. We shall prove that with this
new definition the bound-valence-quark distributions
G, (x,Q%) vanish at x —0, as expected for a bound-
state constituent.

II. CONSTRUCTION OF BOUND-VALENCE-QUARK
DISTRIBUTIONS

In order to construct the bound-valence-quark distri-
bution, we imagine a gedanken QCD where, in addition
to the usual set of quarks {¢g}={u,d,s,c,b,t}, there is
another set {gq}={ug,dy,5q,¢c0,b¢9,%,} Wwith the same
spin, masses, flavor, color, and other quantum numbers,
except that their electromagnetic charges are zero.

Let us now consider replacing the target proton p in
the lepton-proton-scattering experiment by a chargeless
proton p, which has valence quarks g, of zero electro-
magnetic charge. In this extended QCD the higher Fock
wave functions of the proton p and the chargeless proton
Do both contain g7 and ¢,g, pairs. As far as the strong
QCD interactions are concerned, the physical proton and
the gedanken chargeless proton are equivalent.

We define the bound-valence-structure function of the
proton from the difference between scattering on the
physical proton minus the scattering on the chargeless
proton, in analogy to an “empty target” subtraction:

FPV(x,0%)=FP(x,0Y)—F;°(x,Q?) . (6)
The nonvalence distribution is thus FNV(x,Q?)
?o(x,02). The Fi(x,0%) (i=1,2) are the leading-
twist structure functions, with FB8Y(x,0?%)

=3, e.xGy(x,0?), etc. The situation just described is
similar to the atomic-physics case, where, in order to
correctly define photon scattering from a bound electron,
one must subtract the cross section on the nucleus alone,
without that bound electron present.” Physically the nu-
cleus can scatter photons through virtual pair produc-
tion, and this contribution has to be subtracted from the



total cross section. In QCD we cannot construct protons
without the valence quarks; thus we need to consider
hadrons with chargeless valence constituents.!°

Notice that the cross section measured in deep-
inelastic lepton scattering on p, is not zero. This is be-
cause the incident photon (or vector boson) creates virtu-
al gg pairs which scatter strongly in the gluonic field of
the chargeless proton target. In fact at small x the inelas-
tic cross section is dominated by J=1 gluon-exchange
contributions, and thus the structure functions of the
physical and chargeless protons become equal:

1imo[Ff(x,QZ)—F,.”°(x,Q2>]=o ) 7)

Remarkably, as shown in Sec. IV, the bound-valence-
quark distribution function G} vanishes at x —0; it has
neither Pomeron x ~ ! nor Reggeon x R contributions.

Although the gedanken subtraction is impossible in the
real world, we will show that, nevertheless, the bound-
valence distribution can be analytically constrained at
small x,;. This opens up the opportunity to extend
present phenomenology and relate measured distributions
to true bound-state wave functions.

In the following sections we will analyze both the
atomic and hadronic cases, paying particular attention to
the high-energy regime.

III. ATOMIC CASE

Since it contains the essential features relevant for our
discussion, we will first analyze photon scattering from
an atomic target. This problem contains an interesting
paradox which was first resolved by Goldberger and Low
in 1968.° Here we give a simple, but explicit, derivation
of the main result.

The Kramers-Kronig dispersion relation relates the
forward Compton amplitude to the total photoabsorptive
cross section!!

k* ro ., olk)
FU=f10)=—— J 7k PR (8)
where k is the photon energy. One should be able to ap-
ply this formula to scattering on a bound electron (e, ) in
an atom. However, there is an apparent contradiction.
On the one hand, one can explicitly compute the high-
energy ye,—ve, forward amplitude: it tends to a con-
stant value at k-— oo, the electron Thomson term,
flk)——e?/m¢, where m is the effective electron mass
corrected for atomic binding.!? One the other hand, the
O(e?) cross section for the photoelectric effect ye, —e’
behaves as o ;,~ 1/k at high energies. But then the
dispersion integral in Eq. (8) predicts logarithmic behav-
ior for f(k) at high energy in contradiction to the explicit
calculation. Evidently other contributions to the inelastic

cross section cannot resolve this conflict.

This problem was solved’ by carefully defining what
one means by scattering on a bound-state electron. For
both the elastic Compton amplitude and the inelastic
cross section one must subtract the contribution in which
the photon scatters off the Coulomb field of the nucleus
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(empty target subtraction). Thus o(k) in Eq. (8) is really
the difference between the total atomic cross section
O .om(K) and the nuclear cross section o, jeus(k), Which
is dominated by pair production. We will present a sim-
ple proof that the high-energy behavior ~1/k of the
cross sections exactly cancels in this difference, which is a
necessary condition for a consistent dispersion relation.
The total cross section for photon scattering on the
atom is dominated by two main terms: the photoelectric
contribution and e Te ™ pair production, with the pro-
duced electron going into a different state than the elec-
tron already present in the atom.!> On the other hand, in
the subtraction, pair production in the field of the nucleus
is not restricted by the Pauli principle; this cross section
contains a contribution where the produced electron goes
into the same state as the bound-state electron of the
atom, plus other terms in which it goes into different
states. These last contributions cancel in the difference
O atom — O nucleuss Thus the bound-state electron photoab-
sorption cross section is the difference between the pho-
toelectric cross section on the atom and the pair-
production capture cross section on the nucleus, where
the produced electron is captured in the same state as the

original bound-state electron: o e, = 9 photoelectric — O capture®

This is depicted graphically in Fig. 2.

We next note that the squared amplitude for the cap-
ture process yZ —e ™ atom is equal, by charge conjuga-
tion, to the squared amplitude for yZ —e~ atom. (See
Fig. 3.) Furthermore, by crossing symmetry, the
(helicity-summed) squared amplitude for this last process
is equal to the (helicity-summed) squared amplitude for
yvatom—e ~ Z, with p, and (—p,,) interchanged. This
is equivalent to the interchange of the Mandelstam vari-
ables s=(p, +pz)* and u=(p, —Paom)’. Thus at high
photon energies (where s~ —u), the two cross sections
O photoelectric ANA O caprure Of Fig. 2 cancel, consistent with
the Kramers-Kronig relation. In Regge language, the
imaginary part of the J =0 Compton amplitude is zero.

The proof we have presented implicitly assumes the
equality of the flux factors for the photoelectric process
on the atom and the capture process on the nucleus. This
is normally a good approximation since the atomic and
nuclear masses are almost identical for M, >>m,. How-

ki

v |\

Atom V4 Z Atom

Photoelectric Capture

FIG. 2. The bound-electron photoabsorption cross section
Tye, is defined as the difference of y —atom and y —nucleus

cross sections. This can also be expressed as the difference be-
tween the atomic ‘“photoelectric” cross section and the pair-
production ‘“‘capture” cross section on the nucleus, but with the
produced electron going into the same atomic state as the origi-
nal bound-state electron.
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FIG. 3. The helicity-summed squared amplitude for the pro-
cess yZ—e atom is equal, by charge conjugation, to the
helicity-summed squared amplitude for ¥Z —e ~atom, up to a
phase. This is also equal by crossing to the helicity-summed
squared amplitude for the process yatom—e ~ Z, but with s and
u interchanged.

ever, for finite mass systems such as muonic atoms, the
mass of the nucleus and atom are unequal, and the cross
sections do not cancel at high energy. The difficulty in
this case is that the nucleus does not provide the correct
“empty target” subtraction.

However, we can extend the analysis to the general
atomic problem by considering hypothetical atoms A4,
consisting of null leptons /, with normal electromagnetic
and Coulomb interactions with the nucleus but with zero
external charge. [In effect, we consider an extended QED
with U(1) XU(1) gauge interactions, where the null lep-
ton has charge (-1,0), and the normal lepton and nucleus
have charges (-1,-1) and (Z,Z), respectively.] The empty
target subtraction is defined as the difference between the
cross section on the normal atom 4 =(Z!) and the cross
section on the null atom 4,=(Zl,). Since the mass and
binding interactions of 4 and A, are identical, the pho-
toabsorption flux factors are the same in both cases.

As in the earlier proof, the matrix element for the pho-
toelectric process on the atom A4 becomes equal in
modulus at high energies with the matrix element for the
capture process on the null atom A4,. Note that in the
computation of the capture process amplitude, the pres-
ence of the spectator lepton [, is irrelevant since it
remains in the original quantum state (say, 15): The re-
quired matrix element of the current is

(AL |T#] Aoy = AL [yt b) (1))
—(altgHzy .

By charge conjugation and crossing this is equal in
modulus to

(ZI™|J*A4),

the corresponding photoelectric matrix element with
s —u. Final-state interactions can only affect the phase
at high energies. Thus we obtain cancellation of the pho-
toelectric and capture cross sections at high energies, and
verify the Kramers-Kronig dispersion relation for Comp-
ton scattering on leptons bound to finite mass nuclei.

IV. REGGEON CANCELLATIONS IN QCD

We now return to the analysis of the “bound-valence-
quark distributions” of the proton. According to the dis-
cussion of Sec. II, the measurement of the bound-
valence-quark distribution requires an ‘“empty target”
subtraction:

o(y*p—>X)—o(y*py—X) .

Both p and p, contain higher Fock states with arbitrary
number of gluons, ¢g, and q,g, pairs. It is clear that the
terms associated with J=~1 Pomeron behavior due to
gluon exchange cancel in the difference. In this section
we shall prove that the Reggeon terms also cancel, and
thus the resulting distribution of bound-valence quarks
G (x,Q?) vanishes as x —0.

As in the atomic case, we now proceed to describe the
leading contributions to the scattering of a photon from
both the proton p and the state p,. For simplicity of no-
tation, we will consider an example which isolates just
the bound-valence d-quark distribution of the proton
p(uud); in this case the subtraction term is the deep-
inelastic cross section on the system p,(uud,) in which
the d, valence quark has normal QCD interactions but
does not carry electric charge. The general case, corre-
sponding to the definition of Eq. (6), where the subtrac-
tion is on the completely neutral state po(uguyd,), is a
simple generalization. The high Q? virtual photoabsorp-
tion cross section on the proton (laboratory frame) con-
tains two types of terms: contributions in which a quark
in p absorbs the momentum of the virtual photon; and
terms in which a ¢g pair is created, but the produced q is
in a different quantum state than the quarks already
present in the hadron. On the other hand, the cross sec-
tion for scattering of the virtual photon from the state
Poluudy) contains contributions that differ from the
p(uud) case in two important aspects: first the virtual
photon can be absorbed only by charged quarks; and in
dd pair production on the null proton p,, the d quark can
be produced in any state. Thus the difference between
the cross sections off p and p, equals a term analogous to
O photoelectric 1N Which a d quark in p absorbs the photon
momentum, minus a dd pair-production contribution on
Do analogous to o ..., in Which the produced d quark
ends up in the same quantum state as the d quark in the
or1'4gina1 proton state p. This is shown graphically in Fig.
4.

Reggeon behavior in the electroproduction cross sec-
tion can be understood as due to the appearance of a
spectrum of bound gg states in the ¢ channel. The ab-
sorptive cross section associated with z-channel ladder di-
agrams is depicted in Fig. 5(a). The summation of such
diagrams leads to Reggeon behavior of the deep-inelastic
structure functions at small x.!> In the rest system, the
virtual photon creates a dd pair at a distance proportion-
al to 1/x before the target. The radiation which occurs
over this distance contributes to the physics of the Reg-
geon behavior.

A corresponding Reggeon contribution at low x also
occurs in the subtraction term indicated in Fig. 5(b). In
the case of the proton target, the d quark, after radiation,
cannot appear in the quantum state already occupied by
the d quark in the proton because of the Pauli principle.
However, the corresponding contribution is allowed on
the p, target: in effect, the d quark replaces the d, quark
and is captured into a proton. The capture cross section
is computed from the amplitude for y*p,—d *pd}S.1°
As in the corresponding atomic-physics analysis, the
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v* 2

p
(a) (b)

FIG. 4. The bound-valence-quark distribution of quark d can
be calculated from the difference between (a) the cross section
on the state p in which the virtual-photon momentum is ab-
sorbed by the quark d, and (b) the dd pair-production cross sec-
tion in the field of p,, but with the produced d quark ending in
the same state as the d quark in the original proton state p.

spectator d, quark in the null target p, is inert and can-
cels out from the amplitude. Thus we only need to con-
sider effectively the (helicity-summed) squared amplitude
for y*(uu)—d *p. However, as illustrated in Fig. 6 this
amplitude, after charge conjugation and crossing s —u, is
equal to the (helicity-summed) y*p—d*(uu) squared
amplitude at small x. The flux factors for the proton and
null proton target are equal.

If we write O photoetectric 28 @ sum of Regge terms of the

form Bg|s|“®, where ay >0, then the subtraction of the
capture cross section on the null proton will give the net
virtual photoabsorption cross section as a sum of terms
s0BY=3 pBr(Is|“® —|u|"®). If we ignore mass correc-
tions in leading twist, then s=~Q*1—x)/x and
u~—Q?/x. Thus for small x every Regge term is multi-
plied by a factor K =(—ay )x. For example, for ap =1
(which is the leading even charge-conjugation Reggeon
contribution for nonsinglet isospin structure functions),
Fplusd) —Fg"wud") ~x3/2, The bound-valence-quark
nonsinglet (7 =1) distribution thus has leading behavior
G ~x'/? and vanishes for x —0.

We can also understand this result from symmetry con-
siderations. We have shown from crossing symmetry
Gq/P(x,Qz)—Ga/po(x,Qz)—»O at low x. Thus the even

charge-conjugation Reggeon and Pomeron contributions
decouple from the bound-valence-quark distributions.

FIG. 5. Amplitudes describing Reggeon behavior at small x
(a) in electroproduction, and (b) in the subtraction term of Fig.
4(b).

FIG. 6. The helicity-summed squared amplitude for (a)
v*p—d*(uu) is equal, by charge conjugation, to the helicity-
summed squared amplitude for the process (b) y*p—d *(@@),
up to a phase. This is also equal, by crossing symmetry, to the
helicity-summed squared amplitude for (c) ¥ *(uu)—d *p, with
s and u interchanged. Thus at high energies the Reggeon con-
tribution from the subtraction term of Fig. 5(b) cancels the Reg-
geon contribution of Fig. 5(a).

The analytic cancellation of the leading Reggeon con-
tributions of the s-channel and u-channel contributions
suggests that, given sufficiently detailed Regge fits to the
data for the nonsinglet structure functions, one could
construct a phenomenological model for the bound-
valence-quark distributions. Eventually, lattice gauge
theory or other nonperturbative methods for solving
QCD, such as discretized light-cone quantization,' may
provide detailed first-principles predictions for the
bound-valence-quark distributions which could be com-
pared with the phenomenological forms.

V. CONCLUSIONS

The observation that the deep-inelastic lepton-proton
cross section is nonzero, even when the quarks in the tar-
get hadron carry no charge, implies that we should dis-
tinguish two separate contributions to deep-inelastic lep-
ton scattering: intrinsic (bound-state) and extrinsic (non-
bound) structure functions. The extrinsic contributions
are created by the virtual strong interactions of the lep-
ton itself, and are present even if the quark fields of the
target are chargeless. The bound-valence-quark distribu-
tions, defined by subtracting the distributions for a
gedanken “null” hadron with chargeless valence quarks,
correctly isolate the valence-quark contributions intrinsic
to the bound-state structure of the target. As we have
shown, both the Pomeron and leading Reggeon contribu-
tions are absent in the bound-valence-quark distributions.
The leading Regge contributions are thus associated with
particles created by the photon-hadron scattering reac-
tion, processes extrinsic to the bound-state physics of the
target hadron itself. The bound-valence-quark distribu-
tions are in principle computable by solving the bound-
state problem in QCD. Sum rules for the proton derived
from properties of the hadronic wave function thus apply
to the bound-valence-quark contributions. In particular,
the light-cone kinetic energy of the bound-valence
quarks,

1 ( ki > +m 2

[laxltm
0

is finite, as expected for a bound-state wave-function con-

tribution. The ultraviolet divergence of the kinetic ener-
gy obtained from the nonvalence distribution is associat-

GY(x,Q), )
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ed with the production of high mass states in the
electron-proton collision, rather than the distribution of
the bound-state-valence quarks.

The essential reason why the new definition of the
bound-valence-quark distribution differs from the con-
ventional definition of valence distributions is the Pauli
principle: the antisymmetrization of the bound-state
wave function for states which contain quarks of identi-
cal flavor. As we have shown, this effect plays a dynami-
cal role at low x, eliminating leading Regge behavior in
the bound-valence-quark distributions. In the atomic-
physics case, where the leading Regge behavior corre-
sponds to J =ag =0, the analogous application of the

Pauli principle leads to analytic consistency with the
Kramers-Kronig dispersion relation for Compton scatter-
ing on a bound electron.
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