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Three-dimensional numerical relativity is applied to an investigation of the so-called "cosmic no-
hair conjecture, " which has been proposed to explain the homogeneity and isotropy of the present
Universe via the inflationary scenario. We present a general formalism to study this cosmological
problem using numerical relativity. Following this formalism, we find general solutions of the
linearized Einstein equation in the de Sitter background and discuss a homogenization mechanism
in the linear regime.

I. INTRODUCTION

The standard model of the Universe, i.e., the big-bang
scenario, naturally explains three important observation-
al data of the Universe: Hubble's expansion law, the 3-K
cosmic-microwave-background radiation, and abun-
dances of light elements. ' There are, however, several
unanswered theoretical questions in the framework of the
standard model. For example, we note the following.

(I) Why is our Universe so homogeneous in the global
mean?

(2) Why does the cosmic background radiation from
causally disconnected points have the same temperature?

(3) Why is the Universe so Rat?
One may say that these facts are due to initial condi-

tions. From a scientific point of view, however, we are
not satisfied with this answer. We would like to believe
that irrespective of initial conditions the observed
Universe should be as it is now. The inflationary model
of the Universe may provide such a possibility. When
vacuum energy, which is e6'ectively equivalent to a
cosmological constant A, becomes dominant, the

Hot
Umverse expands exponentially as e (Ho —=&A/3). If
exponential expansion continues longer than -60IIo ',
then we may solve the above homogeneity, horizon, and
fatness problems.

When we discuss such problems, even for the explana-
tion of the homogeneity and isotropy of our Universe, we
usually start from homogeneous and isotropic conditions
in considering the inflationary universe model. This is,
however, in a sense, a tautology. Since the present isotro-
py and homogeneity cannot be found from any initially
chaotic cosmological model with an ordinary matter
fluid, we have to show whether or not the inflationary

stage really begins under general initial conditions. In
connection with this subject, there is the so-called "cos-
mic no-hair conjecture": If a positive cosmological con-
stant exists, all space-time approaches the de Sitter
universe; hence, inAation is a unique attractor. If this
conjecture is true, inflation is a natural phenomenon in
the Universe, because the vacuum energy existing before
a cosmological phase transition, which we expect from
particle physics, plays the role of A. Hence we can un-
derstand why our Universe acquired global isotropy and
homogeneity.

The cosmic no-hair conjecture, however, is not perfect-
ly correct. The Kerr —Newman —de Sitter space-time is
one simple counterexample. One may also set X black
holes in a de Sitter universe as initial data, which will
not attain homogeneity and isotropy.

On the other hand, if we restrict consideration to
homogeneous space-times, then we can prove the cosmic
no-hair theorem: "All Bianchi models except for IX al-
ways approach isotropic de Sitter space-time within one
Hubble expansion time Ho ." Even for type IX, the
quantum cosmological approach may explain the present
small anisotropy. We expect that the cosmic no-hair
conjecture is true under certain conditions. Hence it is
important to know what additional conditions are needed
for an initially inhomogeneous and anisotropic universe
to approach the de Sitter universe.

We know the basic answer for homogeneous space-
time from the above-mentioned cosmic no-hair theorem.
So work in the inhomogeneous case is very important.
To study inhomogeneous space-time, there are several ap-
proaches (both analytic and numerical). Starobinskii dis-
cussed the stability of de Sitter space-time against general
perturbations, showing it is an attractor. Sato et al. in-
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vestigated a spherically symmetric space-time with two
different cosmological constants, which is a typical exam-
ple of inhomogeneous space-time, and found counterex-
amples to the conjecture. Another analytic approach to-
ward the cosmic no-hair conjecture is the so-called
"inverse-scattering method, " by which we can construct
new solutions in nonlinear systems from known solutions.
We can also apply the same method to Einstein gravity
with two commuting Killing vectors. ' Applying it to
the de Sitter background, we find that initially nonlinear
localized perturbations on de Sitter space-time become
homogenized locally but not globally. "

A numerical approach is certainly needed as well, be-
cause we can never find all interesting solutions of the
nonlinear Einstein equations analytically. So far, there
are a few numerical works on universes with some sym-
metry. Kurki-Suonio et al. ' studied the plane-
symmetric case with an inAaton scalar field, but the ini-
tial inhomogeneity of space-time is too small to conclude
whether or not the cosmic no-hair conjecture is true, or
to find what additional conditions are necessary for it.
Holcomb, Park, and Vishniac' investigated the spheri-
cally symmetric and asymptotically Friedmann case with
an inAaton field and showed that an event horizon ap-
pears for the universe with initially large inhomogeneities
of the scale smaller than the cosmological horizon. For
the spherically symmetric closed universe, Goldwirth and
Piran found that the large initial inhomogeneity prevents
inflaton when its spatial scale is less than several horizon
sizes. '

Although a spherically symmetric case might have a
generic feature for inhomogeneous space-times with an
inAaton field, they are, of course, restricted to a highly
symmetric space. In order to conclude whether or not
inAation is a natural phenomenon, however, we should
consider more general space-time, three-dimensional
space without any symmetry. Another reason why we
proceed in our analysis to the nonspherically symmetric
case is that gravitational waves, as well as matter Quid in-
cluding an inAaton scalar field, can be responsible for in-
homogeneity. We know that, for the case with asymptot-
ically Aat space, not only the matter field, but also non-
linear pure gravitational waves can collapse into a black
hole if the nonlinearity is sufficiently large, ' while cosmic
expansion due to the cosmological constant has a homo-
genization mechanism both for the gravitational waves
and for matter fields. The initial inhomogeneity in the
early Universe might be due to gravitational waves as
well as inhomogeneous matter distributions. Hence we
should investigate whether inAation takes place and the
space-time is homogenized not only for inhomogeneous
matter fields, but also inhomogeneous nonlinear gravita-
tional waves. The above spherically symmetric case,
however, can never possess such gravitational effects.
Again, we have to proceed to a more general case, at least
to the nonspherically symmetric case.

Numerical study seems to be only the way to study the
evolution of such a general three-dimensional space
without any symmetry. Whether a numerical study of
the cosmic no-hair conjecture can be performed depends
upon computational power. At present, there exists a
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II. CONFORMAL TRANSFORMATION
AND BASIC EQUATIONS

We consider a space-time governed by the vacuum Ein-
stein equations with a cosmological constant A as

(2.1)

Instead of the original metric g„, we shall solve for the
conformal metric g„,which is related to g„by

2-gpv= gpv (2.2)

where A will be fixed later. Piran first introduced a simi-
lar approach, ' in which three-dimensional conformal
factor is factorized out (see below for the comparison
with ours and his approach). The advantage of solving

g„ instead of g„will be discussed later. The Einstein
equations of the space-time described by g„can be writ-
ten as

G„=—AA, g„+8wT„

where

(2.3)

supercomputer with 3-GFLOPS speed and 500-Mbyte
memory. Using such a machine, Nakamura and Oohara
constructed a three-dimensional numerical code with a
(100) grid, by which one can solve the vacuum Einstein
equations without any symmetry as a Cauchy's initial-
value problem. ' Time evolution of a localized wave
packet' (i.e., Teukolsky waves) was used for a test of
their code, and the results for weak gravitational waves
agreed with the analytic solutions within a few percent
accuracy.

We plan to use and extend their code to study the
cosmic no-hair conjecture. This is the first one of a series
of papers. We will initially study the effects of a gravita-
tional field in the present problem rather than those of
matter Quid. This work may be regarded as complemen-
tary of the above spherically symmetric one. Hence we
consider the Einstein equations only with a cosmological
constant, with the inhomogeneity produced just by gravi-
tational waves. The main changes in code are to add a
cosmological constant and treat asymptotically nonAat
space-times.

The present paper will discuss only our formulation
and general solutions of the linearized equations in a de
Sitter background, and is organized as follows. In Sec. II
we formulate our problem; then in Sec. III we give ana-
lytic solutions to the linearized gravitational waves in de
Sitter space-time. Our conclusion and remarks are given
in Sec. IV. In forthcoming papers we will discuss how to
set up initial data, how to find an apparent horizon, and
how to select a time slice, and the results of evolution of
three-dimensional initial data.

In this paper we adopt units in which G = 1. Our con-
ventions for the Riemann and Ricci tensors are
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T„= —(V'„V Q —g V V~Q)
4~ n

', V.OV-n--'g, -V,QV'nn' " 4" (2.4)

g„n "n = —1 . (2.5)

We define the projection operator onto the three-
dimensional hypersurface and its extrinsic curvature K„
by

and G„and V„are the Einstein tensor and covariant
derivative with respect to g„.

We proceed to the well-known procedure of 3+ 1

decomposition of the Einstein equations. Now the exter-
nal source of the gravitational field is the residual term
T due to the conformal transformation (2.2).

Since we will work in the fictitious space-time with
metric g„, the unit normal vector of our three-
dimensional hypersurface n " should be defined by

=5p+ npn

K„,= —
—,'X„y„

(2.6)

where X is the Lie derivative along n . We decompose

T„ into the energy density pH, the momentum density
J", and the stress tensor S, as

T„=n„n,pH+n„J +n„J„+y„y S &, (2.7)

where

p~ =n "n T„

(2Q 'D D ~Q+2Q 'yK QD —QD ~Q —3Q )
8~ P P

J = —n y T p

(2.8)

(2Q 'D„y+2Q 'K~D Q 4Q yD—„Q),
8m

Spv—:'Vp. f'v Tp~

(2.9)

[2Q 'D„D Q+2Q 'yK„—4Q (D„Q)(D Q) —y (2Q 'D D Q+2Q 'yK —2Q 'a '(X„—Xp)y8~

+2Q 'D (lna)D ~Q —Q (D Q)(D ~Q)+Q g )], (2.10)

with

(2. 1 1)

and

y=X Q=a '(X„—Xp)Q, (2.12)

= $ 6~p~ +2//
D,(K" —y" K)=8vrJ",

(2.13)

(2.14)

where ' 'R is the scalar curvature of the three-
dimensional hypersurface. The evolution equations are
expressed into the usual form

X„y = —2aK„+%ay„

D„D a+a[' 'R„+K—K„„2K~K—
(2.15)

AQ'y„. 8vr(S—„.——,
' y„Q—~ )

—4~y„~H ]+X+„,, (2.16)

where X„and X& are the Lie derivatives along the time
coordinate basis vector 8/Bg and along the shift vector
P, respectively, a is the lapse function, and D„ is the co-
variant derivative with respect to y„.

The constraint equations can then be written as

where ' 'R„ is the Ricci tensor of our three-dimensional
hyper surface.

In order to solve the above equations numerically, we
also need boundary conditions. Since periodic boundary
conditions are not trivial except for three-torus topology,
we consider only three-dimensional hypersurfaces, which
become the expanding Friedmann-Robertson-Walker
(FRW) or de Sitter universes in spatially asymptotic re-
gions. Then we can regard the asymptotic FRW space-
time as the "background" metric and fix Q by the asymp-
totic condition Q~a(g), where a(g) is the scale factor
of the background FRW universe. Although 0 is so far
completely free except for the asymptotic value, we have
two simple choices: One is just to set Q=a(g), and the
other is to use the condition y/Q =&A/3 or,
equivalently,

=&A/3aQ +Pt'D Q . (2.17)

Since this condition turns out to be (dQ/dg)/Q
(dQ/dt)/Q=—VA/3 for the homogeneous case or in

the asymptotic region, with t the cosmic time, this 0 also
naively corresponds to the scale factor of the FRW back-
ground.

If we choose the former case, the spatial derivative of
0 vanishes, simplifying the energy-momentum tensor
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T„. The basic equations, hence, are also simple. In par-
ticular, the initial-value equations (Hamiltonian and
momentum constraints) with IC =0 are exactly the same
as in the vacuum case. The merit of the latter case is that
the equation determining Q is given as a covariant form.
Both conditions become the same when a = 1 and P,. =0
are imposed. Which of these two, or even a different
choice, is better depends on the particular problem.

Now the advantage of our method is clear. We can im-
pose the ordinary asymptotic Aatness condition for the
fictitious space-time if the asymptotic FRW space-time is
spatially Aat. Even for spatially nonAat space-times, we
can impose static boundary conditions.

As for time slicing, since we treat circumstances in
which gravitational collapse may occur, in general it is
not appropriate for a numerical study to set the lapse
function cz to be unity. ' Rather, it seems better to as-
sume the maximal time slicing condition K=O for the
fictitious space-time. Here note that this condition cor-
responds to the constant mean curvature slicing
K= —&3A in the original space-time [see Eq. (B6) in
Appendix B]. ' Then the lapse function a is determined
by

universe the conformal factor becomes as

(3.1)

with

H =&A/3, (3.2)

k;.= (Hrj) 'K; (3.4)

which is a quantity of O(h). Then the linearized Einstein
equations become

(3.5)

(3.6)

(3.7)

where g is the conformal time belonging to the interval
[ —co,0]. The metric tensor of our three-dimensional hy-
persurface y; is expressed as

y;. =' 'y; +h; (i,j =1,2, 3), (3.3)

where ' 'y,
&

is the background Aat metric. We next in-
troduce the variable

= —fl 'aD~ D 0—30 '(D a )(D ~A)

—0 a(D Q)(D 0) . (2.18)

and the gauge-fixing conditions, which are consistent
with the above equations, are

Instead of factorization of the four-dimensional confor-
mal factor, Piran defined the conformal factor by

y, =R (t,x')y;1, (2.19)

III. GENERAL SOI.UTION
OF LINEARIZED PURE GRAVITATIONAL WAVES

IN DE SITTER SPACE-TIME

for three-dimensional metric y, , where dety;. is set to
unity or an appropriate function with respect to the spa-
tial coordinate. If the lapse n is redefined as e=Rn in
his approach, we find the same factorization as ours with
Q=R. The difference between his and ours is that we
first fix Q in order to find simpler basic equations, then
give gauge conditions in g-space, while in Piran s formal-
ism R is determined by the basic equation, since dety;. is
first fixed. There is no freedom to choose an appropriate
function for the conformal factor R in his approach. Of
course, in some specific cases both approaches become
the same, but our case has more freedom.

D h'~=h =k =O.j m m (3.8)

The Hamiltonian constraint becomes trivial if Eq. (3.8) is
satisfied. Here note that the time derivative of Eq. (3.7)
becomes

Bk,' —Ak, =0,
z v (3.9)

~~J
= y [&LM(~, y) ~LM(r, 'g)+bLM(f), y)&LM(r, 'g)

L, M

+gLM(~ 0)GLM(& ))+fLM(~ 0)+LM(r ))

+cLM ( ~& 0 )CLM ( r ~ ) ) +dLM ( ~& 0 )DLM ( r ~ 9 ) ]

(3.10)

which is the same as that for K, . in Minkowski space-
time with the same coordinate conditions. Expanding
h; and k;. with the tensor harmonics defined by Zerilli
(see Appendix A) as

In order to see how cosmic expansion homogenizes in-
homogeneous gravitational waves, we analyze in this pa-
per the linearized equations of (2.13)—(2.16). It may also
give us some insight for nonlinear gravitational waves as
will be discussed in Sec. IV. In the following section we
denote fictitious conformally transformed geometrical
quantities by those without a tilde. The solutions corre-
spond to linearized gravitational waves in a de Sitter
universe.

We adopt the gauge condition that the lapse function is
unity and the shift vector vanishes. For a de Sitter

k;, = g I aLM(f) 0) ~LM(& n)+i LM(~ 4»LM(«)

+gLM(0 0)GLM(& tI)+fLM(~ 0)+LM(& rt)

+cLM(~ 4')CLM(r n)+dLM(~ 4'»LM(r rt)]

(3.11)

we obtain the following solutions for the even-parity
mode:
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1 d
~LM(r V) =r' '—

r dr

L
PLM(I) r—)+QLM(2)+r )

which satisfy the gauge-fixing condition (3.8). From
h =0, we have

(3.12)
2G(0)h

A (p)h+ LM
LM (3.19)

k r k
LM LM2

(3.13) From the transversality condition D.h'~=0, we obtain

k 1 1 0 3 kBLM=
& &

r A
r r

(3.14)
B(0)h

d
A (0)h + 3

A (p)h ~
LM

LM LM Ldr r r
(3.20)

and

1

2 0r AL ()I
(3.15)

GL0'h FL '

8' '"+ 8' '—+ +(2—k ) =0,
r r

(3.21)

D (0)h

LM LM L
C(0)h+ C(0)h+ (2 g )

r r r
For the odd-parity mode we find

L
1 d RLM(rj —r)+SLM(11+r)

CLM(r, I))—r
r

(3.22)

[ HLM ] contains two arbitrary functions PLM and RLM,
while [HLM ) have six arbitrary initial functions [HLM I

with the four relations (3.19)—(3.22). Hence we have four
arbitrary functions which correspond to the degrees of
freedom of gravitational waves: two for the even-parity
mode, PLM and ALM, and two for the odd-parity mode,

RLM and CLM . (Remember that we have adopted the
first-order 3+ 1 formalism. )

Note that if we wish to impose the boundary condition
of asymptotically approaching de Sitter space-time, we
merely demand the asymptotic Aatness of the three-space
described by y; .

In order to observe the behavior of the above solution,
we consider the even-parity mode of L =2 and M =+2
wltll PLM and QLM as

(3.16)

(3.17)LM 2 ~ g LM
L

and

AL =L(L+1) .

PLM(g r) = — (r——q')exp
(r —I)')

0 2rp

(3.23)

Here PIM QIM RLM aIld SLM are arbitrary functions
constrained by the relations. Since AIM and CLM should
be regular at the origin r =0, we find QLM(x ) = PLM(x)—
and SLM(x) = —RLM(x ).

Integrating Eq. (3.6) for the coefficients of the even-
parity modes ALM, BLM, GLM, and FLM and the odd-
parity modes CLM and DLM of the metric perturbation,
we obtain metric perturbations as

[H" (r, q)] = —f 2Hg[Hh (r, q)jdq+[H(0)h(r)I,
7/0

(3.18)

where we denote the expansion coefticients of h, - and k;.,

[ ALM, BLM, . . . I and [ ALM, BLM, . . . I, and [HLM I and

[HLM I, respectively, and [HLM"I are the initial data on
the three-dimensional hypersurface labeled by

(r+q')
QLM(r)+ r ) = — (r +2)')exp

2rp 2r 20

where A and rp express the amplitude and scale length of
the gravitational waves, respectively, and g' =g+ H
We obtain [ HLM I as

k k
ALM p GLMr2

I 2

[r (r —I)') +3r()r(r —21') —3r0(r —r0)(r —Il') —3r0r]exp — +(I)'~ q'), (3.24—)
2r,'r' rp

I 2

+3r0(2r0 —3r )(r —I)')+3r0r(r 2r0)]exp-
2f0

+ (I)' —+ —I)')

BLhM = [r (r —11') +3r()r (r —I)') +6r()r(r() r)(r —II')—
12r,'r4

(3.25)

and
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F~M = — Ir (r —g') +2ror (r i—7') +ror (3ro —10r )(r —i)') +3ror(ro 4—r )(r q—')
48r pr

+3ro(ro —3ror +5r )(r —g')+3ror(2r —ro)]exp

Then, setting [IILM=OI at i)= —~, we obtain IIILM] as

2h h

r

(r —i)')'
2rp2

+(g'~ —g') (3.26)

[r (r —i)') r(r —3ro H— —'r)(r —g') —3ro(r ro H——'r)(r —rt')+ro(r H'r —+3H 'ro)]
ror

X exp
(r —g') —3&~/2roerf — +(q'~ rI' a—nd H —+ H—)

r —g' —1 —1

2ro &2r,
(3.27)

BLM = [r (r —g') —r (r 3ro H—'r —)(r —il') —vor(5r 6r0 ——3H 'r )(r —rI')
6r,'r4

+3vo(r 2ror +—2ro H'r —2H '—ror)(r —il')+ra(2r 3H 'r—+6H 'ro)]exp

t

6&~/2ro—erf +(i)'~ —i)' and H '~ H')—
&2r„

(r —g')
2ro2

(3.28)

I v4(r q')~ —r 3(r—2 —2r 2 H'r )(r ——i)')4 —r 2or 2(7r 3r o
—2H —'r )(r —i)')

24r pr

+ror(6r 7ror +3r—
o 6H 'r +3H 'ror)(r i)')—

+3rD(2r ror +ro ——2H 'r +H 'ror)(r —q') —ro(3r —ror —3H 'r +3H 'ror —3H 'ro)]

(r —g')
Xexp

2ro

I—3V'~/2roerf +(g'~ —r)' and H '~ H')—
&Zr,

(3.29)

Bh; = —2K;. ,
7l

az,, = ——Ah,"+
Bq 2

2K;

(3.30)

(3.31)

First, we show, in Figs. 1(a) and 1(b}, the time evolu-
tion of the extrinsic curvature K; for various scales of in-

homogeneities (ro=(2H) ', (4H) '). lt can be seen

from the figures that K," vanishes in one expansion time
H '. Here one expansion time is measured by the cos-
mic time t —= f "Q(g)drl= H'ln( Hq).—We can —also

easily see this behavior from the basic equations as fol-
lows. From Eq. (3.4} and the definition of t,
K; =exp( Ht )k;.. Since k—; satisfies the ordinary wave
equation in Minkowski space-time [Eq. (3.9)], a localized
wave packet of k," propagates to spatial infinity without
divergence. Hence K, - vanishes exponentially within
t -M '. We can understand this homogenization mech-
anism in a de Sitter space-time as follows. Rewriting the
basis equations (3.6) and (3.7), we find

This is just the first-order form of an ordinary wave equa-
tion except for the last term in Eq. (3.31). This last term
describes the effect of background expansion of the
Universe and behaves as a viscosity because g&0. This
viscosity term diverges when the Universe evolves into
future infinity, corresponding to t = ~ or g=0. That is
why K, vanishes so soon. The quantities described by
K; and its derivatives, such as the Newman-Penrose vari-
ables Wo and 44, have the same behavior. This is the
homogenization mechanism in de Sitter background in
the linear regime.

As for the metric perturbations, we show the time evo-
lutions of h„„ in Figs. 2(a) and 2(b). Although h„, seems
to disappear within one expansion time H ' by spherical
damping from Fig. 2, we can show analytically that it
survives at the future infinity. However, the values of h;.
themselves have no physical meaning because of the free-
dom of general coordinate transformations. Instead, we
can examine the behavior of the three-space Riemann
curvature ' 'R, ~1. Any three-dimensional Riemann cur-
vature is always described by the Ricci and scalar curva-
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FIG. 1. Time evolution of the r-r component of the extrinsic
curvature K,„on 0=~/2, y=0. (a) depicts the case with the
scale of the inhomogeneity r0=0.5H, and (b) is that with
r0=0.25H '. The amplitude A is taken to be 0.1ro for later
comparison.

0 r5 5

FIG. 3. Time evolution of the three-dimensional Riemann in-
variant on 8=~/2, p=0 in the conformally transformed space.
(a) depicts the case with the scale of the inhomogeneity
r0=0.5H ', and (b) is the case of r0=0.25H '. The amplitude
A is equal to 0.1r0.

tures. Through the equations of motion

(3)R as@,

Bg

2——E"
gJ

(3.32)

h„,
I I I "I

I
I I

().00()
&=0

0.004

O. OOZ

—0.OOZ

—0.004—
I I I I I I I I I I I I I I

' IR," asymptotically approaches Hk, (7I=O)—, whic"h is
finite. Hence '

'R;~kI does not vanish at future infinity,

and then the metric perturbations of the conformally
transformed three-space never disappear.

However, we should remember, as discussed by Bouch-
er and Gibbons, that the metric perturbations I III/If I

and the three-curvature ' 'R;Jki surviving at future
infinity are not a counterexample of the cosmic no-hair
conjecture, because for any timelike observer the

cosmological event horizon exists in de Sitter back-
ground, and by use of our expanding universe frame, its
circumference shrinks infinitesimally in proportion to
0 '=e '. Hence the wavelength of the metric pertur-
bations becomes longer than the scale of the event hor-
izon, and consequently the observer finds null metric per-
turbations. We can also show

(3) ij —2 (3) ij
kl I physical space + kl! conformal frame .

0 0 1 1. .5

h„
1 I

I
l 7 t

(b)

In Figs. 3(a) and 3(b), we depict the time evolution of
the three-dimensional Riemann invariant ' 'R;.k&( 'R'
for the conforrnally transformed frame. Though the per-
turbation survives, its amplitude becomes very small
within a few expansion times due to spherical damping.
Thus, from the above equation, we can show that in
physical space the three-dimensional Riemann invariant
almost vanishes within one expansion time.

0

t = 2/H t= I/H
IV. CONCLUSIGNS AND REMARKS

0.r& 7/Ii

FIG. 2. Same as Fig. 1, but for the metric perturbation.

We have presented a formalism to treat a three-
dimensional universe without any symmetry in the con-
text of numerical relativity. The factorization of the
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metric into a scalar portion and a new conformal metric
has been proposed. One advantage is that the boundary
conditions become simple. In particular, for a universe
with an asymptotically Rat three-space, we can impose
the same boundary conditions as in the case of gravita-
tional collapse. We have also found general solutions of
the linearized Einstein equations in a de Sitter back-
ground and discussed a mechanism of homogenization of
inhomogeneous space-time.

We would also like to remark briefly about the non-
linear effects, which will be the main purpose of our nu-
merical study. The homogenization mechanism in the
linear regime can be understood from Eq. (3.31). So, to
know whether or not an inhomogeneous universe is
homogenized, we may also look at the same equation
without the linear approximation, which is

CLM

gLM

0 0 0
—XLM /sinO sinO8'LM

sin OXLM

0 0 0

0 0 sin O

+LM

0 aY, /ao BY, /a&

0 0
0 0

0 (1/sinl9)a YL~/By —singa Y&M /ag
'

0
0

(A2)

(A3)

(A4)

(A5)

(4.1)

The last term is from the background expansion, which
has the same homogenization effect as in the linear case.
For the linearized pure gravitational waves, this "viscosi-
ty" term overcomes the growth rate of the metric pertur-
bations, always resulting in homogeneous de Sitter
space-time. However, if nonlinear effects dominate, the
situation becomes different. In the asymptotically Oat
space-time, the gravitational waves can grow and collapse
to black holes through this nonlinear interaction. '

Furthermore, our case also has the last term in Eq. (4.1),
which may suppress the deviation from the homogeneous
background de Sitter space-time. So we have two com-
peting processes; one is a nonlinear effect of gravity, by
which the compact system becomes more preferable, and
the other is the above homogenization effect. Because the
role of each term is very clear in our description of the
system, we expect to find some criterion for the cosmic
no-hair conjecture, which may be another advantage of
our formalism.

This formalism can be easily extended into the more
general case with matter Auid, including an inAaton sca-
lar field. We will also discuss this case elsewhere. In a
future paper we will describe how to construct initial
data in the present approach and how to find the ap-
parent horizon.
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The asterisk denotes components derived from symmetry
of the tensors. These tensors are orthogonal to each oth-
er with respect to the inner product

(T g)= f ),~&I~&&~~~k~T*g d~ (A9)

APPENDIX 8

The relations between the conformal transformed
quantities and the original true quantities are as follows.

The lapse function and the shift vector are

Therefore, because of the above orthogonality, we can
consider each L, and M mode independently in the case of
the linearized theory as used in Sec. III.
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for Scientific Research Fund of the Ministry of Educa-
tion, Science and Culture Nos. 01306006, 01652509,
01795079, and 6340205.

APPENDIX A

e=Oa,
p'=p'.

The hypersurface unit normal vector is

n"=0, 'n" .

(Bl)

0
0 0
0 0

The tensor harmonics defined by Zerilli are

&LM

(A 1)

The intrinsic metric and the extrinsic curvature are
2-

XIm =& XIm

z, =nz, —yy,

K =0 'K —30

(B5)
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APPENDIX C k;~ K J exp[i(k x —~ri) ] (Cl)

%'e present another method to obtain the solution of
the linearized Einstein equations in a de Sitter back-
ground in a closed form. %'e abbreviate a tilde in denot-
ing conformally transformed geometrical quantities.
From Eq. (3.9), the monotonic wave

is the solution. In order to guarantee the transverse-
traceless nature of the solution, we use the polar coordi-
nate in lt space as k =(k, Ok, yk ). Then, in the coordinate
system (x',y', z'), in which the z' direction coincides with
k, the solution k - is expressed as

(+) K( X)

(k 1
)= &~x~

—
a~+~ 0 exp[i(kr cosO —cori)],

0 0 0
(C2)

where K(+) and K(x )
are arbitrary constants and

cos8=cosO cos&k+sin& sin8kcos(y —
yk ) . (C3)

Using the rotation matrix

cosv k

—cosOk sincpk

sine/, Sincjp/,

sing/, 0

cosO/, coscpk sinO&

—sinO/, sing/, cosOk

k; becomes

k =(X-')'k' (X)-
and simple calculation yields

k,-. =(IrI+'+~', ')exp[i(kr cos8 —co7))],

where

(C5)

(C6)

K. =KKij K(+ )

cos gk cos gksin gk (1+cos'Ok )singkcos@k
2 2 2sin g/, cos Okcos gk

sinOkcosOksingk

—sinOk cosO/, cosyk

SIn Ok

(C7)

(X)
Kij K(X)

—sin2cpk cosOk cosyk cosOk cosyk sinOk

sin2cpk cosOk sincpk sinOk (C&)

Then the general solution is expressed as

k;. =I If '+'(k)&I+. 'exp[ik(r cosO ri)+ipse',—+']+f '"'(k)lrI" 'exp[ik(r cos8 —g)+irPk' ']]d lt, (C9)

where f'+'(k) and f' '(k) are amplitudes, and y&
' and yk

' phases of each lt mode. The metric perturbations are
again obtained for the above solution through Eq. (3.18).

To see the asymptotic behavior of h;, we use the relation

exp(ikr cosO) = g (2l+ 1)i j&(kr)P&(cos8),
I=o

(C10)

(l —m )!P&(cos8) =P&(cos8)PI(cosOk )+2
, (l+m)! P( ( scOo) sco(mg —gk ) (Cl 1)

where j~ is the spherical Bessel function. Since jI(kr) ~ cos[kr —((+1)rr/2]/kr for r~ oo, k," ~ 1lr for r —+ ~ in gen-
eral. To make the perturbation localized, a possible choice of the amplitude f(k) is the Gaussian ~exp( —k /2ko)
with random phase yk, for example.
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