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Calculation of chiral-symmetry breaking and pion properties as a Goldstone boson
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A procedure for picking out the solution of the covariant Bethe-Salpeter equation corresponding
to that Goldstone boson in a spontaneous-chiral-symmetry-breaking theory is described under very
general assumptions. Physical quantities for chiral-symmetry breaking and the pion are calculated
with this procedure taking into account gluon ladder exchange and a covariant chiral-symmetric
generalization of the confinement potential. Satisfactory results are obtained with reasonable values
of the parameters.

I. INTRODUCTION

As is well known, phenomenological nonrelativistic
models based on extrapolation of an asymptotically free
one-gluon potential at short distances and a linear
confinement potential at large distances fit excellently the
heavy-quarkonioum spectra (see, e.g. , Refs. 1 and 2). The
potential in the range 0. 1 —1.0 fm, where theoretical pre-
dictions are not available, is essentially fixed by experi-
mental data. With some relativistic corrections included
in the calculation, the same potential models can even
give satisfactory results for spectra of mesons composed
of light quarks except for the lightest 0 octet mesons
(see, e.g. , Ref. 2). These kinds of calculation, when ap-
plied to a pion considered as a bound state of quarks with
a constant constituent mass, usually give too large a value
for I . It has been realized that the failure of this ap-
proach to the lightest 0 octet mesons is due to the pecu-
liar feature of these mesons being simultaneously relativ-
istic bound states and Goldstone bosons. The approaches
which fail to incorporate this point cannot give a satisfac-
tory description of these mesons.

There have been a large number of works investigating
chiral-symmetry breaking in QCD-like theories with the
Schwinger-Dyson equation (see, e.g., Refs. 4—6). In Refs.
5 and 6, a scheme was first developed in which the
Bethe-Salpeter wave function of the pion was obtained
from a solution of the Schwinger-Dyson equation for a
dynamical quark mass. This scheme properly incorpo-
rates the Goldstone-boson nature of the pion. However,
the authors of these works made some approximations
which are good only for the nonrelativistic system. In
particular the authors of Ref. 5 used an instantaneous
Coulomb interaction and neglected the contributions of
transverse gluons. In Ref. 7, the effect of the transverse
gluon was considered with the retardation effect replaced
by an effective transverse-gluon mass. Since the pion is a
relativistic bound state, it is worthwhile to reanalyze the
problem with a relativistic formulation. In this article we
shall use the Schwinger-Dyson equation for a dynamical
quark mass and the Bethe-Salpeter equation for the pion
in their Lorentz-invariant form. The kernels of these two
equations are taken to be the same. In a previous note,
we have shown under very general conditions how to

pick out the solution of the Bethe-Salpeter equation cor-
responding to the Goldstone boson in a spontaneous
chiral-symmetry-breaking theory. Our scheme is essen-
tially a generalization of the procedure used in Refs. 5

and 6 to the full relativistic theory. We shall use this
scheme to the case of gluon ladder exchange with a run-
ning coupling constant, as well as to the case where a co-
variant generalization of the confinement potential is con-
tained in the kernel. A confinement potential of vector
type was considered in Refs. 6 and 7. The kernel corre-
sponding to the confinement interaction used by us is a
chiral-symmetric combination which contains a superpo-
sition of the vector and scalar confinement potential in
the v /c expansion. Physical quantities for chiral-
symmetry breaking and the pion, including quark dynam-
ical mass, quark condensate (Pg), pion decay constantf, and pion charge radius r, are calculated with these
solutions. We would like to investigate the possibility of
fitting the experimental data for chiral-symmetry break-
ing and the pion properties from realistic assumptions.
Therefore, we use Lorentz-covariant equations and try to
restrict the values of parameters within the region al-
lowed by other experimental data or theoretical con-
siderations.

In Sec. II we shall explain our method and write down
basic equations. Formulas used for calculating physical
quantities and numerical results will be presented in Sec.
III. These results will be discussed in Sec. IV.

II. BASIC ASSUMPTIONS AND METHODS

The same interaction kernel appearing in the Wick-
rotated Schwinger-Dyson equation for quark self-energy
and Bethe-Salpeter equation for quark-antiquark pair is
assumed to be of the form

I,.g I,. U, , t'=S, P, V, A, T,L,
where U; are Lorentz-invariant functions of momenta in-

volved, q is the momentum transfer of the quark, I", are
16 Hermitian Dirac matrices for i WL, and

I I =y q/+q

The Schwinger-Dyson equation takes the form
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d4
y(p) = —(Z —I )p+ i Sm —f r, SF(p q—)I;U;,

(2~)

XS~(pz —q)l, U, . (4)

We shall put the quark current mass I=0 throughout

where X(p) =SF '(p)+y p. The same kernel should also
be used in the integral equation for the axial vertex func-
tion I „(p„pz ), which reads

I"i (p i,p q ) =Zi y 5 yp'
4

+ I SFP, —
q I P, —qP2 —

q(2~)'

this article. The Ward-Takahashi (WT) identity for I „in
a theory with conserved local axial-vector current is

I

(p —p )„I„'(p»p»=i[S' '(p»y +y,S,' '-(p, )] —.
2

This identity can be satisfied by the solutions of the equa-
tion (3) and corresponding equation (4) if Us = Up
=UT=O. But we shall also consider the less stringent
case

U~+ Up =0, UT=0,

which corresponds to the nonlocal chiral-symmetric in-
teraction

f f d x d'y [it(~ )P(x)P(y )g(y) P(~)y—,g(x)g(y)y, g(y)]Us(x —y) .

The y& component of the identity (5) is satisfied under condition (6). As we shall see, this condition is sufficient for reali-
zation of the Goldstone theorem.

Write the self-energy of the quark as

X(p ) =i A (p') y.pB (p—') .

Then the Schwinger-Dyson equation (3) for X(p) can be decomposed into the two equations

A(p )= f (4Ui, +4U„+Us+ Ui, +12UT+UL )
(2~)~ 3 (p' )+p' [1+B(p' )]

y pB(p )= (2UV 2Ua ——Us+ Ui, )y p'+ 2
~ y q

—y p' Ul
2 d p q p', 1+B(p' )

(2ir ) q A (p' )+p' [1+B(p' )]

Equation (9) needs one subtraction at some point po if Z&1.
From the symmetry principle, the Bethe-Salpeter amplitude of the pion can be written as

l
yi (p)=y5Fi+iypy5[PpFq+pp(p P)F3]+ yqoq~(Ppp, —pqP~)F4, —

2

(9)

(10)

where P and p are total and relative momentum, respectively. F, =F,(p, (p.P) ) are even functions of p. The Bethe-
Salpeter equation can be decomposed into four equations, the first of which is

P
p 4

1+B p ——P
2

1+B p+—P
2 2

+A p ——2 p+—P P
2

P'F&(P,p) —(P p)'F—, (P,p) —[(P p)' p'P']F, (P,p)—

.F, (P,p )

d
(4Ui, +4U„—Us —Ui, —12UT+ UL )F, (P,p') .

(2ir )

Assume F; has the form

F;(p', (p.P)')= f;(p')+(p. P)'f;(p', (p P)'),
where f, are finite at (p P ) =0 and f, (p ) are independent of (p P ). Since

f d p'U;(p' P) f;(p', (p' P) )

(12)

must be proportional to P or (p.P), we can obtain the following closed system of equations for f, (p ) of a bound state
of zero mass (P =0):

')+[1+B( ')]'p'jf, (p')= f (4UV+4U~ —Us —Ui, —12UT+UL )f, (p' ),
(2~)

(13)
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A(p )[1+B(p )]f,(p )+ {3 (p ) —[1+B(p )] p I f2(p ) —2A(p )[1+B(p )]p f~(p )

d p Up+2Up 2Ug 2 p' ' +, p'p' ' —p -p' '
3 p2' ~ 3p

d4 i
1 2p 1 p Q' 1

(2~) 3 p q 2 , ——p'+ —(q.p"')
p g

(14)

2{3(p )B'(p ) —[1+B(p )]A'(p ))fi(p )+2[1+B(p )] f2(p )+{A (p )+[1+B(p )] p ]f ( )

+»(p'» I+B(p')]f.(p')

( U —U +2U —2U„) [4(p p')' —p'p' ']f, (p' ')

p 1 1 p g

(2m) p 3 p q

+ (q p)(q p') ——(q p') 4
1, 1, (p q)'

4 p'p
2~ 2

—1 p' f~(p')

I I+B(p') ]'f I (p")+2~ (p') [1+B(p')]f2(p')+ {~ '(p') —
[ I + B(p') ]'p']f ~(p")

4 I

, U, +U, —4U, p p'
p (2~)dp', 2 (p )+ UL pp'+ — —1 pp' (2~)' 3 p q

, (p q )(p' q ) f, (p' ') (16)

If the condition (6) is satisfied, we find by comparing Eq. (13) with (8) that the former has a solution

fi(p')=N A(p )

A (p )+p [1+B(p )]
(17)

when the latter has a nontrivial chiral-symmetry-breaking solution. Here N is the normalization constant. The relation
(17) has been obtained from the axial-vector WT identity (5) and the relation

SF(p I )I &(p I pz )SF(p2 ) —
& X(p I pz ) +terms regular at P =05 f p„ 2=

p2

between the axial-vector vertex function I „and the Bethe-Salpeter amplitude of the pion g with the normalization con-
stant N fixed to

(19)

-= —2PP

Our solution indeed satisfied this relation.
The Bethe-Salpeter wave functions f2, f&, and f& can then be solved from (14)—(16) in terms off I (p ). In principle,

f;(p, (p.P) ) are determined by f;(p ). This is the realization of the Nambu-Goldstone theorem in our formalism.
The solution obtained in this way is the correct solution for the pion as a Goldstone boson. An important point here is
that we should use dynamical quark self-energy obtained from Schwinger-Dyson equation with the same kernel instead
of constant constituent quark mass in Bethe-Salpeter equation. When P =0,f, (p, (p P) ) do not contribute to the
normalization constant N and the pion decay constant f .

For a kernel independent of I', the normalization constant N can be determined either by the condition'
r r

f 4 Tr XPBP SF' p+
2

XPSF' p —
2

+Tr XPSF' p+
2 XPBP SF p —

2

(20)

or by the condition F (0)=1, where F (q ) is the pion electromagnetic form factor. From (20), we obtain at P =0 the
formula (Al) in the Appendix. The charge radius of the pion r depends on f, (p )=f, (p, O) as well. This function
can be obtained by the equation
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[ & (p')+p'[I+B(p')]'] f&(p') —( &''(p') —&(p')& "(p')+p'IB''(p') —[1+B(p')]B"(p')] )f&(p')

—2t A(p')B'(p') —&'(p')[I+B(p')]I f2(p')
—(2[2(p )B'(p ) —A'(p )[1+B(p )]]p +A(p )[1+B(p )])f3(p ) —[1+B(p )] f4(p )

d4 ' I 2

4 4UV+4Ug Us Up 12UT+ UL 4
2 2

1 p' ', p' ' 21

derived from Eq. (11).

III. CALCULATION OF PHYSICAL QUANTITIES

In the following we shall assume Uz =UT=O, and
consider the following cases.

(a) Gluon ladder approximation in the Landau gauge:

Us= U~=o

24 1
Uv UL gseff

q

where q=p' —p is the momentum transfer of the quark,
and

should be equal to the string tension determined from
heavy-quarkonium spectra. Therefore K lies in the region
of 0. 15—0.20 GeV . In order to avoid distorting too
much the linear potential in the energy range of heavy
quarkonium, we assume p & 100 MeV.

(c) We have considered also the case in which the
confinement interaction (23) is replaced by the form

'U~(q) = —g 'Ul (q)

= —(1—g) 'Us(q) =(1—g) 'Up(q)

2
gseff= '

16m 1 fol. g„ff ~4~exp,
Max(p, p' )

ln
A where

M —C5 (q)
(q2+p2)2 M2+q2

(24)

4~cap otherwise .

(22)

8~v
U~(q ) = —Ul (q) =g

( q
2 +p2 )2

U&(q ) = —U&(q ) = —(1—g)
( 2+ z)z

(23)

Here p is an infrared cutoft' which may represent the
screening e6'ect of light-quark pairs in the physical vacu-
um and g is a constant. The nonrelativistic potential be-
tween a pair of quarks is equal to Uv —Us at qp =0 in the
limit ~q~ && constituent quark mass. This quantity is ex-
pected to be fIavor independent. This implies that ~

In this case, B(p )=0 It is r. easonable to interpret A in
(22) as the @CD scale parameter in momentum subtrac-
tion scheme calculated with quark-gluon vertex. There-
fore it should lie in the region of 200—500 MeV.

(b) Gluon ladder in the Landau gauge plus confine-
ment.

Experimental data of the fine structure of heavy-
quarkonian spectra favor the scalar confinement poten-
tial. '" Therefore we shall allow for the possibility that
the confinement interaction for light quarks also contains
a scalar component. However, pure scalar interaction
violates chiral symmetry explicitly. Therefore we assume
the confinement interaction is a superposition of a vector
term and the chiral-symmetrical combination Us = —U~.
The contribution of the Uz term vanishes in the nonrela-
tivistic limit but is important for the pion. The simple
choice of q kernel for confinement interaction leads to
infrared divergence of the integral equations. We shall
assume

c= M
(25)

( q
2 +~2

)
2 M 2 +q

2

The 5 (q) term is introduced to ensure that the Fourier
transform Us(x) of Us(q) vanishes at x =0. The contri-
bution of this term automatically removes the infrared
divergence in integral equations even in the limit p —+0.
It is insensitive to p for sufficiently small values of p. The
corresponding procedure in three dimensions has been
discussed in Ref. 6. However, the physical meaning for
these two cases is not exactly the same. To understand
the physical meaning of (24), let us calculate its Fourier
transform. In the region M x « 1, we find

Us(x) =(1—g)—ln
M+x
e" (26)

in the nonrelativistic limit. This form of linear potential
has been used for heavy-quarkonium spectra. The intro-
duction of M is needed not only for ultraviolet conver-
gence of the integral (25), but also for the existence of a
local potential in the nonrelativistic limit. This can be
seen from the discussion in Ref. 12. From the require-
ment of heavy-quarkonium spectra, M is of the order of
several hundreds of MeV.

The dynamical mass function of the quark can be

The result coincides with the dimensionally regularized
confinement kernel used in Ref. 12, if M is identified to
the parameter p

' introduced in that article. It was
shown in Ref. 12 that for sufficiently small values of M,
(26) is reduced to the linear potential with a negative con-
stant term

1~(r —2e"" &'M ') .
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~=0.15 GeV2

LA
CV

CL

CL ~=0.15 GeV~

C3

x=p/ P
x = p/'. q

K=0.15 GeV

K=0.15 GeV

x=p/ A x=pgA

FIG. 4. Same as Fig. 3 for case (b) with parameters ao= 1.00, A =450 MeV, p = 100 MeV, and K =0.15 GeV and 0.20 GeV .

de6ned as

m*(p )= /i( )

1+B(p')
(27)

In Ref. 3, the vacuum expectation value of the renor-
malized composited operator l(p is related to the asymp-
totic behavior of m *(p ) by the following formula de-

rived from the renormalization group and operator-
product expansion:

2( 2) 2 2
4/9

(~~) „( 2) l Rs P lnp /A

p
2 ln p2y~2

(28)

TABLE I. The quantities of chiral-symmetry breaking and pion properties for case (a).

m*(0)

no= 1.50

A=600 MeV
280 MeV —(250 MeV)' 91.8 MeV 0.55 fm

ao= 2.00

A=500 MeV

—(216 MeV) 89.4 MeV 0.54 fm
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TABLE II. Same as Table I for case (b), with ao = 1.00, 4=450 MeV, and g = l.0.

mq*(0)

v=0. 15 GeV

@=100 MeV

~=0.15 GeV'

p=70 MeV

~=0.20 GeV2

p=100 MeV

317 MeV

350 MeV

—(210 MeV)

—(217 MeV)

85.3 MeV

74.0 MeV

86.1 MeV

0.60 fm

0.59 fm

0.57 fm

where p is the renormalization point of the composite
operator gP. The asymptotic behavior of the solution of
Eq. (8) in all cases considered by us is consistent with
(28). Therefore we shall use (28) for the calculation of
(gg) for @=1.0 GeV.

The pion decay constant is obtained from

After tedious calculations, the charge radius of the
pion r can also be expressed in terms of f; (p ) and

f, (p ) when P is taken to be zero. The result obtained
after partial integrations is the formula (A2) in the Ap-
pendix. In the calculation of r, we have neglected the
radiative corrections of the photon vertex. Correspond-
ingly, we change the normalization of the Bethe-Salpeter
wave functions in the calculation of the integral in (A2)
so that the form factor F (q ) obtained in the same ap-
proximation is equal to 1 at q =0. The original normali-
zation condition (A 1) corresponds to the diagram con-
taining the radiative correction of the photon vertex.

The numerical solutions of Schwinger-Dyson and
Bethe-Salpeter equations for cases (a) and (b) obtained by
our method are shown in Figs. 1 —4. The results for phys-
ical quantities m*(0), (1tg), f, and r calculated from
these solutions are summarized in Tables I—III. We have
checked that the normalization constant X obtained from
(Al) agrees with the relation (20), N= f ', within a few

percent.

(1) Comparing numerical results for the set of parame-
ters A=600 MeV and ac= l. 50 in the case (a) with that
obtained for the same set of parameters in Ref. 5 consid-
ering only instantaneous Coulomb interaction, we see
that, although they are qualitatively similar, the correc-
tions due to transverse gluons can be as large as 50%.
The results are in agreement with theoretical expectation.

(2) For case (b), pure scalar-pseudoscalar (SP)-
confinement gives too small a value for the dynamical
quark mass. The best fit is obtained for pure vector in-
teraction. This is to be contrasted with the heavy-quark
case where the scalar confinement is favored. Satisfacto-
ry agreement with experimental data can be obtained for
A =400—500 MeV, p =70—100 MeV, x=0. 15—0.20
GeV, and ac~ 1.0, except that f„ is about 40%%uo smaller
than the experimental value 130 MeV. These values of
parameters are quite reasonable. This is an improvement
to the results obtained in Ref. 7 where a A value of about
2.0 GeV was used to fit the dynamical quark mass. Our
results are not sensitive to the values of ao.

(3) On the other hand, if we use the subtracted form

TABLE IV. The quantities, m,*(01, (erg), and f for case
(c), with ao= 1.0, A =300 MeV, and / =0.00 (pure SP-
confinement).

m *(0)

a=0. 15 GeV
IV. DISCUSSION

From the numerical results, we can obtain the follow-
ing conclusions.

TABLE III. Dynamical quark mass and quark condensate
for case (b) with ao = 1.00, A =450 MeV, and /=0. 00 (pure SP-
confinement).

m *(0)

~=0.20 GeV2
—(171 MeV)

@=100 MeV

M=400 MeV

~=0. 15 GeV2

M=500 MeV

re=0. 18 GeV

M=400 MeV

v=0. 18 GeV2

M=500 MeV

341 MeV

387 MeV

356 MeV

399 MeV

( —171 MeV)

( —184 MeV)

( —179 MeV)'

( —188 MeV)3

133 MeV

138 MeV

149 MeV

155 MeV
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(25) for the confinement potential, a good fit to m "(0),
(it/), and f can be obtained for pure S P-confinement
with reasonable values of A and ic. (See Table IV.) The
results are not sensitive to the value of p for p ~ SO MeV.
However, in this case solutions of the integral equations
undergo rapid change in the intermediate region. Our
numerical solutions are not of good quality su%cient for a
reliable calculation of r, because the expression (A2) for
r contains derivatives of these solutions. We hope to
study this case with more accurate numerical methods in
the future. This problem is important for understanding
the nature of confinement interaction.
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APPENDIX

The normalization condition obtained from (20) is

dyy C1 y 1 y +C2 y 1 y 2 y 2+C3 y 1 y 3 y +C4 y 1 y 4 y8~
(A1)

where

Cl(y) =
I 1+B(3 )]'+y [A '(y)+yB'(y)]
—2I A (y) A '(y)+y [1+B(y)]B'(y) j

—y t A (y) A "(y)+[1+B(y ) ]B"(y)j,
C2(y) =4 A (y) [1+B (y ) ]

+2y [ A (y )B'(y) —[1+B(y)]A '(y) j

C3 (y) =y A (y) [1+B (y) ]

+2y I A(y)B'(y) —[1+B(y)]A'(y) j

C4(y) = —3y [1+B(y)]

and y —p
If the radiative correction of the photon vertex is

neglected the charge radius of the pion at P =0 is

dyy[ „(y)+ „(y)+ „(y)+ „(y)-2= 3

8~

+ 22 y)+r23(y)+ 24(y

+r»(y)+ r34(y)

+ r44(y)

+ r„(y)+r,2(y)+ r53(y)+ r,&(y) ]

(A2)
where

r»(y) =-,'y [3[1+B(y)1+yB'(y)jf &'(y),

r»(y) =6y A (y)f i (y)f ', (y),

ri3(y) =y'I —A '(y )f, (y)+ A (y)f,'(y) jf ', (y),
r ig(y) = —y( I 3[1+B(y)]+yB'(y) ]f4(y)

+5y [1+B(y)]f4(y»f i (y),

r23(y) 63 [1+B(3)]f2(y)f2(y»

r24(y) = 6y A (y)f2(y)f 4—(y),

r»(y) = —y'I [1+B(y)]+yB'(y)jf3(y»
r (y) = —y [ [»A (y) +4y A '(y) ]f (y)

+6y A(y)f 3(y) jf4(y),

r44(y) = —2y I 3[1+B(y) ]+yB'(y ) jf4~(y)

"5i(y)= y'[1+B(y)]fi(y)fi(y),
r»(y ) =0,
r53(y) =2y'A(y)f i(y)f, (y),
"5~(y) =2y'[1+B(y ) ]fi (y)f, (y ),

and y =p
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