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The Pade approximation and the K matrix are techniques for constructing perturbative ampli-
tudes which satisfy two-body unitarity exactly. We apply these approximations to the Goldstone-
boson scattering amplitude in a spontaneously broken O(2N) model, in the large-% limit, and com-
pare with the exact amplitude (to leading order in 1/N). The Ir, rj Pade approximation reproduces
the exact large-N amplitude for all r. The K matrix, at any finite order, yields an amplitude which is

qualitatively similar to, but not identical to, the exact amplitude.

I. INTRODUCTION

In the absence of a "light" Higgs boson, the scattering
of longitudinal weak vector bosons becomes strong in the
TeV energy regime. This is reflected in the fact that the
I=O, J=O Born amplitude for longitudinal-vector-boson
scattering violates the unitarity bound, for energies above
the Higgs resonance, if m~ ~ 800 GeV. ' Similarly, if the
Higgs boson is absent altogether, the unitarity bound is
violated at the tree level in longitudinal-vector-boson
scattering at energies in excess of about 1.2 TeV. '

If longitudinal vector bosons are strongly coupled in
the TeV energy regime, the associated physics may be
very rich. On the other hand, our ability to predict this
physics is greatly impeded by the fact that the usual per-
turbative calculational techniques are not reliable. One
approach to ameliorating this situation, which has been
espoused by several authors, is to extend the usual
perturbative techniques such that two-body unitarity is

exactly satisfied. Since two-body unitarity is a nonpertur-
bative property of the S matrix (assuming multiparticle
states may be neglected), the hope is that the unitarized
perturbative approach will reAect some of the nonpertur-
bative aspects of the theory. This approach has also been
applied to pion physics. '

It is difFicult to gauge the validity of the unitarized per-
turbative approach, which lies somewhere between a per-
turbative and nonperturbative technique. If we could
solve the longitudinal-vector-boson system exactly, we
could compare it with the results of the unitarized pertur-
bative calculation to judge its accuracy. Of course, there
would then be no need for the unitarized perturbative cal-
culation. One may also adopt the point of view that the
ultimate test of the validity of this approach lies with ex-
periment. However, if nature does resemble the "predic-
tions" of this approach, one cannot rule out the possibili-
ty that this resemblance is fortuitous.

Another method to study the validity of the unitarized
perturbative approach is to apply it to systems which, al-
though not necessarily of physical interest, can be solved
exactly. The O(2N) scalar field theory (with the scalar
field in the fundamental representation) in the large-N
limit is such a model; it can be solved "exactly" to lead-

ing order in 1/N. ' ' This model corresponds to the
scalar sector of an SU(N) gauge theory, with the scalar
field in the fundamental representation of SU(N). In the
real world %=2, which is not a large number. However,
we are not advocating the use of the large-X limit as a
model of the real world, but are using it as a testing
ground for unitarized perturbative techniques. Neverthe-
less, the motivation for choosing this model is that it is an
extension of the scalar sector of the standard Higgs mod-
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We assume that the symmetry of the O(2N) scalar
theory is spontaneously broken to O(2N —1), producing
2N —1 Goldstone bosons and a Higgs boson. In the
gauged SU(N) model, the Goldstone bosons are absorbed
(in unitary gauge) to produce 2N —1 massive vector bo-
sons. If we take the limit of vanishing gauge coupling,
g ~0, keeping the scalar-field vacuum expectation value
v fixed, the 2N —1 massive vector bosons become mass-
less (Mi, -gv). The Goldstone bosons (which are present
in R& gauge) then represent the longitudinal vector bo-
sons, and the scalar sector decouples from the gauge sec-
tor. Therefore, the O(2N) scalar model in the broken
phase may be regarded as the g —+0 limit of an interact-
ing system of longitudinal vector bosons and a Higgs bo-
son. The only interactions that survive in this limit are
proportional to the scalar-field self-interaction,
g~g2~ 2 y~2 ~~ 2 yv2

In this paper we calculate the Goldstone-boson scatter-
ing amplitude in the O(2N) model in the large-N limit us-
ing two well-known unitarization techniques: the Pade
approximation ' and the K matrix. " ' ' We com-
pare the amplitudes with the exact amplitude, obtained
by summing the diagrams which dominate in the large-1V
limit. The results of our investigation may be summa-
rized as follows.

(1) The [r, rj Pade approximation to the Goldstone-
boson scattering amplitude is identical to the exact ampli-
tude for all r.

(2) The tree-level K matrix yields an amplitude qualita-
tively similar to, but not identical to, the exact amplitude.
The K-matrix amplitude differs from the exact amplitude
at any finite order, approaching the exact amplitude at
infinite order.
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Sections II—IV are devoted to the O(2N) model, the
Pade approximation, and the K matrix, respectively. Sec-
tion V contains a discussion of our results. The analytic
structure of the scattering amplitude is discussed in the
Appendix.

II. THE O(2N) MODEL

The Lagrangian of the O(2N) model is

v= 'a y'a~y' 'x (—y'-y —u')' (2.1)

where P' is a 2¹omponent real scalar field, and a sum
on repeated indices is implied. The potential is chosen
such that the O(2N) symmetry is broken. As usual, we
shift the last component of the field to the minimum of
the potential, P ~H + u. The Lagrangian becomes

z= —a y'a~y'+ —a Ha~H1, , 1

2 " 2
2

(P'P'+H +2Hu)
8

2mo s
v s mp

(2.3)

where a now runs up to 2N —1 only. There are 2N —1

massless Goldstone bosons and a Higgs boson with a bare
mass squared of mo =2kpv .

The existence of a broken phase of the O(2N) model in
the large N limit has a long history, beginning with the
work of Coleman, Jackiw, and Politzer, who found a ta-
chyon pole in the Higgs propagator and concluded that
the broken phase is unstable. ' ' Today it is widely be-
lieved that fundamental scalar field theories are trivial;
i.e., the renormalized coupling vanishes as the cutoff is
taken to infinity. ' However, if we regard the scalar field
theory as an effective field theory, valid up to some ener-
gy scale, A, at which it is presumably subsumed by some
deeper theory, then a nontrivial renormalized coupling
exists. Furthermore, the tachyonic pole occurs for
~p ~

)A, so it lies outside the region of validity of the
theory, and may be ignored. ' '

The Goldstone-boson scattering amplitude in the
O(2N) model, to leading order in 1/N, but to all orders in
A,oN, was first computed by Bardeen and Moshe. ' It was
later analyzed in detail by Einhorn, ' who adopted the
effective-field-theory point of view. We rederive the re-
sults of this investigation in order to compare them with
the Fade approximation and E-matrix results. Since the
Higgs boson is a singlet under the residual O(2N —1)
symmetry, it couples to the (normalized) state
[ I /&2(2N —1)] ~

P'P') (sum on repeated indices im-
plied). For convenience, we consider the elastic scatter-
ing amplitude of this state.

The dominant diagrams in the large X limit which con-
tribute to P'P'~P P (a&b) are shown in Fig. 1. The
singlet scattering amplitude at the tree level is

FIG. 1. Feynman diagrams which contribute to P'P'~P P
(a&b) in the large-N limit.

A~=(A, ) I(s), (2.4)

where

(d4 —
2Ek)

I(p') =
(2~)~ " k'(k+p)'

p
2——y+2 —ln(4' ) & 4vrpo

(2.5)

~, =(W, )'[1(s)]'-'

Summing the amplitude to all orders yields

(2.6)

2

u s —m o+Ns (m o/u )I (s)

which is the singlet Goldstone-boson scattering ampli-
tude in the large N limit. The zeroth partial wave of this
amplitude, defined by

a= dzA
3277 —1

(2.8)

(z is the cosine of the scattering angle), satisfies the two-
body unitarity relation

lma =/a/'. (2.9)

The divergence in the loop integral I(s) may be ab-
sorbed into a scale-dependent renormalized mass parame-
ter, defined by

is the loop integral associated with the bubble diagram
(after Wick rotation), which we have evaluated in 4 —2e
dimensions to regulate the ultraviolet divergence. Since
massless, quadratically divergent loop integrals vanish in
dimensional regularization, the Higgs vacuum expecta-
tion value v remains unrenormalized, and we may ignore
all tadpole diagrams.

The 7th-order contribution to the singlet Goldstone-
boson scattering amplitude is

where we have dropped terms of order 1/X with respect
to the leading term. ' The second-order amplitude is

2
mp

m (p)=
1+N(m 0 /u )ReI (p )

(2.10)
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which yields the renormalized amplitude
2

mR S

u s —m„—Ns
I m~ /(4~u) jln( —s /p )

(2.11)

1500

1250—

1000—

The renormalized mass parameter may be related to a re-
normalized coupling by A,R =—mR /2v .

The physical Higgs particle appears as a pole in the
scattering amplitude on the second (unphysical) Riemann
sheet. Einhorn' has shown how to find the position of
the pole by making a judicious choice of the renormaliza-
tion scale p . Let the position of the pole be given by
so =p e ', i.e., choose p = ~so ~. The physical mass and
width of the Higgs resonance, defined by

r 2

500

250

0
0 500 1000

1T1R ((-ev)

1500 P, OOO

lSo= mH ——rH
2

are then given by

0
m~ =p cos

0I H
= —2mIItan —,

where 0 is determined via

(2.12)

(2.13)

(2.14)

FIG. 2. The physical-Higgs-boson mass as a function of the
renormalized mass parameter in the O(2X) model for large N.
The physical mass goes to 822 GeV as mR —+ ~.

comparable to the scale at which mR blows up; presum-
ably the effective-field-theory description breaks down
prior to this energy. For a given m„(p ), the scale Ao at
which mR blows up may be obtained from the
renormalization-group equation

2
mRtano=N (8—~)

(4~u)
(2.15)

1

mz (po) (4~u) po
(2.17)

and p via

p =mR cosO (2.16)

which may be derived from Eq. (2.10). Setting
m~(AO) = ee, we obtain

For a given value of N and mz, one solves Eq. (2.15) for
8, uses Eq. (2.16) to find p, and then finds mH and I H
via Eq. (2.13) and Eq. (2.14).

We discuss the analytic structure of the scattering am-
plitude, Eq. (2.11), in the Appendix. We show that there
is a- pole on the second Riemann sheet, below the real axis
( rr!2 & 0 (0),—corresponding to the physical Higgs par-
ticle. We also show that there are no poles on the physi-
cal sheet, except a tachyon pole, which we will discuss
shortly.

In order to demonstrate how the physical-Higgs-boson
mass varies with mR, we must choose some value for
X/v . To make contact with the real world, we choose
v=246 GeV and X =

—,'. The latter choice is motivated
by the observation that there are 2X —1 Goldstone bo-
sons which we have summed in the loops, but we have
written N rather than (2N —1)/2 for simplicity (they are
equivalent for large N). Thus, setting N =

—,
' corresponds

to an O(4) model, as desired.
Figure 2 shows the physical-Higgs-boson mass as a

function of the renormalized mass parameter mR. We
find that as mR approaches 1.4 TeV the physical-Higgs-
boson mass saturates at 1 TeV. As we increase mR
beyond 1.4 TeV, the physical-Higgs-boson mass begins to
decrease slowly, approaching 822 GeV as mR ~~.
However, the region m R )& 1 TeV may not be
trustworthy, because the physical-Higgs-boson mass is

ioo

$02
500 1000 1500 2000 2500 3000
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FIG. 3. The tachyon mass (mT= —so, where so is the ta-
chyon pole) as a function of the renorrnalized mass parameter in
the O(2N) model for large N (dashed). The physical-Higgs-
boson mass is also shown (solid).
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TeV. The width continues to increase as IR is increased,
in contrast with the physical mass. As mR ~~, the
width approaches twice the physical-Higgs-boson mass
(indicated by the dot on the end of the solid curve).
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III. THE PADE APPROXIMATION
(REFS. 6—12)

The [r, r] Pade approximation provides a means of uni-
tarizing a perturbative expansion for an elastic scattering
amplitude. Let

a=a + +a1 2f (3.1)

500

~ ~ I s i ~ ~ I s «g I0

be the perturbative expansion for the Jth partial-wave
amplitude to order 2r (the index J is suppressed). The
[r, r] Pade approximation is obtained by solving

600 800 1000 1200 1400

rn„(Gev)

po+ '''+pr
qo+ +q,

=a&+ . +a2, (3.2)

FIG. 4. The Higgs boson width as a function of the
physical-Higgs-boson mass in the O(2N) model for large N
(solid) and in the tree-level K-matrix approximation (dashed).
The tree-level perturbative estimate is also shown (dotted).

for the pI and q& in terms of the a&, up to order 2r. The
resulting expression for the partial-wave amplitude
satisfies the elastic two-body unitarity relation given in
Eq. (2.9).

To demonstrate the procedure, let us construct the
[1,1] Fade approximation to the singlet Goldstone-boson
scattering amplitude. We must solve

(4vrv )
Ao p exp

Xmz(p )
(2.18)

po+p&
a ' = =a&+a2

qp+q)
(3.3)

3IH
I H=N

16m.u
(2.20)

As mz approaches 1 TeV, the Higgs-boson width be-
comes considerably broader than the tree-level estimate,
attaining roughly twice the tree-level estimate for mH = 1

The upper bound on the physical-Higgs-boson mass ob-
tained here is in the same spirit as the lattice bound.

Our method of solving for the pole in the scattering
amplitude overlooks a pole which occurs on the negative
real axis. This tachyonic pole has a mass mT= —so given
by

2 2
R Tmr+ mR —NmT 2

ln
2(4~v) p

For mT))mz, this equation reduces to Eq. (2.18), with
mT=Ap. Since the scale at which the effective theory
breaks down A is presumably less than Ao, we find that
mT A; i.e., the tachyon lies outside the range of validity
of the effective theory.

The dashed line in Fig. 3 shows the tachyon mass IT
as a function of mz(p ). Also shown, by the solid line, is
the physical-Higgs-boson mass, mH. Since A~mT, the
calculation of mH is unreliable for mR &&1 TeV, because
m~ is then comparable to or greater than A.

In Fig. 4 we show the Higgs-boson width as a function
of the physical-Higgs-boson mass (solid line). Also
shown is the tree-level perturbative width (dotted line),
given by

for the p's and q's. Matching order by order in the cou-
pling, we obtain

po=0,

pr =qoa

O=q]a)+qpa2,

from which we obtain the [1,1] Pade approximation

(3.4)

(3.5)

(3.6)

(3.7)

In the large X limit, the lth-order amplitude is related to
the tree amplitude by Eq. (2.6). Rewriting this equation
in terms of zeroth partial-wave amplitudes yields

a, = (a, )'(I(s) )'

where

(3.8)

I:—16~I . (3.9)

Using Eq. (3.8) to replace a2 in the expression for the
[1,1] Pade approximation, Eq. (3.7), we obtain

[&, i]
1 —a, I(s)

(3.10)

which is precisely the J=O partial wave of the exact
large-X amplitude, Eq. (2.7). Thus the [1,1] Pade approx-
imation to the Goldstone-boson scattering amplitude in
the large-N limit reproduces the exact large-N result.
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The [r, r] Pade approximation to the large-N amplitude
is obtained by solving Eq. (3.2) up to order 2r. Using Eq.
(3.8), we find

2
ltd gtanO= —N

(4m.u)
(4.7)

P0+ '''+Pq
q + +q„

a&

1 —a(I

)2r+1I 2r
a&

1 —a 1I
(3.11)

IV. THE K MATRIX (REFS.4—6, 9, AND 13)

The K matrix is related to the S matrix by

1+(i /2)K
1 —(i/2)K ' (4.1)

which ensures the unitarity of the S matrix (for K Hermi-
tian). Projecting out the partial-wave amplitudes, we find

(4.2)

where k is the Jth partial wave of K. The partial waves
of E may be calculated perturbatively by equating Eq.
(4.2) to the perturbative expansion of a, expanding k per-
turbatively, and matching orders of perturbation theory.
We find

Since the second term on the right-hand side of Eq. (3.11)
begins at order 2r+1, it does not contribute when we
match orders of perturbation theory up to order 2r. The
first term, which equals the exact large-N amplitude, is a
ratio of polynomials and, therefore, due to the uniqueness
of the Pade approximation, is the [r, r] Pade approxi-
mant. Thus the [r, r] Pade approximation reproduces the
exact large ¹ mplitude for all r. The reader may wish to
check this assertion by constructing the [2,2] approxi-
mant.

We show in Fig. 5 the physical-Higgs-boson mass as a
function of the bare mass parameter m0. As in the exact
solution, the physical mass saturates as the coupling in-
creases, although at a higher value, mB=1147 GeV. As
m0~ ~, the physical mass decreases slowly, approaching
1007 GeV asymptotically.

When comparing the dependence of the physical-
Higgs-boson mass on the bare mass parameter in Fig. 5
with the exact result, given in Fig. 2, one must keep in
mind that m~ in Fig. 2 is scale dependent. We have
chosen p = ~so ~, but other choices could be made, which
would result in a different dependence of m~ on mz. In
particular, Refs. 5 —9 use p =mz which, for mz ))mH,
is much larger than so ~.

The dependence of the Higgs-boson width on the
physical-Higgs-boson mass provides a scale-independent
basis for comparison of the K-matrix amplitude with the
exact amplitude. The Higgs-boson width as a function of
the physical-Higgs-boson mass in the tree-level K-matrix
approach is given by the dashed line in Fig. 4. The E-
matrix curve lies between the exact solution (solid line)
and the perturbative tree approximation (dotted line).
Thus, although the tree-level K matrix does not repro-
duce the exact large-N result, it improves upon the ordi-
nary tree-level approximation.

To construct the 1th-order K-matrix amplitude, we cal-
culate k =k&+ . +k&, perturbatively renormalize, and
insert the resulting expression into Eq. (4.2). We find that
the lth-order renormalized contribution to the K matrix
is

k, =a, ,

k2 Rea2,

k3 Rea3 +a

(4.3)

(4.4)

(4.5)

2 2 1 —1

s s mi~ ~s~N ln
u s —m~ s —m~ (4~v) p

(4.8)

and so forth. The resulting partial-wave amplitude, Eq.
(4.2), satisfies the unitarity relation Eq. (2.9).

The tree-level K-matrix approximation to the J=0
singlet Goldstone-boson scattering amplitude, in the
large-N limit, is

1500

1250—

a1

1 /a 1

2m0 S

v s —mo+iNs(mo/16vrv )
(4.6)

1000

500

To compare this amplitude with the exact large-N ampli-
tude, Eq. (2.11), we relate the bare coupling mo to the
scale-dependent renormalized coupling mR(p ) via the
tree-level relation mo=mz(p ). We find that the tree-
level K matrix does not reproduce the exact large-N am-
plitude for any choice of p .

We may solve for the physical mass and width of the
Higgs resonance in the tree-level K-matrix amplitude just
as we did in the exact large-N amplitude. The solution is
identical, with the exception that Eq. (2.15) is replaced by

F50

0
0 500 1000 1500 2000

ma (Gev)

FIG. 5. The physical-Higgs-boson mass as a function of the
bare mass parameter in the tree-level K-matrix approximation
to the O(2N) model for large X. The physical mass goes to 1007
GeV as mo~ ~.
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11 orders, we obtainumming to a

k= ykI
1=1

2
s

2 y(4~U)2]ln( l&l ~P )16m 2 s —m~ —Ns

(4.9)

23which yield

2
s

2/(477U) ]ln( ~~V—)s —I& +s

(4.10)
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Should the reader accept this invitation, he/she will encounter
a degenerate system of equations. This degeneracy is can-
celled when forming the Pade approximant, however. The
tr, r j Pade approximation procedures an r —1 degenerate sys-

tem of equations.
We remove the absolute value signs from the argument of the
logarithm to analytically continue the amplitude into the
complex plane.


