
PHYSICAL REVIEW D VOLUME 43, NUMBER 5 1 MARCH 1991

Heavy-quark mesons in a relativistic quark model
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The Coulomb-gauge QCD Hamiltonian, augmented by a term which produces linear, scalar
confinement is used to generate kernels for the bound-state amplitudes and eigenvalues of heavy
quarkonium. The model generates all the correct perturbative physics up to order o., and is applied
to the cc and bb systems where good agreement with experiment is obtained.

I. INTRODUCTION

Generating the hadron spectrum from quantum chro-
modynamics (QCD) has proven to be a formidable task
indeed. Unlike the situation in quantum electrodynamics
(QED), the scale A at which the coupling becomes strong
is precisely the region of interest, which in turn is set by
the quark masses. Thus, since perturbation theory is not
adequate, alternative nonperturbative methods must be
used. To be sure, there are very encouraging results com-
ing from numerical simulations of QCD on a space-time
lattice. However even on rather modest lattices this ap-
proach reaches the envelope of present-day supercomput-
er technology.

On the other hand, potential models, although lacking
the ab initio quality of the lattice approach, are easily in-
terpreted and tractable.

Relativistic potential models (and strong coupling does
imply relativistic as v/c -a) fall into one of two classes.
Relativistic corrections are either generated from a
reduction of the explicitly covariant Bethe-Salpeter equa-
tion' or from a reduction of the scattering amplitude.
In the latter approach relativistic kinematics are added to
generate a Schrodinger-like equation.

In this paper we are proposing a third approach based
on the variational method in quantum field theory. The
method s attraction is twofold. Since, within the varia-
tional method, it is natural to work in the Hamiltonian
formulation, the connection to ordinary nonrelativistic
quantum mechanics is more immediate and the physical
interpretation clearer than in the Bethe-Salpeter formal-
ism. The method s second attraction is that it is in-
herently nonperturbative and one can obtain nonpertur-
bative information in field theories that are strongly cou-
pled.

Although in principle we could apply the variational
method to a direct solution of QCD, we present a much
more modest attempt here. Our variational Ansatz will
not be sensitive to the non-Abelian structure of QCD.
We will assume we have integrated out all the low-energy
gluon degrees of freedom, which results in a linearly
confining term of an effective field theory. We are guided
by the Monte Carlo simulations which precisely do just
this and dictate the strength, form and Lorentz structure
of the long-range potential.

Our Ansatz will however contain transverse gluons and

as a result we will pick up all the physics of one-gluon ex-
change and thus generate results accurate to order o,
We would like to stress that a model such as this is arbi-
trarily accurate for arbitrarily heavy-quark masses, as the
system becomes insensitive to the confining potential and
sits deep in the Coulomb well, modified by small relativis-
tic corrections. The former point although obvious does
not appear to be widely appreciated. The model in effect
ceases to be a model of QCD but is QCD.

In Sec. II we present our model and Ansatz for arbi-
trary quantum numbers. The results and conclusions are
presented in Sec. III where we compare with the experi-
mental cc and bb mass values. We note results have been
previously communicated.

II. THE MODEL HAMILTONIAN AND ANSATZ

Our model Hamiltonian is the Hamiltonian of QCD in
the Coulomb gauge augmented by a term which produces
linear scalar confinement. Of course, in a true solution of
the theory one would not need this additional term as all
the nonperturbative confining physics is generated by the
QCD Hamiltonian alone.

As our Ansatz is not explicitly sensitive to the non-
Abelian terms of the Hamiltonian our effective Hamil-
tonian is given by

H=H +H +H, +H +H, ,

where

H = f d x q(x, O)( iV y+m—
)qo( .Ox),

Hg: 2
d x A g x~O + P X Ag x&0

H, = d xdyq xO q xO
2 2

X
~

q (y, O) q(y, O),1

x y 2

3 0H =g, d x q(x, O)y A, (x, O)q(x, O),
2

H, = fd xd yq(x, O)
3b
8 2

Xq(x, O)~x —y~q(y, o) q(y, o) .
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Imeson) = Iqq)+ qqg ),
where

Iqq ) = g f d'p F(p, cr, 5)bt(p, o )dt( —p, 5) 0),

(2)

Iqqg ) = g f d p d q G(p, q, s, s', A. )b, (p, s)
S,S,A,

a, i,j

Xd (q, s') ija, ( —p —q, A, )IO) .

The operators b, d, and a are creation operators for
quark, antiquark, and gluon fields with the momentum,

Note we have suppressed Dirac, color and Aavor indices
on the quark field operators. It is important to realize
that, apart from H, (the confining term), the above Ham-
iltonian (although not manifestly covariant) would gen-
erate, in old-fashioned time-ordered perturbation theory,
results identical to covariant perturbation theory.

Our variational A nsatz for the color-singlet, bound-
state, quark-antiquark system in the center-of-mass sys-
tem is

color, and polarization indicated. The functions F and 6
are variational coefFicients. For example, the form of
F(G) is

F(p, 5,5)=f (p)u (p, 5)y, v (
—p, 5),

G(p q s s', y) =g(lp+ql)u(p, s)ys&( —p —q, y)

Xu(q, s')

if one wishes to construct a pseudoscalar state
(J =0 +). The function f (p)(g(lp+ql)) depends
only on the magnitude of p(p+q) and it is this remaining
dependence which is in principle optimized.

We next construct the quantity

(mesonlHlmeson )
( meson

I
meson )

which is a functional of F and G. Applying the variation-
al principle and taking the functional derivatives,

5 (mesonlHlmeson)
( meson

I
meson )

leads to the coupled integral equations

4+s m2 d3q F(qcr'5')
MF(po 5)=2E F(po 5)+ g f u(po )u (

—qo')u( —q5')u (p5)2~', E E, lp
—ql'

1/2
4o,,

3 gf, [G(p, —qcrcr'A, lu( —qo. ')y e(q —p A, )u( —p5)
(E E Ip

—ql)'

—G(q —po'5A. )u(po. )y e(p —q, A, )u (qo')]

+ g f u(po. )u (qo')u( —q5')u ( —p5),bm d q F(qo. '5')

E,E, Ip
—ql'

MG(p, qss'A, )=(E~—+E, + Ip
—ql)G(p, —qss'A, )

4a, m2 dkdk'+ gf, G(k, —k'oo'X)5 (p —q —k —k')
2~ ~ (E E EkEk )'~

(3)

1/2
4a,+ 3'

u (ps)u ( —ko. )v( —k'o. ')v (qs')

Ip
—kl'

I 1
[F(pso )v( —po )y.E(q —p, A, )u( —qs')2' (E E Ip

—ql) ~

F(qo s')u (ps)y —a(q —p, A, )u (q, o ) ] . (4)

4a,
3

1 f71 [F(po o ') v ( —po')y E(q —p, A)u ( —q5 )
2~lp —

ql . (E„Eqlp —q)l'r'G(p, —qcrM, )=—

—F (qo '5)u (po )y E(q —p, A, )u (qcr') ]

Solving the coupled equations would give a true variational upper bound to the quark-antiquark bound-state mass.
Unfortunately this is an extremely difficult problem to solve. Therefore as in previous work we drop the second term
of the second equation. This amounts to dropping some terms of order a, and higher in the context of perturbation
theory. From a physical point of view we are neglecting the Coulomb effects on the Iqqg ) state and of course the struc-
ture of this "intermediate state" effects the structure of the Iqq ) state in turn.

After making this approximation and substituting equation
1/2

into Eq. (3) we obtain
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4&. m'
MF(po5)=2E F(po5) — g f F(qo'5')u (po)u(qo')v (q5')v(p5)

E,E, lp
—ql' .

+ QF(qo'5')u(po. )y E(q —p, A. )u (qo. ')

Xv(q5')y e(q —p A, )v(p5)

+ g f F(qo'5')u(po. )u (q~')V( —q5')v (
—p5),bm d q

E,E, Ip
—ql'

where we can clearly identify the origin of the four terms. They are, respectively, fermion kinetic energy, instantaneous
Coulomb, transverse photon and linear potential contributions. We note as in the previous equation we have performed
a mass renormalization which is trivial at this stage as its amounts to identifying the self-energy contributions of a bare
quark with the energy (E ) of a physical quark. In practice, we performed an exactly analogous calculation of the one-
particle energy, where in a relativistic theory the result can only be (m~ +p )'~ . We identified the counterterm neces-
sary to give a finite expression and as expected, the bound-state calculations with this counterterm gave the above finite
expressions.

We choose a particular state with given J quantum numbers by selecting a particular I &=I X Y& (0, $). Thus,

F(p, o, 5) = u (p, o. )I v ( —p, 5),
where I is one of the sixteen Dirac matrices I,y5, y„,y„y&, o.„.The angular dependence is then completely specified
and in all cases considered here the angular integration can be performed explicitly, leading finally to integral equations
of the form

1 q 4a,
Mf (p) =2E f (p) f ——dq f (q) K (p, q) bK, (p, q)—

where K (p, q) is the kernel which arises from all the eff'ects of gluon exchange and K, (p, q) arises from the confining
term.

In fact all nonexotic states can be accessed from one of three general sets

pseudoscalar: y~ X YI JPC O
—+ 1+—

2
—+

scalar:

pseudo vector:

I X YI JPc O++ 1
——2++

y X y JPc 1++ 2
——3++

In coupling representation the Ansatze are

1/2I+1
l

2l f d p f(p) lL =l —1,S=1,J=l, m =m)— lL=l+1,S=1,J=l, m =m)

lqq ) =2&2f d p f (p)lL =I,S =O,J =l, m-=m ) (pseudoscalar set, I r=y, X Y& ),
1/2

l

-)=4(2I+1)
(2l +1)(2l +3)

1/2
(scalar set, I r=I X YI ), (9)

f d p f (p) lL =1 +1,S =1,J=1+ 1,m =m )

(pseudovector set, I r=y y X Y& ) .

Note the pseudoscalar set is a spin-singlet set. The scalar and pseudovector sets are spin triplets. Furthermore, the sca-
lar set is a mixture of states with I =J—1 and I. =J + 1.

III. KERNELS

We have obtained general expressions for the kernels of all these sets. It is sometimes necessary to combine kernels
either to obtain kernels for pure unmixed I. states or for calculational ease. We will present the P2 as a special exam-
ple.

In the following, we present all the kernels in the more compact three-dimensional momentum space form. The cor-
responding radial kernels are given in the Appendix. In three-dimensional momentum space, the integral eigenvalue
equation is

Mf (p)=2Epf (p)
1 d qf(q) 4~s bK (p, q), K, (p, q)
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where Kg(p, q) and K, (p, q) are the gluon exchange and confining kernels, respectively.
(1) Pseudoscalar set.
All the kernels for the pseudoscalar set can be written, in general, as

2 2 — . 2

K(pq)= 3EE —m —pq+2 P
2EpEq ' q

Ip ql2 p q
(12)

K, (p, q)= — (E E +m —p q)Pi
5'q

(13)

where the PI are the Legendre functions.
(2) Scalar set.
This is a mixed state set except for the 0++ sector. We present our kernels in both the mixed state form and the pure

state case.
(a) In a fully mixed form, the L =J —1 are mixed with the L =J +1 states even in the nonrelativistic limit. The ker-

nels are

K (p, q)= 3p q
—(E E —3m )p q+2(E E —m ) P&

~2 pq
(14)

K, (p, q)= [p q
—(EzE +m )p q]P&

(b) For the L =J—1 states, the Ansatz used here is specified by

I r = ( y
' —i o. ') X Yi

The kernels are

1'P'q'= 6E Ea'

EE +3m—+2m (E +E )+5p q+2(E —m)(E —m)p pq

+2[E E +E +E +3m +3m (E +E )](E —m)(E —m) PI
pq p

—
q

2

(16)

1'P'q'= 3E E EE —m2 —2m—(E +E )+3p q
—2(E —m)(E —m)

q
pq
pq

(17)

The only kernels, which can be used directly to obtain the eigenvalues for some given J numbers, are those of the S&
states. All the other kernels need to be combined with others to calculate the eigenvalues for given J numbers. We
shall take the P2 sector as an example to demonstrate this.

(c) For the L =J+ 1 states, we use an Ansatz specified by

I r=(y' io ' Y„)—X YI—
The kernels become

K (p, q)= P,12E E pq
10m 2 —4(E +m)(E +m)+17p q+ [2m EE +2(E +m)—(E +m)](p q)

+
2 2 [6p q +3(E E —m )(p +q )+2m(E +E )(E E)2—

2 2
( )2

+2(E +m)(E +m)(E E)]-7 9 P 9
i

i2

4m (E +E ) EE —m +6p q —— [(E E +m )+4m (E +E )](p-q) . (19)K, (p, q)= P,6E E pq

The kernels for the D
&

states can be used directly to obtain the eigenvalues of the D
&

sector. The other kernels again
have to be combined with others to get eigenvalues of states with given J numbers.

(3) Pseudovector set.
The kernels for the pseudovector set can be written as
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A (p, q)= —p q +2p q(E E +m )+3(p q)
1

4EEpq
2 2 . 2

+2(E E +E +E 3 ——p.q) P,q P q
I

I2

K, (p, q)= [p q 2(E—E +m )p q+(p q) ]P1 (21)

Only the kernels for the 1++ sector can be used to evaluate the eigenvalues directly. All the others have to be com-
bined with other kernels to obtain the eigenvalues of states with given J numbers.

(4) 1 sector.
There are three different ways to formulate the Ansatz of the 1 sector. The states are specified by I ~ =y', o. ' and

I X F&, . The first two are the S, dominant states. The third one is a fully mixed form of S& and D, states. However
we can obtain the Ansatze for both pure S, states and the D, states by combining the generators.

(a) &r=y.
The kernels for the S& dominant states with I ~ =y are

1K (p, q)=
2E E (2E'+m')'"(2E'+m')'"

p q

X [3m (E +E ) EE (E—E —m )+p q(2E~Eq+3m )+3(p q) ]

2 2
( )2

+2(E E +E +E pq)—P q P q
I

I2

K, (p, q)= 1

(2E2+ 2)1/2(2E2+m 2)1/2
s' q s' q

X [ E„E (E E—-+m ) m(E +E—) +(2E Eq+m )p q
—(p q) ] .

(b) I =o. '.
The kernels for the S, dominant states with I ~

—o. ' are

(22)

(23)

x (p, q)= 1
g 2E E (E2+2m 2)1/2(E2+2m 2)1/2

p

2 2 . 2
X [5m E E —m (E +E )+3m +p.q(3E E +2m )

—(p q) ]+2(3m2+p. q)s' q p
Ip

—ql'

(24)

IC, (p,q)=, I
—m [(E E +m )+(E +E )]+p.q(E E +2m —p q)} .

1

EpEq(E +2m ) (Eq+2m )

(c) 5, states.
Sandwiching the Hamiltonian between the S, Ansatz given by I"z= y' —i o.o leads to the S, kernel equation. The

kernels for the pure S1 sector are given by Eqs. (16) and (17) in the case of J= 1 and I,=().
(d) 'D states.
The D

&
kernel equation is obtained by sandwiching the Hamiltonian between the D

&
Ansatz generated by

icJ '
Y1; The ker—nels fo. r the pure D1 sector are given by Eqs. (18) and (19) in the case of J= 1 and L, =2.

(5) P2(2++ ) states.
As an example of how to evaluate the eigenvalues of the states in the scalar set (other than 1 ) with given gp~ num-

bers, we take the P2 sector.
Sandwiching the Hamiltonian between the Ansatz Eq. (2) with I= 1 would give the eigenvalues of the P2 states.

Practically this is difficult as we are unable to reduce the kernel equation from three dimensions to one dimension
analytically. Instead we sandwich the Hamiltonian between the following Ansatz

lqq) =lm = —2)+lm =2)+&2lm = —1)++2lm =1)+(—')' lm =0)+(—')' IO+ ), (26)
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where

m=o)= [~r,, xr, , & +2~r,, xI, , ),+ r,, xr, , ) ],1

—[Ir,, xr, , o&++Ir,, xr, , ),],
[Ir,, xr, , &,+ r,, xI, , & ],

l~ =2&=Ir,, xI', , &, ,
1

lm = —2&=Ir,, xr,
1

++~o++&= [ r, xr, , &, —r,, xI, , &,+~r,, xl', , & ],

where

and

27Kii(p q) K21(p q)
Kg(p, q) =

26

27K)2(p, q) —K2~(p, q)
K, (p, q)=

26

(27)

(28)

where K»(p, q) and K,2(p, q) are given by Eqs. (16) and
(17) with l=1, and Kz, (p, q) and Kzz(p, q) are given by
Eqs. (14) and (15) with /=0. The contribution of the
~0++ ) admixture can then be removed.

I 3 =y' —I'. o. '
Si

which leads to the eigenvalue equation (11) with the ker-
nels

1V

fi(u)= & C.'R.I(I»
n=1

(29)

where in our case the R„&(p) were the radial hydrogenic
functions. This leads to a matrix diagonalization prob-
lem

1V

„C„'=MC'
n=1

(30)

the full problem.
We found that a two parameter hydrogenic type func-

tion was adequate to obtain four to five figure accuracy
for the ground states of each J family. Since this
method was inconvenient for excited states we repeated
the numerical calculations for all the states using the
basis expansion method. In this approach the radial
eigenfunction f (p) is expanded in a complete set of
known functions:

where M is the diagonal dimension mass matrix and

IV. NUMERICAL METHODS AND RESULTS

TABLE I. Parameters used in fit to cc and bb mesons.

Parameters O' Family

1.492 GeV
0.18 GeV
0.4200

Y Family

4.784 GeV
0.18 GeV2
0.3525

The kernels were checked in the following way. A par-
tial nonrelativistic reduction of the K kernel was per-
formed and the resulting kernels were sandwiched be-
tween hydrogenic wave functions. The energy eigenval-
ues could be obtained up to order o., and were found to
agree with standard perturbation theory. ' The K, ker-
nels were also reduced and the eigenvalues that were nu-
merically generated agreed with the eigenvalues (corre-
sponding to zeros of the Airy function) of a bound system
in a linear potential.

We used both the variational method and the basis
function expansion method to obtain the eigenvalues of

JPC nL

0—+ 1s
2$

1 ——1s
2$
3$
4s
1d
2d

0++ 1p
1+—1p
1++ 1p
2+ + 1p
2—+ 1d

'Reference 13.
Reference 14.

O' Family
Theory

2.980
3.60
3.114
3.69
4.04
4.32
3.757
4.28
3.398
3.520
3.532
3.551
3.799

Experiment

2.9796+0.0017
3.594+0.005'

3.0969+0.0001
3.6860+0.0001
4.040+0.010
4.415+0.006

3.7699+0.0025
4.159+0.020

3.4151+0.0010
3.5254+0.0008
3.5106+0.0005
3.5563+0.0004

TABLE II. Comparison of theoretical model predictions to
experimental data for cc systems. Note that the experimental
masses and their uncertainties normally taken from the Particle
Data Group (1988) unless otherwise indicated.
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JPC nL

0—+ 1s
1 ——1s

2$
3$
4s
5s
6s
1d

0++ 1p
2p

1+—1p
1++ 1p

2p
2++ 1p

2p
2 —+ 1d

Y Family
Theory

9.331
9.460

10.00
10.32
10.57
10.79
10.99
10.141
9.853

10.207
9.899
9.897

10.245
9.907

10.257
10.142

Experiment

9.4603+0.0002
10.0233+0.0003
10.3553+0.0005
10.5 800+0.0035

10.865+0.008
1 1.019+0.008

9.8598+0.0013
10.2353+0.001 1

9.8948+0.0015'
9.8919+0.0007

10.2552+0.0004
9.9132+0.0006

10.2690+0.0007

where

mn Kmn Qmn

and

K „=2f Vl+x x2R, (x)R„,(x)dx
0

TABLE III. Comparison of theoretical model predictions to
experimental data for bb systems. Note that the experimental

masses and their uncertainties normally taken from the Particle
Data Group (1988) unless otherwise indicated.

Q „= f xdxR„, (x)
4~ 0

& f y dy R„i(g)[ ', K—(x,y) bK—, (x,y) j .
0

Typically we would truncate our expression at X= 15
and perform the integration using Gauss-Legendre quad-
rature with 200 points to obtain four-figure accuracy.

Finally to compare with experiment we must fix our
model parameters. We applied our model to the cc and
bb systems. "' We took a standard value for the string
tension b and optimized the value of the quark masses
and coupling constant a, . The parameter choices are
listed in Table I. The change of the value of a, from the
+ to the r family is consistent with the running coupling
constant behavior of QCD.

Our results are presented in Tables II and III and Figs.
1 and 2. The tables speak for themselves. The agreement
between the model and experiment is quite good. The
only significant disagreement is in the values above
threshold where open channel eAects are expected. One
can certainly expect mass shifts on order of the typical
(50 MeV) widths of these states.

In conclusion we have constructed a relativistic quark
model for mesons. Bound-state kernels obtained from an
underlying eA'ective, relativistic field theory. This
effective theory is Coulomb-gauge QCD (where covari-
ance is exact but not manifest) augmented by a Lorentz
scalar confining term whose strength and structure is dic-

GeV ' GeV

4.80 denote observed data 11.20 denote observed data

denote theory values denote theory vajues

6 Sl10.99

4.40

4.00

4'S,4.32

23Dg4. 28

IIIIIIIIIIIIIIIIIIIIIIIIIIIIN

3 Si4.04

10.80

10.40

5'S 10.79

4 S&10.57
2M(B) threshold

1'P 3.531 P'3 55
1 Py3.52

13Pp3.40

-' D8 7S 2M(D) threshold

2 S)3.69

3 60 2S03 60

lxDq3 80

10.00

3 Sy10.32

1 Dg10.14

2 S110.00

23P 1p 252 Pg10.26

2 Pp10.21 1'D210.14

1'Pg9.90 3 9 8
1 Pl9 901---'-—

3.20
1 S&3.11

1~So2 98

9.60

13' 9.46

1'S,9.33

2.80

0-+ 0++ 2++

9.20

0-+ p++ 2 +

FIG. 1. Charmonium (cc) spectrum. FIG. 2. b-quarkonium (bb ) spectrum.
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tated by the lattice studies. We feel that the success of
this model with its relativistic nature, economy of param-
eters and sound basis is a useful tool for the further un-
derstanding of heavy-quark (and possibly lighter) sys-
tems.
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JPc I
—+ or 0 +,2 +,4 +, . . . , states,

where I =2i, i =0, 1,2, . . . ,

APPENDIX

Performing an angular integration on Eq. (11) leads to
the radial integral eigenvalue equation (7). We obtained
all the following radial kernels.

(1) Pseudoscalar set:
(a) Even states:

X —1+ 2i —2k + 1 —8(i —k) +p q (3EE —m )(p2+q2)2p2+q2
2i —2k+1

p +q p+q
2pq p q

IC2(p, q) =- 4pq
'

(
—1 )"(4i —2k )!

EpEq !, 0 22'k!(2i —k)!(2i —2k)!

ik—
1

, 2i —2k —2j+1

2J

p +q
2pq

X '
2(EE+m )

—(p+q )

(
2 2)2

4(i k)(E E,—+m ') —(2i —2k + 1)(p'+ q')

4p q
2i —2k —1

+q
2pq

(b) Odd states:

J =I+ or 1+,3+,5+, . . . , states,

where l =2i + 1, i = 1,3, 5, . . . ,

K, (p, q)= 2pq
'

(
—1) (4i —2k +2)!

EpEq i, —0 2 k!(2i k+1)!(2i 2k+1)!

i —k —1

2i —2k —2j —1

2J
p 2+ q

2

2pq
(A2)

X
4+ 4 2 2 2

,Pq, + '
3E,E, '+P, +q, +—( —k)'", q, '

p'+q' pq ' ' p'+q' ' p'+q' .
2i —2k +1

p +q p+q '+" 1

2pq p —
q . 0 2i —2k —2j+1

2J

p 2+ q
2

2pq

(A3)

K2(p, q) =- 4pq
'

( —1)"(4i —2k +2)!
EpEq !, 0 2 k!(2i k +1)!(2i 2k +1)!

(p +q )(EE+m ) —2pq EE +m

pq (p'+ q')

p+q '+" 1

p —
q .

1
2i —2k —2j+1

(2i —2k+1)(E E +m )
(t —k +1)—

(p'+q')
2i —2k +1

p +q
2pq

2J
+q

2pq
(A4)
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(2) Scalar set:
(a) The mixed form:
(1) Even states:

J =I++ or 0++,2++,4++, . . . , states,

where I =2i, i =0, 1,2, . . . ,

2 '
(
—1)"(4i—2k)!K, (p, q)=

E~Eq k=0 2 'k!(2i —k)!(2i —2k)!

2mX —(EE —m )—
2i —2k +1

2 2 2

+ EE+m + +2(i —k)(EE —m )2+ 2 P 9' 2+ 2

2i —2k +1p'+q' p+q
2pq p —

q . , 2i —2k —2j+1

K~(p, q) = 4 '
(
—1)"(4i —2k)!

EpEq k 0 22 k!(2i k)!(2i 2k)!
r

2J
p+q

2pq
(A5)

2p q
—(E E +m )(p +q )

(p2 2)2

(EE+m )(p+q )
(i —k) —(2i —2k + 1)

4p2q2
2i —2k —1

p +q
2pq

p+q
p

(2) Odd states:

i —k —1
1

~~

2i —2k —2j —1

2J
p+q

2pq
(A6)

JPC or 1,3,5, . . . , states,

where l =2i +1,i =0, 1,2, . . . ,

SC, (p, q) = 2 (
—1)"(4i —2k +2)!

EpEq k 0 2 k!(2i k+1)!(2i 2k+1)!

X.— (E E —m )
2pq 2

2+ 2

+ 3p q +E E (p +q ) [2p q (i —k—)(—p —
q ) I

' 2i —2k +1
p +q

2pq

p+q
p q

i —k

j=O 2i —2k —2j +1

q
2J

p+q
2pq

(A7)

4 '
( —1) (4i —2k+2)!K2(p, q) =

EpEq k=o 2 ' 'k!(2i —k+1)!(2i—2k+1)!
pq(p +q 2E E —2m2)—

p +q

(2i —2k + 1)pq

p +q
(i —k+1)(E E +m~)

' 2i —2k+1
p +q

2pq
in p+q-"p —

q

i —k

j=0 2i —2k —2j +1

2J
p +q

2pq
(A8)
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(b) The L =J —1 states:
(1) Odd states:

J =(l+1) or 1,3,5, . . . , states,

where l =2E, i =0, 1,2, . . . ,

K, (p, q) = 2pq
'

(
—1)"(4i—2k)!

3E&Eq k o 2 k!(2i k)!(2i 2k)!

X 1 5+(E —m)(E —m) p +q
2i —2k +1 2 2

(E„E)—
+2(i —k+1) 3+(E —m)(E —m) "2

z

+ —
[ EE +—3m +2m (E +E ))+(E —m)(E —m) +5

p +q p q

(E~ Eq )—+2 3+(E —m)(Eq —m)
(i —k)(p —

q )

( 2+ 2)2

2i —2k+1
p +q p+q

2pq
'" p-q

K2(p, q) = 4pq
'

( —1)"(4i —2k)!
3EpEq k=0 2 ~k!(2i k)!(2i 2k)!

r

i —k

, 2i —2k —2j+1

2J
+q

2pq
(A9)

2 2 2 6(; k + 1) (E m)(E —m)—
X [3(p +q )

—14(E E +m )+8m (E +E )]—
2i —2k +1 p2q2

+ [E„E +m +2m (Ez+Eq)]
4(i —k)

( 2+ 2)2 P

3(2i —2k +1) (Ez —m)(Eq —m)
+6(i —k+1)p'+q'

2i —2k+1
p +q p+q

2pq
'" p-q

(2) Even states:

J =(l+1)++ or 2++,4++,6++, . . . , states,

where l =2i= 1, i =0, 1,2, . . . ,

K, (p, q) = 2pq
'

(
—1)"(4i —2k +2 )!

3EpEq g —o 2 k!(2i k+1)!(2i 2k+1)!

i —k

, 2i —2k —2j+1

2J

p +q
2pq

(A10)

2(E —m)(E —m)
X

(2i —2k + 3)pq

2 (E E)—
3+(E —m)(E —m)2+ 2

p 2q 2

+ [ EE +3m +2m—(E +E )]+5 +(E —m)(E —m)
pq 2pq 2p q

pq 3(p +q )

p +q 4pq

(E E)——2 3+(E —m)(E —m) 2 2

(i —k) (p —
q )

2pq p +q

2i —2k+1
p +q p+q

2pq
'" p-q

i —k

j=0 2i —2k —2j +1

2J

p +q
2pq

(A11)
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K2(p, q) = 4pq
'

( —1)"(4i —2k +2)!
3E E ~ 0 2~'+'k!(2i —k +1)!(2i—2k +1)!

X ' [E E +m +2m (E&+Eq)]
pq (p'+ q')

(c) The L =J + 1 states:
(1) Odd states:

—[7(E E +m )
—4m(E +E )](p'+q')' ' ' ' ' pq(p'q')'

+ [E E +m +2m (E +Eq )]
2i —2k +1
pq (p'+q')

2i —2k+1
p +q

2pq

p+q"p —
q o 2i —2k —2j+1

+3(2i —2k +3)(E —m)(Eq —m)
3(i —k+1) p +q

pq
2J

/ —k 1 p +q
2pq

(A12)

J =(l+1) or 1,3,5, . . . , states,

where l =2i, i =0, 1,2, . . . ,

K, (p, q) = pq
'

( —1)"(4i —2k)!
3EpEq g —o 2 k!(2i k)!(2i 2k)!

X [6m —4E E —4m (E +E )]
2& 2k + 1 p2+q2

[2m(E +E )(E E) +6p —
q +3(E E —m )(p +q )

2i —2k+1 (p~+q~)~

+2(E +m)(E +m)(E& Eq) ]

2+ 2

[6m 4E E —4m—(E +E )]+17+ [E„E +4m +2m (E +E )]p'+q' p q

+[6p q +2m(E +E )(E E) +3(EpE—
q

m )(p +q )

i —k+1+2(E&+m)(E +m)(E E)]-
p q

4(i —k)
( 2+ 2)2

2i —2k+1p'+q' p+q
2pq p

i —k

j=0 2i —2k —2j + 1

2J
p2+q2

2pq
(A13)

K2(p, q) = 2pq
'

( —1)"(4i —2k)!
3EpEq g o

2~ k!(2i k)!(2i 2k)!

X . [(p +q ) —2(E„E +m )]— [5(E E +m )+4m (E +E )]
(p~ —q~)~ " 2i —2k +1 p~q2

4(i —k)
[4m (E +E ) (E E +m 2)]+ 6(2i —2k + 1)

( 2+ 2)2 P q p+q

, 2i —2k —2j+1

(i —k+1) [5(E E +m )+4m(Ep+Eq)]
p q

2i —2k +1
p +q

1
p+q

2pq
'" p-q

p'+q' "
1

2pq
(A14)
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(2) Even states:

=(l+I) + or 2++,4++, 6++, . . . , states,

where l =2i+ 1, i =0, 1,2, . . . ,

K, (p, q)= pq
'

(
—1)"(4i—2k +2)!

3EpEq g o
22' k!(2i k+1)!(2i 2k+1)!

X — [2m(E +E )(E E) —+2(E +m)(E +m)(E E)—
pq(p'+q')

2[2m E E +2(E +m)(Eq+m)]+6p'q'+3(E E, —m')(p'+q')]-
pq 2i —2k+3

+ 6 m2 4E E 4m (E +Eq)+ —', (p +q )

2

+ p q [E E +4m +2m(E&+Ez)]
2pq

+ p2+q2 2i 2Q +3
2p q

2(2i —2k + 1)
(p2+q2)2

X[2m(E +E )(E E ) +2(E +m)(Eq+m)(Ep Eq)

+6p q +3(E E —m )(p +q )]

2i —2k+1
p +q

1n
2pq

'" p-q

IC2(p, q) = 2 ( —1) (4i —2k+2)!
3E~Eq „02'+'k!(2i —k +1)!(2i—2k + 1)!

j=0 2i —2k —2j +1

2J

p 2+ q
2

2pq
(A15)

X [E E + —4m(E +E )]+ . [2p q (E E +m —)(p +q )]2+ 2 P q P 9 (p2 q2)2

2i —2k +1
[4m (E +E ) —(E E +m )]p'+q'

(3) Pseudovector set:
(a) Odd states:

2J
p +q

2pqo 2i —2k —2j+1

+6(i —k+1)— (p +q )[5(E~E~+m )+4m (E~+E~)]4p2q2
2i —2k +1

p +q p+q
2pq

'" p-q (A16)

J~&= (I + I )++ o I++,3++,5++, . . . , states

where l =2i, i =0, 1,2, . . . ,

1
'

( —1)"(4i —2k)!
E E g o 2 'k!(2i —k)!(2i —2k)!

2

X l k 2pq [(E +E )2
» 2& +1 p'+q'

+ (Ep+E ) +[(E +Eq) 4m ] i k+1
' 2i —2k+1p'+q'

2pq
&„p+q

j=O 2i —2k —2j +1

2J

p +q
2pq

(A17)
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K2(p, q) = 2pq
'

(
—1)"(4i —2k)!

E„Eq k =, 2"k!(2i—k)!(2i —2k)!

(b) Even states:

I =(I + 1)

i —k+1

in p+q
p q j=1 2i —2k —2j +1

or 2,4,6, . . . , states,

X + 4pq —E~Eq

2(2i 2k+1)(EpEq+m ) 4pq(i —k)+
pq(p'+ q') (p

2 +q
2 )2 pq

2i —2k+1
p +q 1

2pq

2J
p+q

2pq
(A18)

where I =2i +1,i =0, 1,2, . . . ,

pq [(E +E )
—4m ]

p +q
(E~+E )

2
+ —,'[(E +E )

—4m ]

pq
2i —2k +3

p2+q2
pq

4p q (2i —2k+1)
( 2+ 2)2

2J
1 p'+q'

2pq

2i —2k+1
p +q p+q

2pq p

ik—

. =o ' 2k 2j +1

K, (p, q) = 1 ( —1 )"(4i —2k +2 )!

EpEq k 0 2 kl(21 k+1)l(21 2k+1)!

(A19)

K2(p, q) = 2pq
'

(
—1)"(4i—2k +2)!

E~Eq k 2 '+'k!(2i —k+1)!(2i—2k+1)!

x.— + [p +q 2(E E +m—)]2+ 2
(

2 2)2

(4) 1 sector:
(a) I =y:

EE +m
+ 2(i —k+1)

2i —2k +1

x
2pq

p+q"p —
q j=0 2i —2k —2j +1

2i —2k+1 (2. 2k+3) p +
p'+q' 4p'q' .

2J
i —k

p
2 +q

2

2pq
(A20)

K, (p, q) =
(2E2+ 2)1/2(2E2+ 2)1/2

g

X [2(E +E )(E +E ) +3m (E E) 4m ] 1n—— 4(E +Eq) —6m— (A21)

K2(p, q) = 2pq

(2E2+ m 2)1/2(2E2+ m 2)1/2

X 2+ [2(2E E +m )(p +q ) 4E&E (E E +m ) 4(E&Eq+m ) ](p' —q')'

+[p +q (2E E +m )] 1n—1 p+q
pq p

(A22)
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(b) 1 1.=o ':

K, (p, q) = w
(E2+ 2m 2)1/2(E2+2m 2)1/2

q

X [10m E E 2m —(E +E )+6m +(3E Ez+8m )(p +q )

+(p +q )] ln —6E E 2E—2E—12m— (A23)

K2(p, q) = 2P9'

E E (E +2m )' (E +2m )'
p q p I

q

X 2+ [2(2E&Eq+m )(p +q ) 4p q 4m (Ez+E ) 4m (—EzE&+ )]
1

+[p +q (E E —+2m )] ln
1 p+q

e'

(c) S, sector: The kernels K and K, are given by Eqs. (A9) and (A10) with J= 1, respectively.
(d) D, sector: The kernels K and K, are given by Eqs. (A13) and (A14) with J= 1, respectively.
(5) P2(2++ ) sector:

27K» (pq) —K2, (pq)
Kg(p, q) =

(A24)

(A25)

27K 12 (pq )
—K22 (pq )

K, (p, q) =
26

(A26)

where K»(p, q) and K,2(p, q) are given by Eqs. (All) and (A12) with i =0, and K2, (p, q) and K22(p, q) are given by Eqs.
(A5) and (A6) with i=0.
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