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Absence of exotic hadrons in Aux-tube quark models
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Flux-tube quark models based upon strong-coupling QCD are studied in the limit of small

coupling between diA'erent Aux-tube topologies. In this limit, it is shown that no bound exotic states
exist, in contrast with predictions made with bag and other mean-field and two-body potential
quark models. Results are presented for the 2q-2q, 4q-q, and 6q sectors, and the various quark mod-
els are compared. The extent to which "exotic" states are observed experimentally can be regarded
to some degree as a test of the relevance of strong-coupling-based Aux-tube models.

I. INTRODUCTION

It is believed that color fields are confined, and hence
only colorless-singlet states can exist as isolated states in
nature. The qq and 3q color-singlet states are generally
associated with the observed mesons and baryons. These
hadrons may have additional virtual qq pairs (sea quarks);
however, for the present discussion we ignore them and
consider only valence quarks. It is of course possible to
construct color-singlet states from more than three
quarks. The most trivial of these contain two or more
hadrons, either free or loosely bound as in a nucleus. In
these states the color fields are confined within two or
more disconnected regions of space. In a nucleus it is
possible that these regions overlap to some extent, but
they are believed to be distinct in the dominant
configurations. In contrast, one can construct so-called
multiquark hadrons (MQH's) which have more than
three valence quarks in a single volume within which the
color fields are confined. Such states have not been ex-
perimentally verified, and therefore are often called exot-
ic.

MQH's have been studied within the framework of the
bag model by placing more than three quarks in a single
bag. ' They have also been studied with other quark
potential models, including alternative mean-field-type
models ' and models in which the quarks interact only
through two-body potentials. " In the mean-field stud-
ies it is generally found that an H dibaryon consisting of
2u, 2d, and 2s quarks has a mass less than two isolated
A's and hence is stable against strong decay. Experimen-
tal programs to search for such a particle are under
way. ' Nonstrange dibaryons, in particular one having
J =3+ and isospin zero, have also been predicted to ex-
ist as narrow resonances in nucleon-nucleon scattering.
No exotic narrow resonances have yet been confirmed. '

Quark models based upon two-body potentials have
also been employed to study systems of four, five, " and
six ' quarks. These models necessarily encounter
difficulties with van der Walls interactions, but may nev-
ertheless be useful for qualitative studies. Variational cal-

culations generally find that the confining interaction is
not attractive in the multiquark sectors (the kinetic ener-

gy required to cluster two hadrons is greater than the po-
tential energy gained). However, the hyperfine interac-
tion is strong enough in some spin-isospin channels to
produce exotic configurations which are either strong res-
onances or absolutely stable against decay into normal
mesons and baryons.

These predictions of the H and other exotic hadrons
must, to some extent, be influenced by the assumptions of
the various models, in particular the mean-field-type ap-
proximation inherent in models used in Refs. 1 —5. In the
present work we study MQH's having 2q-2q 4q-q, and 6q
within the Aux-tube model inspired by the strong-
coupling limit of the QCD lattice Hamiltonian. ' ' The
"exotic" multiquark states have not previously been cal-
culated within the Aux-tube model, although they have
been discussed in related harmonic-oscillator string mod-

20

This model has been phenomenologically quite success-
ful, and does not make use of a mean-field-type interac-
tion. It predicts rather interesting Aux-tube structures
for MQH's as discussed in Sec. II. Variational and
Green's-function Monte Carlo (GFMC) calculations of
the energies of the various MQH's are reported in Sec.
III. Our main conclusion, discused in Sec. IV, is that in
this quark model there are no stable or narrow resonant
MQH states.

II. MQH'S IN THE FLUX-TUBE MODEL

In the Aux-tube quark model it is assumed that the
color-electric Aux is confined to narrow, stringlike tubes
joining the quarks in accordance with Gauss' law. A Aux
tube starts from every quark i and ends on an antiquark i.
Three flux tubes i,j,k can end or start from an antisym-
metric e,-

& junction called the Y junction. The resulting
Aux-tube patterns for the familiar qq and 3q states, as well
as the exotic MQH having four to six particles, are shown
in Fig. l. As is apparent in the figure, a state with %+1
particles is generated by replacing a quark or an anti-
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FIG. 1. Flux-tube configurations for confined states of two to
six quarks.

quark in an N-particle state by a Yjunction and two anti-
quarks or quarks.

The quarks are treated as semirelativistic spin- —, Pauli
particles. In contrast, bag' and other mean-field '

models treat quarks more accurately as relativistic Dirac
spinors. We solve for the eigenstates of a Hamiltonian
H& which operates only on the quark degrees of freedom.
It contains three main terms:

FIG. 2. Possible Aux-tube configurations for a 2q-2q system.

Hf =v oL(r;) —N5M . (3)

Here &o is the string tension of the tubes and 5M is a
constant term added to the Hamiltonian which is propor-
tional to the number of quarks N. This term represents
the constants M and M used in Ref. 15 for the %=2

qq
and 3 states. Since these constants appear to be propor-
tional to X it is natural to associate them with the free
ends of the tubes. We note that a similar term propor-
tional to X appears in pairwise additive potentials of the
form

VJ= g v(r; )A,;.k, , (4)

whenever the potential v(r) contains a constant. The
term proportional to N appears as a consequence of the
fact that an operator g, A. ; acting on an overall color-
singlet state N gives zero, and hence

3SNC& . —

HI represents the short-range one-gluon interaction be-
tween the quarks. It consists of a Coulomb, spin-spin,

Hg =Ho+HF +HI,
where Ho is the relativistic kinetic energy of the quarks;

(m +p )'
i =1, . . . , N

Hf, the energy of the Aux tubes, is obtained by minimiz-
ing the total length of the tubes by varying the position of
the Y junctions. Let L (r, ) be the minimum length for a
given configuration {r;,i = I, . . . , NI of the N quarks;
then

tensor, and spin-orbit terms. Our primary interest here is
in low-energy S-wave hadrons in which the tensor and
spin-orbit interactions are not very important. Hence,
for the sake of simplicity, we use the approximation

r

Hr=a, g
i &j a=1, . . . , 8

ga~a
i j

IJ

2'
s(r,, )o; o. . (6)

3

Here F, is —,'A, ; for quarks and —
—,'(A. ; )* for antiquarks,

and a, is the QCD fine-structure constant. The usual 5
function in the spin-spin interaction is broadened by as-
suming exp( —

—,'A q ) vertex form factors, so that
3

s(r)= exp
r2

4A

The interaction parameters used are obtained by fitting
the masses of light mesons and baryons

4a, =0.5,
A=0. 13 fm,

m =0.313 GeV,

m =0.36 GeV,

&o = I GeV/fm,

6M =0.41 GeV .

The interpretation of this model is trivial for qq and 3q
states, however many questions have been raised about it
for %~4 states. There are three different Aux-tube ar-
rangements for the 2q-2q state as shown in Fig. 2. In the
lattice QCD terminology' these states are given by
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~I) =%,(r, )U, (r „r,)4 (r, )%,,(r z)U,' (r ~, r z)+ .(r z)~0),

~II) =%,(r, )U; (r „r ~)% (r ~)'0;(r z)U; (r z, r, )'P .(r, )~0),

~III) =+,(r, )U, (r ), r3)%J(leap)U„(r z, r3)e „„U„k(r~,r3)ek, .„,U; (r~, r, )%','(r, )U, , (r~, r )4, (r z)~0),

(10)

where Vt and 4 are quark operators and U; (r, r')
denote products of link operators,

U; (r r')= U (I )Uk(l~) U( (I ), (12)

the links l&, lz, . . . , l, join r and r', and a sum over the
repeated color indices i,j, . . . , m is implied. Even when
the quark positions are the same the states

~

I), II ), and
III) are orthogonal to each other due to differences in

the link operators. They have different Aux topologies,
and hence are not coupled by the Hamiltonian H&. The
underlying assumption of H& is that the Aux adiabatical-
ly follows the motion of the quarks without changing its
topology.

The full QCD Hamiltonian has other terms in addition
to H&. Of these, the one most studied is H~, the term re-
sponsible for breaking and rejoining the Aux tubes. It
couples states with different numbers of particles, and has
been used to study the decay of meson s into two
mesons, the mesons-baryon couplings, ' and the
A~N+~ width. It gives second-order corrections to
the hadron energies which can partly be absorbed into
the values of the parameter &o and 5M. As illustrated
in Fig. 3, Hz can couple states ~I) and II) in fourth or-
der. It cannot change the number of Y junctions, and
hence does not couple ~III) to either I) or ~II).

The term Hz containing TrU(1)U(2)U(3)U(4) over
closed plaquettes can create or annihilate Y junctions as
illustrated in Fig. 4. This term can change Aux topologies
and couple the states

~

I), II ), and III ). Even though it
has been mentioned several times in the literature, ' ' its
effect on hadron spectroscopy has not been studied. In
the limit that the quark mass is large one can take the
point of view that these terms can change the Aux topolo-
gy faster than the motion of the quarks. In the limit one
may be able to use the topology that gives the lowest HF
for a given configuration of quarks, as has been assumed
in some models. In the present work we assume that
for light quarks it is more reasonable to start with H&
and treat effects of Hz and Hz perturbatively.

Any pair of quarks in a 3q hadron may be exchanged
without inAuencing the Aux-tube topology. This ex-
change gives a factor of —1 from the antisymmetric Y
junction, and for this reason the quarks in a 3q hadron
have symmetric bosonlike wave functions in the com-
bined coordinate, spin, and Aavor space. Similarly, the
pairs of quarks and antiquarks in the 2q-Zq MQH (Fig. 1)
have to be symmetric excluding color. For X ~ 5, howev-
er, the symmetry requirements are more novel. Consider
the 4q-q state, and let quarks 1 and 2 be connected to one
Y junction, and quarks 3 and 4 to the other as shown in
Fig. 1. Obviously pairs 1,2 and 3,4 can be exchanged and
must therefore be symmetric under the pair interchange.
Exchanging either 1 or 2 with 3 or 4, however, changes
the topology, and the resulting state cannot interfere with
the original. Hence exchanges of this type can be
neglected in this model. On the other hand, we can con-
sider the simultaneous exchange of pair 1,2 with pair 3,4.
This exchange acquires a factor —1 from the Y junction
to which the q is connected, and hence has to be antisym-

FIG. 3. Coupling of states ~I) and ~II) in Fig. 2 by Hs. FIG. 4. Coupling of different flux-tube topologies by H&.
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metric in the space which excludes color. The symmetry
requirements in the six-quark states are now obvious.
Excluding color, quarks connected to the same Y junc-
tion must be symmetric, while pairs of diquarks connect-
ed to the same Y junction must be antisymmetric and ex-
change between quarks connected to different Yjunctions
is to be neglected.

The Aux-tube topologies specify how the colors of the
quarks and antiquarks are coupled to form the color-
singlet state. Hence the color factors F; F of the one-
gluon-exchange interaction are uniquely determined by
the Aux-tube topology. It can be verified that the value of
this factor is

yFafa 4(1)"y'~ (13)

where N (ij) is the number of Yjunctions encountered in
going from i to j.

III. CALCULATIONS

We have studied the MQH states in the fiux-tube mod-
el with both variational Monte Carlo' ' (VMC) and
GFMC methods. In VMC calculations the Monte
Carlo method is used to evaluate and minimize (H ) with
respect to changes in the variational parameters of the
trial function +z-. The VMC method is described in Ref.
14; here we only present the specific forms chosen for the
trial wave functions and discuss the evaluation of the
nontrivial terms in the Hamiltonian.

Our choice of variational (trial) wave functions for the
"exotic" hadrons (states in which all quarks are confined
into one region by fiux tubes) was guided by previous
studies of the mesons and baryons. Initially, we consider
only the spatial part of the wave functions, and calculate
the lowest state of the spin-independent Hamiltonian,
which contains the kinetic, Aux-tube, and color Coulomb
energies. We are assuming here that the symmetry re-
quirements described in the preceding section can be
satisfied by an appropriate choice of spin-Aavor functions,
and give specific examples of the complete wave function
later in this section. For the 2q-2q system, the spatial
part of the wave function '0, is taken to be

O'T= f (r, 2)j(r34)F(R12,R34) (14)

The factors y and the constant 6 are variational parame-
ters, and w(r) is a Woods-Saxon function whose strength
and range are additional variation parameters. This form
interpolates between a Coulomb-like solution near the
origin to the behavior appropriate to a linear potential at
large separations. The function F describes correlations
between the center of mass of the quarks (1 and 2) and
the antiquarks (3 and 4), and it is chosen as

where particles 1 and 2 are quarks and 3 and 4 are anti-
quarks. The f, are functions of the"distance between
particles i and j, and have the same functional form used
previously in the meson and baryon studies:

f (r)=r expI —w(r)(y1r +y2r )
—[1—w(r)]y1 sr's]

F(R)=exp( —y,R' ) .

+T f ( r 12 )f ( r 34 )F ( R 12 R 34 )f ( R 12)R s )

XF(R34,Rs)[1—pV3(R12, R34, Rs )], (19)

Once the hyperfine interaction is included in the Ham-
iltonian, it is also necessary to specify the spin-fIavor
parts of the wave function. The wave functions of 5-
wave hadrons may be written as Vz-X, where X are the
spin-flavor wave functions given below. The simplest
case is the 2q-2q system, for which a spin-0 wave function
may be taken to be

X4(S =0)=+~34(ud —du), 2(ud —du )34 (20)

where y, is the state in which spins i and j are coupled to
spin S. In this wave function the two quarks (1 and 2)
and the two antiquarks (3 and 4) are coupled to spin zero;
these are the pairs which are strongly correlated by the
confining interaction. Since the hyperfine interaction is
strongest between pairs 1,2 and 3,4. [Eq. (14)], and is at-
tractive for singlet states, this state has the most attrac-
tive hyperf1ne interaction. The product )I)TX4(S=O) thus
represents the trial wave function for the ground state of
the exotic 2q-2q system.

It is also instructive to consider an excited spin-2 state
of 2q-2q. In this case the spin-Aavor wave function is tak-
en as

The constant y, is an additional variational parameter.
The spatial part of the trial function for the other sys-

tems is similar. For example, that of the six-quark wave
function is given by

+T=f( 12)f (r34)f (rs6)f(R12 R34)F(R12 Rs6)

XF(R34,R s6)[1 pV—3(R,2, R34 R s6)] . (17)

The quarks 12, 34, and 56 are paired in this wave func-
tion, and we use the same form for the two-body correla-
tions f and the pair center-of-mass correlations F as in
the 2q-2q case. The last term in this expression is a small
three-body correlation between the centers of mass of the
pairs; its functional form is the same as the three-body
correlations used previously in studies of the baryon wave
function:

V3(rl r2 r3) +O' L(1;) 2 g r;~
I)J

The function L has been defined previously; here it is sim-
ply the minimum length of a string connecting points r&,
r2, and r3, and it is well approximated by half the sum of
two-body distances g, & r, . The (1—pV3 ) correlation is
an attempt to incorporate the most important nonpair-
wise components of the six-body potential into the trial
wave function. These variational wave functions give ac-
curate energies for the ground states of the spin-
independent Hamiltonian, typically within nearly one
standard error ( —20 MeV) of the exact GFMC result.

The 4q-q wave function is obtained by replacing the
coordinates of quarks 5 and 6 in the six-quark wave func-
tion by the antiquark coordinate R ~:
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X~(S =2)= Q 1'; (uu)„(d d),4,
1

(21)

X g ( —1) [(ud —du), 2(ds —sd)34(us —su)~6j .
P

(22)

The sum over flavor states runs over the permutations P
of the three pairs and ensures an overall antisymmetric
spin-flavor wave function when two pairs are inter-
changed. Recalling that another factor of —1 comes
from the color factors at the central Y junction, we ob-
tain an overall plus sign when two pairs of quarks are in-
terchanged. As required by the color symmetry, the
combination of spin and flavor terms within a pair are
symmetric. Note that this wave function couples quarks
attached to the same Y junction to spin 0, and hence has
the most attractive hyperfine interaction in the six-quark
system. For the sake of simplicity we neglect the mass
difference between u, d, and s quarks. In this case the H
is the ground state of the 6q exotic state.

Another six-quark state has recently been proposed as
a candidate for a narrow exotic resonance. If one as-
sumes that a confined 6q state is spatially lager than 3q
S =—', 6 baryon, the 6q S=3 state may have a less repul-
sive hyperfine interaction than the two isolated 6's, and
hence may exist as a narrow dibaryon resonance. The
flux-tube spin-fIavor wave function for such a state is

X6(S =3)= Q (1' ) g( 1) (uu)I~(dd)34(ud+du)s6
I P

where $,. denotes a spin-up state of quark i. Clearly this
state has a repulsive hyperfine interaction. However, if
the spatial extent of this four-particle state is large, it is
possible that the strength of this repulsion is weaker than
in two isolated spin-1 mesons, and that consequently it
may exist as a narrow resonance.

The most often-studied MQH is the H dibaryon; which
is a total spin-0 state of 2u, 2d, and 2s quarks. In the
flux-tube model, the spin-flavor part of the wave function
is given by

X6(H) (X12X34X56)

2G(R)=, E,(a(1+/3')' ')
(2') R (1+P )

with
f1C E

R

o, =mcR/A .

(26)

(27)

The propagation distance is R, and K2 is a Bessel func-
tion of order 2. This same propagator is employed when
calculating the ground-state energies of the MQH with
the GFMC method.

The GFMC method projects the true ground-state
wave function Po through

'Po= lim exp( Hr)%'T . —

must be able to evaluate the expectation values of the
Hamiltonian. Evaluation of the two-body terms in the
interaction is straightforward, and the many-body
confining interaction HF is relatively simple to calculate
numerically. For example, given the positions of the six
quarks, and assuming a position for the center Yjunction
(see Fig. 1), the formulas given in Ref. 14 can be used to
solve for the positions of the remaining Y junctions and
consequently the total length of the flux tubes. The
remaining task of minimizing this total length by varying
the position of the central Y junction is easily accom-
plished through the simplex method, for example, which
typically requires of the order of 10 iterations to provide
a very accurate potential.

We also need to evaluate the expectation value of the
semirelativistic kinetic energy operator. This is not trivi-
al due to the nonlocal nature of the operator (it involves
all powers of the momentum operator); and therefore we
evaluate the free-particle propagator

t,
' 4T I exp [ —1/ (p; +m; )E] I

O'T ~

for a small parameter e and extrapolate the result to
linear terms in e. This method has been checked in two-
body calculations where it is trivial to calculate the
Fourier transform of the coordinate-space wave function
and evaluate the kinetic energy directly in momentum
space. The free-particle propagator is given in Ref. 29:

All spins are aligned in this state; therefore, the flavor
pairs must be symmetric also. We note that this state has
zero isospin.

States consisting of 4q and a q may be easily construct-
ed by replacing the pair 56 in a 6q state with a single anti-
quark. Note, however, that to retain the highest spatial
symmetry and spin-0 diquarks, we must still include a
strange quark in one pair (similar to the H dibaryon
above). However, this is not necessary in states having
spin-1 diquarks. In this case the wave function can be
written as, for example,

X (S=—,')= ff (1';)[( ), (dd) u —(dd), (uu) u ] .

(24)

Given these forms for the trial wave functions, we

For these calculations we employ the short-time approxi-
mation

exp( Hr ) = + ex—p( Hb, r)—
i =1,Ã

exp( —Vhr/2)
i =1,N

X exp( —Tb,r)exp( —Vb, r/2) . (29)

The solution of the Schrodinger-like equation is obtained
through an analogy with the diffusion equation in imagi-
nary time; the kinetic energy term is responsible for the
diffusion, while the effects of the potential energy are in-
corporated into a branching algorithm. This method is
exact up to finite-time-step errors due to the Trotter
breakup of the Hamiltonian; we employ time steps of ap-
proximately 0.03 GeV in order to minimize this error.



43 ABSENCE OF EXOTIC HADRONS IN FLUX-TUBE QUARK MODELS 1657

For the cases where the hyperfine interaction is included,
we consider only wave functions in which the spin-Aavor
part of the wave function is that given above, and solve
for the spatial wave function which gives the lowest ener-
gy.

IV. RESULTS AND CONCLUSIONS

TABLE I. Cxround-state energies in 6eV, for the spin-
independent part of H&. Green's-function Monte Carlo results
for the ground states of the spin-independent part of H&. Sta-
tistical and systematic errors are approximately 20 MeV the to-
tal energy and the "Coulomb" potential term, and twice that for
the kinetic energy (Ho ) and HF.

State Energy

We first consider result for the dominant spin-
independent Hamiltonian summarized in Table I. The
statistical error in the VMC calculations are ~ 10 MeV,
whereas the symmetric and statistical error in the GFMC
calculations are -20 MeV. The GFMC energies are
lower than the VMC by only -20 MeV; hence, the two
calculations give nearly identical results. In the q-q sys-
tem the GFMC result has been checked by diagonalizing
in a basis of Gaussian functions.

The most striking feature of these results is that each
additional particle added to the system raises the energy
by a roughly constant amount. The additive constant is
large ( —540 MeV), and hence the exotic MQH states are
four to five hundred MeV higher than two hadron states.
This is not a trivial result since for some configurations of
the particles the MQH confining potential is less repul-
sive than for two isolated baryons. Overall, however, in
the Aux-tube model it costs more kinetic and potential en-
ergy to form the multiquark systems (Table I).

Of course, the effects of the hyperfine interaction must
be included in any reasonable calculation. We consider
first the case of the six-quark systems, both the S=O H
dibaryon and the proposed S=3 exotic. The results for
these systems are given in Table II. These are obtained
with the GFMC method as follows. In the S=3 state the
cr, -cr in H are replaced by unity, and an effective spin-
independent interaction is obtained. In the S=O state the
o;.o. are replaced by —3 when the quarks belong to the
same Yjunction (and therefore are coupled to spin 0), and
zero otherwise. Thus the o.; o. interaction between
quarks belonging to different Yjunctions is treated in per-
turbation theory. In first order its contribution is zero,
and its higher-order contributions are expected to be
negligibly small ~

The strength of the hyperfine interaction has been ad-
justed to roughly reproduce the experimental N-6 split-
ting of -290 MeV; with these parameters we obtain a
splitting of 0.27 GeV. Other effects, including coupling

to pions (string breaking) may also contribute -0.1 GeV
to this splitting. This model reproduces the experimen-
tal ~-p splitting of 630 MeV; however, the pion has a
rather small energy of 55 MeV. The results are slightly
different than presented in Ref. 15, almost entirely due to
the fact that in the previous study the constant term 6M
was adjusted independently in the meson and baryon sec-
tor.

We have computed the H dibaryon in the SU(3) limit
in which all u, d, and s quarks have the same mass. The
hyperfine interaction does provide a relative attraction
for the H dibaryon when compared to two baryons. Two
isolated spin- —,

' baryons gain approximately 350 MeV
from the spin-dependent term, while the K dibaryon
gains —500 MeV. This shift is close to what one would
expect from first-order perturbation theory. The 3q
baryons have one S=O pair each; thus, their total energy
shift is roughly equal to the N-6 splitting. The K di-
baryon has three such pairs, and consequently gains an
energy of nearly 1.5 times the N-6 splitting. However,
this additional attraction is not nearly strong enough to
overcome the much higher energy of the six-quark state
in the confining potential; indeed the full calculation re-
veals that the energy difference between the H and two
baryon states is 300 MeV in the SU(3) limit.

To be more realistic we must consider the effect of the
strange-quark mass being larger that that of u and d
quarks. The energy of the H in this case can be estimated
as follows. The mass difference between the X and the
nucleon ( —250 MeV) essentially represents the difference
in the energies of S=O us or ds diquarks and the S=O ud
diquark. Hence a better estimate of the energy of H is
—2.8 GeV obtained by adding 500 MeV to the energy in
the SU(3)-symmetric limit. This estimate is much larger
than 2M& =2.23 GeV.

We next consider the proposed S=3 dibaryon. In this
case the two isolated baryons (b,s) are pushed up approxi-
mately 200 MeV by the hyperfine interaction. This shift
is somewhat smaller than that of two nucleons due to
nonperturbative effects in the nucleon channel. ' The en-
ergy shift in the six-quark state ( —190 MeV) is only
slightly smaller. Consequently, the six-quark state again
remains higher in energy than two baryons, by approxi-
mately 450 MeV. It was noted in Ref. 5 that this state is
bound in all previously studied quark models. It is not
bound in the Aux-tube model because of the relatively
small spatial extent of the six-quark system. Mean-field
models typically produce a six-quark state of significantly
larger spatial extent than baryons, and hence a smaller
hyperfine repulsion in the spin-3 dibaryon. This effect is

TABLE II. Energies of six-quark states. Careen's-function
Monte Carlo results for the two hadron and MQH six-quark
states with the full interaction, assuming SU(3) symmetry.

qq
39
29-29
4q-q
6q

0.60
1.17
1.72
2.29
2.79

1.17
1.81
2.49
3.30
3.80

—0.30
—0.29
—0.32
—0.42
—0.34

—0.27
—0.35
—0.47
—0.59
—0.68

State

2XX
6q (S=O)
2Xd
6q (S=3)

Energy (ReV)

2.00
2.30
2.54
2.99
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very small in the present model, whose results are dom-
inanted by the spin-independent interaction.

Results in the 2q-2q and 4q-q systems are similar. The
spin-0 four-quark state is very high in energy compared
to two pions, as expected, since the pions feels an extraor-
dinarily strong hyperfine interaction. We would also pre-
dict no strong spin-2 exotic resonance with the Aux-tube
model; the hyperfine repulsion in the 2q-2q state is only
slightly weaker than that in two p mesons. The lowest-
energy five-quark state with spin —,

' has an energy of 1.95
GeV in the SU(3) limit of this model. Since this state has
an S=O us diquark, a more realistic estimate of its energy
is 2.2 GeV which is much larger than M& +Mz or
M&+M . The charge 3 4q-q state made up of four u and
one d quarks has also been discussed in the literature.
If it exists as a narrow resonance it may be possible to
study it by double-charge-exchange (n+, vr ) reactions on
the proton. In the Aux-tube model this state has a rather
high energy of —2.3 GeV.

It must be emphasized that we do not expect these
MQH states to exist as sharp resonances at high energy.
We have explored an extreme limit of the theory in order
to better understand the possible range of quark models.
In this limit there is no coupling between the MQH and
multihadron states. Physically the H~ (neglected in this
work) provides this coupling, and thus all MQH states

will have a width. Unfortunately, since H is largely un-

known, we cannot provide any reliable estimate of its
width. This term in the Hamiltonian is an important to-
pic for future study.

In summary, we have explored the consequences of
IIux-tube models based upon strong-coupling QCD in
multiquark hadron spectroscopy. We find that in the
limit of weak coupling between different Aux-tube
configurations there will be no bound multiquark states.
Our results stand in sharp contrast to mean-field models
which explain traditional meson and baryon spectroscopy
with a similar degree of accuracy. They also differ con-
siderably from potential-based quark models, in which
the hyperfine interaction provides enough attraction to
produce sharp low-energy resonances in certain spin-
isospin channels. Consequently, the presence or absence
of these exotic states in the experimental spectrum may
be an important guide in our understanding of QCD.
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