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The analytical result of reevaluation of the massless three-loop next-to-next-to-leading-order
QCD corrections to 'y, (H°—hadrons) is presented. The analysis of the scheme-dependence prop-
erty is considered. The value of the scheme-invariant quantity p, is determined. It turns out to be
negative and large. Therefore, the truncated effective 3 function has an infrared zero. It is argued
that this “fixed point” is a spurious one. The problem of getting reliable information from the per-

turbative series with large coefficients is discussed.

I. INTRODUCTION

It is known that the perturbation-theory (PT) predic-
tions are not unique because of the existence of the
scheme-dependence problem. In QCD its consideration
is of a special interest. Indeed, since the QCD running
coupling constant in the experimentally available region
of energies is not small, in the course of taking into ac-
count the higher-order PT corrections it may lead to ad-
dittional theoretical ambiguities in the values of the fun-
damental parameters of the theory (say, the scale parame-
ter A) which are extracted from the fits of experimental
data (see, e.g., Ref. 1).

During the past years, several methods of dealing with
scheme-dependence ambiguity have been discussed.
First, the idea of minimization of higher-order PT correc-
tions [usually calculated in the minimal-subraction (MS)
scheme? or the modified MS scheme®] was proposed® and
developed.*”7 Such kinds of schemes include the G
scheme,” a modification of the MS scheme convenient
from the calculational point of view, and variously
defined momentum-(MOM) subtraction schemes.*%7 It
should be stressed that in QCD the MOM schemes are
gauge dependent. At the three-loop level this special

feature of the MOM schemes has been extensively inves-
tigated in the works of Ref. 8.

Another method of dealing with scheme-dependence
ambiguity has been considered in Ref. 9, where the prin-
ciple of minimal sensitivity was proposed and certain
scheme-invariant quantities were introduced. The impor-
tance of the scheme-invariant quantities has been deeply
understood in the process of formulation of the massless
scheme-invariant PT approach.'” The generalization of
this method to the massive case with a quark-mass pole
has been proposed in Ref. 11. It is worth remembering
that in the massless case the scheme-invariant PT (Ref.
10) is equivalent a posteriori to the effective-scheme
method,'>!? which is also referred to in the literature as
the fastest-apparent-convergence (FAC) method.

In this work we discuss the result of reevaluation of the
massless next-to-next-to-leading-order (NNL) three-loop
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corrections to T',,, (H%—hadrons) (presented previously
in Ref. 14) and compare it with the results of other works
on the subject (see Refs. 15-19). Following the lines of
Ref. 15, we analyze the scheme dependence of the results
obtained on the choice of the renormalization parameter
of the MS-like schemes. We also present the massless
scheme-invariant analysis (see Ref. 20) and determine the
numerical value of the scheme-invariant quantity p,. The
value of p, turns out to be negative and large.?! We
stress that this fact cannot be considered as a manifesta-
tion of the QCD fixed-point regime, previously discussed
from various points of view in certain works on the sub-
ject.?272% We argue that the perturbative series for the
effective 8 function of this channel explodes at the level
of the NNL corrections. The problem of getting reliable
information from PT series with large coefficients is dis-
cussed. The importance of obtaining the values of the
scheme-invariant quantities p, for other physical quanti-
ties, in particular, for o,(e e~ —hadrons), is em-
phasized.

II. DESCRIPTION OF CALCULATIONS

Consider the standard SU(3)XSU(2)XU(1) model.
The total hadronic decay width of a scalar Higgs boson is
determined by the imaginary part of the two-point func-
tion of the quark scalar currents (see, e.g., Ref. 17):

V2Gy f
Or > ImHj(q2=M}1) >
H j=1

;(Q%=—g%)=i [e™(0|T(J;(x)J;(0))|0)d*x ,

I (H%—hadrons)=
2.1)

where Ji(x)=m;q;q;, q;=u,d,s,c,b,t quarks, and f is the
number of quark flavors to be taken into account in the
decay of a Higgs boson with a given mass M.

In the leading order of perturbation theory, the expres-
sion for this physical quantity is

T,,(H°—hadrons)
— 3/2
3v2 L 4m}
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87 = M}
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where m; are the renormalized quark masses and M, is
the Higgs-boson mass. To sum up the nonleading
In(m 2/M 7 ) contributions to I',,, it was proposed to use
the running quark masses.!®

Let us note that far above the thresholds of production
of the quark-antiquark pairs higher-order O (a;) correc-
tions can be more important than the O (m; 2/M H) effects.
Indeed, in the MS scheme the two-loop massless correc-
tions to [y, are positive and sufficiently large."’

To simplify the calculation, it is convenient to intro-
duce the function

d | 1;(0%
2 -2 J
i)j(Q ’mj7as)~Q sz Q2 3 (2'3)
which satisfies the renormalization-group equation
9 9 0
2_Y + — .
H ou? Ala,) da, Vm(@s)m; om;
2
XiDj =5,mj,a =0. (2.4

The corresponding renormalization-group functions are
defined as

3 o 1172
1 1 ,0a ;

G=1 - Rk i 2.5
WB(a’) t ou? T 23)

i+1

my,(ag) 2975 _ b 2.6)
: a,)= ; .
i¥m a‘u jl>07/

In the MS-like schemes the coefficients of the 3 function
are known at the three-loop level:*®

Bo=(11—2f)1~2.75—0.1667f ,
/31=(102—ﬁf)L~6.375—0.7917f : 2.7)
BZ 2857 5033f+ 325

~22.3203—4.3689f +0.0940f2 .

The three-loop coefficients of the y,, function have been
calculated in Ref. 27 and have the form

Yo=1,
Yy =22 —207)1 ~42083—0.1389f ,

(2.8)
?/2:{1249 [2216+1so§3)]f——lﬂ }6.‘4

~19.5156—2.2841f —0.027012 .

The reevaluation of the three-loop massless correction
to the D function (2.3) has been independently made on
an ES-1060 computer with the help of the SCHOONSCHIP
program?® and on a CDC-6500 computer with the help of
the corrected SCHOONSCHIP program.?’ Note that the
program of Ref. 28 has been written on the basis of the
program of Ref. 29. These programs implement the
integration-by-parts algorithm.** The results of both cal-
culations are in agreement.

The general expression obtained for the 2 function has
the form
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o
D, #2’mj’as
d(R)
) mjz[1+ - (dyotdyl)
2
a,
+ 7 (dyt+dyl+dy,1?)+0ad)|,
(2.9)

where I =In(Q2/p?). In the MS scheme pu>=pz and the
analytical expressions for the coefficients d; read

dy=4Cp, dpn=
dyo={[¥2—62£(3)]C . —[65—1635(3)]TS
+[ 8L —36£(3)]Cr}(Cr/16) ,
—4C, +BTf—105C;)(Cf/16)

3
7CF ’

(2.10)
dy =

dyy=(11C ,—4Tf +18Cp)(Cf/16) .

In Egs. (2.10) the quadratic Casimir operators for the ad-
joint and defining representations of the group SU(N) are
=N and C,=[(N?—1)/2]/N, d (R) is the dimension
of the representation, T =1 corresponds to the usual
choice of the normalization condition tr(T¢T®)= T8 for
the generators of SU(N), and f is the number of flavors.

In the case of the standard representation of the group

SU(3), one has d(R)=3, C,=3, and Cp=3%. Then the
coefficients (2.10) take the form

dip=Y4, dy=-2,

dyy =281 -3 5(3)—[£—20(3)]f, (2.11)

—ﬁl(;ﬁ_i_l-glfa d22:%_%f .

The correction of O(a,) reproduces the previously
known result.!” The coefficients of the logarithmic terms
coincide with the ones obtained in Ref. 15 and are con-
nected with the coefficients of the renormalization-group
functions B(«;,) and v,,(a,) by the relations

d=—2yp dy=—2y,— ~Bod 1o >

dy :7’0/30‘*‘27/% ,

which provide a useful check of the calculations. As re-
gards the expression for the coefficient d,, it differs from
the one reported in Ref. 15. The difference found is due
to the misprints at the inputs of the previously used
SCHOONSCHIP packages.

2o (2.12)

1I1. SCHEME DEPENDENCE OF THE
NEXT-TO-NEXT-TO-LEADING-ORDER QCD
CORRECTIONS TO T',,,( H°—hadrons)

The final confirmation of the standard SU(Q2)XU(1)
electroweak model implies the discovery of the scalar
Higgs boson. The analysis of the experimental data from
the CERN ete ™ collider LEP excludes the existence of
the standard Higgs boson with the mass in the ranges 80
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MeV =My <12 GeV (Ref. 31) and 3.0 GeV=My =19
GeV.? It is expected that these bounds will be
significantly improved.*® In spite of the nonexistence of
the standard Higgs bosons in these regions, it is of in-
terest to present the expression for I',,( H°— hadrons) in
the NNL level of perturbative QCD and to consider the
problems related to the scheme dependence of the results
obtained.

_ s
Lo My )=V2G Mym S
ji=1

:Z)j(MH,m],a

where 7; and & are the running masses and the running
coupling constant, defined by Egs. (2.5) and (2.6). The
origin of the 72 contribution can be understood if one
keeps in mind that it results from the analytical continua-
tion of the last In?(Q2/u?) term in Eq. (2.9).

Note that the question of taking into account the
effects of analytical continuation has been discussed pre-
viously in the case of the e e ~ — hadrons total cross sec-
tion3»3° where the different definitions of the expansion
parameters in the timelike region were proposed. In
these expansion parameters the 7 factors were partly ab-
sorbed. However, in our case it makes sense to use the
standard expansion.

Indeed, in the leading order of quark-mass expansion,
the expression for I';; can be written as

V2
Do Mp)= 38 2GFMH > m
ji=1

w2

| C(a,)+0

H
(3.2)

where f is the number of flavors of quarks to be taken
into account in the decay of a Higgs boson with a given
mass M. The coefficient function C(&, ) is defined as

2

c@,)=1+k, |- |+k,

T

(3.3)

In the MS scheme the coefficients k; obtained from Egs.
(2.11) and (3.1) read
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All calculations, discussed in the previous section, were
done in the Euclidean region of momentum transfer.
However, to obtain the theoretical expression for ', we
are interested in, it is necessary to take into account the
7 effects which appear after analytical continuation to
the timelike region. After applying the renormalization-

group method, the expression for I',, acquires the form

2
In |8 (3.1)
3 |\ 7 s=mk’ '
[
kMS =17 ~5.6667
kS =18 = 26— [§ 3B —r2 (g — £ f)

~51.6668 —1.9070f —7*(1.5833 —0.0556f)

~35.9399—1.3586f . (3.4)

Note that as in the case of the model physical quantity in
the g¢* theory, calculated up to next-to-next-to-next-to-
leading order,*® the correction proportional to 7% de-
creases the numerical values of the analyzed perturbative
coefficients. Thus, in this case, it is not necessary to
redefine the expansion parameter & in the timelike re-
gion in contrast with the proposals of Refs. 34 and 35.
The considered expression for 'y, [Eq. (3.2)] is ex-
pressed in terms of the running scheme-dependent pa-
rameters &; and m;, which depend on the scale parame-

ter A. The expression for &; is rather compact:
1 BllnL
oL BIL?

a;
T

2L —BHnL +B,B,—B%) +0

1
BoL L J ’
(3.5)
where L =In(M} /A?). The analogous relations for the

running masses #i; are more cumbersome. Solving Eq.
(2.6), one gets

a Y, (x) 2
m;=rmexp |—m [ yﬁ(x) dX+%§-In %”
_ /B,
=rﬁ.l2ﬂ0as rof 14 ﬁ_ﬁﬂ’o a;
! T Bo B3 T
1 vi Bivo |’ 2 Bivo Bivi Bavo [&s
LI N e e LAV I — — — | +o(a? 3.6
2B B J Bo B B B ™ @ (0
where
N () Yy (X) 14 2B,
m;=m;(u)exp 7Tf de—;in — ] (3.7
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are the scheme-dependent, renormalization-group-
invariant quark masses. The form of the additive con-
stant in the exponent corresponds to the generally accept-
ed choice of the arbitrary integration constants. For the
cases f =j and s,c,b,t quarks (i, =0.3 GeV, M, =1.9
GeV, m,~7.9 GeV, m,>?), the numerical expressions
of Egs. (3.6) read
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7a

s

2

— A

=m,

1+1.40 +1.79

Comparing now Egs. (3.8) with Egs. (3.2)-(3.4), one can
observe that in the MS scheme the corrections to the
coefficient function C(&;) are larger than the corrections
which come from the expansion of the anomalous dimen-

9 @ 49 a, a 2 sion terms contained in Eqs. (3.8). Thus one might con-
m, =i, == 14+0.89 |— | +1.37 , clude that the analysis of the effects of the higher-order
2w 77 ™ corrections to other quantities, say, characteristics of
1225 5 deep-inelastic scattering, should be started from the cal-
25@; a, culations of the O (a?) corrections to the coefficient func-
m,=m, P 1+1.01 +1.39 _ﬂT ) tions. Note that the analysis of the perturbative series to
the model physical quantity considered in Ref. 36 result-
(3.8)  ed in a similar observation.
23 12/23 5 _ 2 The expression for the running quark masses can also
a— s [H_ 117 1150 | % ’ be expressed in terms of L =In(s/A?). Substituting Eq.
6 T T (3.5) into Eq. (3.6), we have
J
vo/Bo
~ |2 1 InL
m,=m, | = 1+ —— — — B
mp=miT AL (Bov1—B1vo) AL Bivo
+;( 3 + 2.,2__ a2 _ 2 + 2 -2 + 2,,2
288> Boy 2+ Boy 1—BoBry1—BoBrv o+ BBy o~ 2BuB1v v 1 +Biv)
InL In’L 1

+ Bng(_ﬁoﬁl 71 —BBivoyi+Bivs)+ 2BL? (BoBiyotBiry)+0 3 ] ] . (3.9

One of the points of view of the analysis of the higher-
order PT effects’’ presumes the expansion of measurable
quantities in powers of 1/L and InL terms with the help
of the series (3.5) and (3.9), which are, generally speaking,
asymptotic ones.’® However, it seems to us more con-
venient to express the final results in terms of the running
coupling constant &; and the running masses 7;, which
can further be reexpanded in &, with the help of Eq. (3.6).

Let us now discuss the scheme dependence of the re-
sults. It is known that the transformations within the
class of the MS-like schemes do not affect the values of
the scheme-dependent coeflicients of the
renormalization-group functions: namely, S3;,i =2, and
vi,i21, in Egs. (2.5) and (2.6). Therefore, in these
schemes the scheme-dependence ambiguity comes from
the choice of the parameter p only. The transformation
from the MS to the MS scheme can be done by the re-
placement In(M3 /,u,iﬁ)Zln(Mlzi k) +y —In(47)  in
Eq. (2.9). This leads to an increase of the numerical
values of both scheme-dependent coefficients of Egs. (3.2)
and (3.3): namely,

EMS ~9.5428 ,
kS ~137.8873—4.9017f —7%(1.5833—0.05561)

=122.2608 —4.3534f . (3.10)

Since our final aim is to obtain the precise value of the
scheme-invariant quantity p,, introduced in Refs. 9 and
10, we will keep in the numerical results obtained from
the analytical ones of Eq. (3.4) at least five significant di-
gits.

I .
The p parameter of the G scheme® is connected with

the MS scheme parameter by the relation
pis=p%lexp(—2)+0(e)] or In (M} /udg)=In(M/
uZ)+2 (see also Ref. 36). One can use this relation in
Eq. (2.9) and obtain the numerical values of the
coefficients k; and k, in the G scheme:

k¥ ~1.6667 ,
k§ ~—0.0999—0.1292f —7*(1.5833—0.0556f)
~—15.7264+0.4191f . (3.11)

Thus the G scheme seems to be singled out not only from
the point of view of a simplification of calculations (see,
e.g., Refs. 5 and 30). Indeed, in the G scheme the values
of the scheme-dependent coefficients (3.12) are smaller
than those in the MS and MS schemes. A similar obser-
vation has been made in the course of the analysis of the
PT corrections to the model physical quantity in the g¢*
theory in the next-to-next-to-next-to-leading order.
Note also that numerically the transformation relation
between the u parameters of the MS and G schemes is al-
most identical to the one between the y parameters of MS
and asymmetric MOM (AMOM) schemes of Refs. 6 and
7 obtained in the Feynman gauge, namely

s =1 omexpl —2+(24—2£) /(99— 6/)]
z,ufs.MOMexP[MI-g]7

(Ref. 7). Thus the G scheme preserves the attractive
feature of the AMOM scheme, namely, the minimization
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of the next-to-leading-order (NL) PT corrections to cer-
tain physical quantities.

IV. COMPARISON WITH OTHER RESULTS FOR I',,,

At the two-loop level the massless MS-scheme results
of Egs. (2.10), (2.11), and (3.1) are in agreement with
those of Ref. 18. In Refs. 16, 18, and 19 the explicit mass
dependence of the O(a;) coefficient has been calculated
in the case of the pole masses 7i;. The results of Refs. 16
and 19 are in agreement with each other. As regards the
results of Ref. 18, they do not agree with Egs. (3.2)-(3.4)
of the present work. Indeed, let us use the following rela-
tion between the pole and running masses (see, e.g., Ref.
39):

p2

~ 2
m;

n—1j(p2)=mj[1— %—m il +0(a§)].(4.1)

The two-loop corrections to this relation are also known
at present,>® but will not be needed in further discussions.
Using Eq. (4.1), one can get the following expression for
Cior:

3v2
Ftot(MH):—ET_GFMH
/ M3 &

X3 m21+ [3+2In |[—2 !a—]

j=1 m 7
m 2

+0 |— } 4.2)

MH

It is in agreement with the asymptotic expressions ob-
tained from the results of Refs. 16 and 19, but is not con-
sistent with the results of Ref. 18. Moreover, the explicit
mass dependence of the O(«,) correction to I',, obtained
in Ref. 18 disagrees with the recent corrected result of
Ref. 19. Therefore, the discussed difference disfavors the
findings of Ref. 18.

V. SCHEME-INVARIANT ANALYSIS

Let us consider the scheme-invariant analysis of the re-
sults previously discussed fixing the numbers of flavors to
be taken into account in Egs. (3.2) and (3.10). Since a
scalar Higgs boson has not yet been discovered,* we shall
consider the value of its mass as an arbitrary scale param-
eter M2 =s and concentrate on the theoretical questions.

Instead of the quantity (3.2), it is convenient to intro-
duce the function

dC (a)/da
2C(a)

where a =a, /7. It obeys the renormalization-group
equation without the anomalous-dimension term:

Zi _a_ =
u 2+B(a)aa R(a)=0 (5.2)

o

[compare with Eq. (2.4)]. The coefficients of the 8 func-
tion

Bla)= 2082 _ —BoB2[1+c,a+c,a’+0(cya?)]

o (5.3)
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are determined by Egs. (2.5) and (2.7), i.e., ¢;=/3,/By,
¢, =p,/By. The solution of Egs. (5.2) and (5.3) is

R(@)=roa@[1+r,a+r,@a*+0(r,a?], (5.4)
where
Bok
ro=vo=1, ror;=v;t 2
(5.5)
Bokt | Bik,
’0"2:7’2+Bok2"T+'2— .

The coefficients 3y,8,3, and v,,7 1,7, are known from
the results of Refs. 27 and 28 [see Egs. (2.7) and (2.8)],
and the coefficients k, and k, in the MS-like schemes are
determined by Egs. (3.4), (3.11), and (3.12).

For simplicity let us consider the case of f =3 numbers
of flavors. Then the numerical values of the coefficients
¢y,c, read ¢;=1.7778, c,=4.4711, and the correspond-
ing MS-scheme series for the quantity R has the form

RMS(a)=a(1+10.167a +59.322a 2) . (5.6)

Also, for the PT series for T, in the MS scheme the ab-
solute numerical values of the coefficients 7, and r, be-
come larger,

RMS(g)=@(1+14.528a +174.758a 2) , (5.7)
while in the G scheme they are significantly smaller:
RS%a@)=a(1+5.667a —19.926a ?) . (5.8)

Let us now transform this series to the effective
scheme!>!3 which is a posteriori equivalent to the
scheme-invariant PT.!° In its framework the behavior of
the physical quantity R =a.g4 is governed by the effective
3 function with the scheme-invariant coefficients,!® name-
1y,40

oR
dlnls|

=BeR)

=—B,R}1+¢,R+p,R*+0(p;R*)] . (5.9
Note that in the fixed-scheme approach one is dealing
with two perturbative series for R (@) and B(@), which
are, generally speaking, asymptotic ones. In the
effective-scheme approach (or scheme-invariant PT) the
behavior of the physical quantity R is governed by one,
generally speaking, asymptotic and process-dependent
series for the B, function with the scheme-invariant
coefficients. Thus, in order to investigate the concrete be-
havior of this series, it is necessary to calculate the invari-
ants p,, ps, etc.
In the considered case the value of the scheme-
invariant quantity p, is negative and large. Indeed, for
f =3 one has

pr=cr+r,—ciri—ri=—57.6. (5.10)

We checked that this value can be obtained starting from
any of MS-like schemes, namely, from any PT series [Egs.
(5.6), (5.7), and (5.8)]. The errors of rounding off the de-
cimals affect the nonpresented digits in Eq. (5.10) only.
Thus, at the three-loop level, the corresponding S.q4 func-
tion
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Ber{R)=—2.25R*(1+1.78R —57.6R?) (5.11)

has positive zero at the point R ~0.15 or
a'®=R'Y7~0.46, where PT can be applicable in princi-
ple. At first glance this zero might be considered as a
QCD infrared fixed point, e.g., in the spirit of the discus-
sions of Ref. 24.

Indeed, the general solution of the renormalization-
group equations (5.3) and (5.9) for the truncated NNL ap-
proximation of the 3 functions can be written as

e
A a Byx“(1+c;x)
—fﬁdx 2 : 2

0 Box(14+c;x +c,x*)

1

- (5.12)
Box“(14+cx)

In the case of the [B.; function with a large negative
coefficient &, =p,,*? the explicit expression of the solution
of Eq. (5.12) for @ =R has the form

s 1 2 c;R

In—=——+ n———
A% BoR By 1+4c¢ R
c (1+c,R)?
+ n ©) ©)
2By py(R—RY )R +|RYY)
2p,—ct
+ (0) (0)
2By (R +[RO])
R_R(_g) R(_S)
X |{In R+IRO| —In RO , (5.13)
where
~ ¢, /B,
A%ﬁ: ?:ﬂ'(BO/Cl)l 0
CI/BO

= AZiexp(rS /Bo)(Bo/c) ™

and R'”~0.15 and R'‘©”~—0.12 are the positive
(““physical”) and the negative (“nonphysical”) roots of the
three-loop B, function (5.11). One can check that the
values of the roots are weakly sensitive to the numbers of
flavors taken into account. Thus one might conclude
that at s << A2; the infrared fixed point regime R —R Y
can be realized.

However, one should be careful in making definite con-
clusions about the substantiation of asymptotic perturba-
tive series predictions in certain regions of energies.
First, since the value of A.g, say, for Ayg==250 MeV, is
not small, namely,

MsS
o
283,
one can conclude that the NL PT predictions are justified
only in the region V's >>A. =2 GeV (see, e.g., Refs. 13
and 41, where similar problems have been discussed on
the basis of the discovery of the large values of the ratios
A5/ Aygs in different channels).

A= AjeXp =A559.58>=2 GeV , (5.14)
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Further, to consider the problem of taking into ac-
count the NNL perturbative contributions, it is necessary
to analyze the important question of applicability of
asymptotic PT series and the estimation of their errors.
In the fixed renormalization schemes (MS-like, MOM
schemes), these questions should be investigated for the
PT series for both physical quantities and the
renormalization-group B function. The characteristic
feature of the methods'®!>13 is that one should consider
only one PT series for the B function with the scheme-
invariant coefficients.

It should be stressed that in the series (5.11) considered
by us the NNL term becomes comparable with the lead-
ing term at R =R *~0.13 <R'? and that the NL term of
the B.4 function is essentially smaller than both the lead-
ing and NNL ones. Let us assume that at R =R * the
NL term is the smallest in the whole PT series for the B¢
function and that the corresponding series explodes at the
NNL level. The scale of explosion S* can be estimated
from the numerical solution of Eq. (5.13) with the initial
condition R =R *. For the value A;5==250 MeV this es-

timate reads

VS*~A40.38~0.9 GeV , (5.15)

where the result of Eq. (5.15) where the result of Eq.
(5.14) was taken into account.

It is known that for the sign-alternating asymptotic
series the most exact value for its sum results from ter-
minating the series with only half the least term.*? In the
case of the series (5.11), it is not even clear whether its
sign-alternating character will survive in higher orders of
PT. Therefore, for the values of the effective constants
R*~0.13 or scales S* ~1 GeV?, where according to our
assumption the scheme-invariant NNL series (5.9) ex-
plodes, the expression for the SB.; function should be ap-
proximated in accordance with Ref. 42 as

Bl R)=—PB,R*(1+Tc,R), (5.16)

with 0<T =1 for the sign-constant series, T =1 for the
sign-alternating one, and an accuracy of the order of the
least term B;R2.** Thus, the zero of the three-loop B.x
function, including the positive one R'? > R * and there-
fore the indication to the QCD infrared fixed point, turns
out to be a spurious one and the NL-order criterion of
applicability of the PT series Vs >>A 4 effectively sur-
vives.

Another argument in favor of the above-discussed
point of view comes from the estimation of the value of
the four-loop coefficient in Eq. (5.9). It is determined by
the following scheme-invariant combination:!°

py=cy+2ry+dri+cri—2c,r —6r1, , (5.17)

where the coefficients r;,c; must be calculated in the same
scheme. Using the MS-scheme results for cy,c,,7,7,,
one can obtain for the scheme-invariant quantity p; the

following estimate (remember that f =3):
py=cy+2r;+677.86 . (5.18)

For the cases of f =4 and 5 numbers of flavors, the cal-
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culated numerical contributions are even larger (~750
and ~ 830 accordingly).

It is known that in the pure SU(2) non-Abelian gauge
theory the asymptotic PT series for Green’s functions are
sign-constant ones.** Therefore, one can assume that a
similar situation takes place in QCD and that in the MS-
like scheme for f =5 numbers of flavors one will get
¢3(f)>0. Further, in view of the fact that in the MS
scheme 7,(f) is quite sizable, let us also assume that
r3(f) >0 despite the considerable negative four-loop 7>
analytic-continuation contributions. In this case the
values of p; are positive and large [see Eq. (5.18)]. This
argument supports our point of view that near
R*~0.13<R'Y (or @*~0.4<a'®~0.47) the asymp-
totic explosion of the PT series (5.9) with the scheme-
invariant coefficients manifests itself at the NNL level
and that the more accurate PT approximation of the B4
function is the two-loop (NL) equation (5.16). Further
extension of the scheme-invariant predictions to the re-
gion of larger coupling constants must be based on the
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development of methods of resummation of the QCD
asymptotic series (5.9).

Let us now present the comments about the behavior
of the PT series (5.1) and (5.3) in the MS scheme. First,
solving Eq. (5.6) with respect to @yg for the value
R *=0.13, which in accordance to our point of view is
relevant to the asymptotic explosion of the scheme-
invariant PT series [see Eq. (5.11) and the discussions
below], one gets the corresponding value of the MS-
scheme constant @y=~0.067 (or &,~0.21). At this
point neither the three-loop series for the MS-scheme
QCD p function (5.3) nor the series (5.6) explode. In the
MS scheme the NL and NNL terms of Eq. (5.6) become
comparable with the leading one at @ {;z~0.1(a@ ¥ ~0.31)
and @ §js~0.13 (& 3* ~0.41) correspondingly. Since for
the NNL approximation of the MS-scheme S function
there are no problems of taking into account large PT
corrections, the corresponding energy region of applica-
bility of the PT series (5.6) can be estimated from the ex-
plicit solution of Eq. (5.12) in the MS scheme, namely,

s 1 ¢y c,a ¢y (14c,a)? 2¢, —c? ¢, +2c,a ¢y
In——=—-+4+—In—-—+_—-In — - — arctan —~—— —arctan——— | , (5.19)
Afs B Bo 1+ci@a 2By 1+ca+c,a V' AB, VA VA
[
where A iTs:AiTs(Bo/cl )l /BO, A=4c,—c?,  and invariant quantity p,. It turned out that this value is neg-

@ <<@ . Substituting the numerical values for Bos €15
¢,, and @ 35 into Eq. (5.19), one gets the estimate

Vs >>A555.2>~1.3 GeV (5.20)

for Ajs==250 MeV. Therefore, two conclusions are in
order. _First, contrary to the scheme-invariant analysis,
in the MS scheme the problem of the spurious NNL in-
frared fixed point does not appear. Second, the region of
nonapplicability of the PT predictions for the quantity of
Eq. (5.1) is V's =M 52 GeV for the value A5 =250
MeV [compare estimates of Egs. (5.14) and (5.20)].
Therefore, to estimate the values of the characteristics of
the decays of the light Higgs particles to light hadrons, it
is necessary to use the nonperturbative methods, e.g.,
those considered in Ref. 44.

VI. CONCLUSION

In this work we presented the analytical results for the
three-loop NNL QCD correction to T',,,(H°—hadrons)
and analyzed the scheme dependence of the results ob-
tained. The case when the Higgs-boson mass lies far
above the thresholds of production of the quark-
antiquark pairs was considered (My >>2m ), and the
dependence of the analyzed perturbative coefficients from
quark masses has been neglected. In this approximation
the contributions to T, of the subprocess H O gg (see
Ref. 45) is not taken into account, since its contribution
to [y is damped by the additional O (m?/m}) factor,
where m; are the masses of the quarks propagating in the
internal quark loops. The neglect of the massive depen-
dence allows us to determine the value of the scheme-

ative and large. The application of the scheme-invariant
PT,!° which is equivalent a posteriori to the effective
scheme method,'>!3 allowed us to show that the indica-
tion to the QCD infrared fixed point in this channel is
spurious one. We concluded that near the zero of the
effective 8 function the scheme-invariant series asymptot-
ically explodes. It would be interesting to compare this
conclusion with the concrete behavior of the scheme-
invariant series in other cases. It is especially important
to understand the behavior of the scheme-invariant series
in the case of o,,(e e —hadrons). Note that the re-
cent result of reevaluation of the four-loop corrections to
the QED B function*® demonstrates that the corrected
value of the four-loop contribution to
0(e e " —hadrons) will be significantly smaller than
the one reported in Ref. 47.

Note added in proof. Prior to the acceptance of this
work for publication, it was found that the reevaluation
of the next-to-next-to-leading-order QCD corrections to
o(e "e ~ —hadrons) and to I'(7~ —v,+hadrons), with
the help of the SCHOONSCHIP program?’ previously
corrected by two of us (A.L.K. and S.A.L.), resulted in
the negative values of the corresponding scheme-
invariant quantities p,.?® Two comments are now in or-
der. First, the origin of the effect p§+e <0 (Ref. 48) is
not identical to the similar results of the effective
scheme-invariant analysis of the quantity discussed
above, I, (H°—hadrons) and ['(7~ —v,+hadrons)*® in
the next-to-next-to-leading order of perturbative QCD.
Second, the detailed consideration of the physical con-
clusions of the investigations discussed in our present
work can be of interest for further studies.
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