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Pole model of B-meson decays into baryon-antibaryon pairs

M. Jarfi and O. Lazrak
Laboratoire de Physique Theorique, Faculte des Sciences de Rabat, AUe. Ibn Battouta, BP1014, Rabat, Maroc

A. Le Yaouanc, L. Oliver, O. Pene, and J.-C. Raynal
Laboratoire de Physique Theorique et Hautes Energies, Uni Uersi te de Paris XI,

B&timent 211, 91405 Orsay CEDEX, France
(Received 29 June 1990)

We reconsider in detail the pole model for baryonic B decays, first crudely estimated by Desh-
pande et al. We make a complete calculation on the basis of the quark model by an extensive eval-
uation of strong- and weak-interaction vertices. We also consider charmed decays, and the previ-
ously lacking J = —' baryon poles that lead to large parity-violating amplitudes. The strong cou-

plings are calculated in absolute magnitude by our quark-pair-creation model in a crossed channel.
The effects of unequal quark masses are fully taken into account, correcting previous published re-
sults, and introducing a large set of new calculations for baryon couplings. We emphasize the selec-
tion rules and algebraic ratios of rates that follow from either color antisymmetry of the baryon
wave functions or from the pole model. We pay particular attention to the ratio of parity-
conserving to parity-violating rates, as it enters in tests of CP violation involving modes such as pp.
At the same time, we make a detailed discussion of the very principles of the pole model, which ex-
hibits a series of yet overlooked problems: ambiguity in the choice of relativistic couplings, extrapo-
lation of strong couplings to complex momentum transfer, and of weak baryon-baryon matrix ele-
ments to nonzero and large transfers. For both theoretical and experimental reasons, it is suggested
that decays with a 5 are largely overestimated because of a basic weakness of the pole model for
high spin. On the other hand, results with —,

'+ baryons in the final state share several features of the
QCD-sum-rule calculation by Chernyak and Zhitnisky, while differing in detailed predictions that
must await experimental test.

I. INTRODUCTION

With the baryon-antibaryon decays of B mesons we are
in a new situation in hadronic transitions: for the first
time we have a stable meson heavy enough for these de-
cay modes to be allowed. Hence the theoretical interest
of such processes that are not, even for the hardest mode
pp, in a region where perturbative QCD can be applied.
One cannot avoid appealing to models, and the object of
this paper is to examine such decays, with charmed and
uncharmed final states, in a (relatively) simple pole mod-
el. As we will conclude, our work, although rather com-
plete in its goal within a definite model, leaves
unanswered questions and should be viewed as a tentative
to estimate these difficult new processes.

Another interest of exclusive decays of the type b ~u
such as B~pp is to have an independent proof of a siz-
able value of the matrix element V„b, recently estimated
from the semileptonic spectrum. '

The general level of noncharmed B baryonic weak de-
cays is best displayed by comparison with a typical
mesonic one. Using a model of Bauer, Stech, and Wir-
bel, we get

V.bB(B ~rr+rr )=10
V,b

We have used the experimental measure of

B (B ~pp ) =0.7 X 10
V,b

This is due to the fact that while baryonic decay suffers
stronger form-factor suppression than the mesonic one
(in analogy with the steeper falloff of baryonic form fac-
tors), the baryon-to-baryon weak transition matrix ele-
ment is, on the other hand, favored in absolute magni-
tude by the large baryon wave function at center, as es-
timated in potential models '

( 6(r, —r2) ) —10 GeV (1.3)

compared to a mesonic very small factor for pion emis-
sion f .

B ~pp could be also interesting for CP violation, at
least if parity-violating (PV) and parity-conserving (PC)
waves su%ciently differ in magnitude. ' In fact, we find
the PV wave to be of the same order of magnitude as the
PC one, with a ratio submitted to large uncertainties.
The CP asymmetry is therefore not so large as in
B ~me, which is purely parity violating. Nevertheless,
it may add complementary information, and it may be

B(B ~D* sr+)-3X10 and the theoretical ratio of
the two reactions.

A comparable rate comes out for B ~pp if one trusts
our present calculation:
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possible to open new possibilities with other baryonic de-
cays such as Bd,B d~AA, A,+A,+. Polarization mea-
surements of charmed-baryon decays through their hype-
ron products could provide other interesting tests of P
and CP violation.

But the main interest of baryonic B decays at present is
to test our ability to handle hadronic physics through the
quark model in a rather new and complex situation.
First, we are confronted here, as in the case of hyperon
nonleptonic decays, or weak radiative decays, or in the
case of neutron electric dipole moment, ' with higher-
order processes, which pass through intermediate
baryonic states. This we handle through the pole model,
as first suggested by Deshpande, Soni and Trampetic. "
Second, the B decays have the additional feature of
presenting large mass diff'erences, corresponding to the
very unequal quark masses m&, m„m„. As a conse-
quence, we have to treat adequately the separation of
center-of-mass motion and the Pauli principle in the pres-
ence of unequal quark masses, a nontrivial but conceptu-
ally already resolved problem. But another consequence
is the presence of large momentum transfers, which has
required original treatments in the context of the pole
model, as we point out below. And finally, the situation
is new also because it requires, to apply the quark model,
a crossing procedure. On the whole, the interest of the
present study is to present a set of calculations of new ha-
dronic quantities, involving a large number of conceptual
problems.

It is already possible to test quantitatively our method
by considering the case of charmed-baryon decays, where
the Kobayashi-Maskawa (KM) parameter V,b is already
known; this fact allows us to make absolute predictions to
be compared to experimental rates. For noncharmed de-
cays, the matrix element V„b is now becoming known:
V„b-0.05; but the rates seem too small for present ex-
perimental accuracy. We show that we can already learn
something from the existing bounds.

A previous pole-model calculation has been made by
Deshpande, Soni, and Trampetic. " We therefore insist a
bit on the comparison between our works. Our work is
more extensive in that it treats also charmed-baryon de-
cays, which are crucial to test the model. But it differs
essentially in the treatment of the pole model itself.

(l) We take into account the J =
—,
' intermediate

states and not only the J =
—,'+, and this allows us to ac-

count for the parity-violating waves. This reveals to be
important for modes such as B~pp, since we find the PV
wave to be as large as the PC one in this case.

(2) We treat the strong vertex explicitly through the
quark model instead of using guesses to relate b-hyperon
couplings to nucleon couplings. We then make absolute
predictions for the strong-interaction coupling constants.
This is obtained by an original use of the Po quark-pair-
creation (QPC) model, ' which is applied in the crossed
channel of the physical reaction and extrapolated to an
unphysical domain of momentum transfer. Indeed, we
show that to calculate the pole residue, negative square
transfers are involved at the strong vertex, which require
a careful discussion.

(3) We show that to calculate the pole residue, we must

consider the baryon-to-baryon transition weak matrix
element at large momentum transfer, and we present the
results of the quark model for this matrix element at
nonzero momentum transfer, which are new (Appendix
D). We show that the large transfer results in a strong
depression of noncharm decays.

(4) We take into account systematically the inequality
of the masses of the various quarks u, c, b. We then
present results which are new for the Po model of
baryon decays and for the PV weak matrix elements, in-

cluding the b —+c transition with three different masses.
We find that such quark mass effects are especially large
for the PV wave with b ~u. We correct a result present-
ed previously for the PC case.

All these ingredients being put together, we observe a
certain compatibility with the alternative QCD-sum-rule
calculation of Chernyak and Zhitnisky' (CZ) for the
charmed-baryon decays, in the —,

'+
—,
' + case.

We reduce the gap concerning the asymptotic mb

power-counting behavior noted by these authors between
the pole model of Deshpande, Soni, and Trampetic" and
the QCD asymptotic predictions, especially in the —,

'+ —', +

case. Nevertheless, our numerical results happen to give,
contrarily to CZ, very large branching ratio for the —', +

decays, which are almost excluded by the experimental
results. We ascribe this to an essential failure of the pole
model for high-spin particles This s.hould not spoil the
relevance of our results in the —,

'+
—,
' + case, and in this

latter case, our calculation may seem to have some ad-
vantage over CZ, as it is simpler and perhaps more trans-
parent.

We do not compute in this paper all possible baryon-
antibaryon decay modes of B mesons, but only a few,
significant ones from the theoretical or the experimental
point of view.

B mesons, composites of a b quark and a light quark,
B„(bu), B d(bd), and B,(bs), can give a variety of
baryon-antibaryon final states. The final states will de-
pend (l) on the weak transitions, and (2) on the strong
quark pair creation needed to have a baryon-antibaryon
pair. The weak transitions can be the following: (i)
Kobayashi-Maskawa, Cabibbo (C) allowed, i.e., b —+ c,
and u ~d or c ~s; (ii) KM-allowed, C-suppressed, b ~c,
and u —+s or c —+d; (iii) KM-suppressed, C-allowed,
b~u, and u~d or c~s; (iv) KM suppressed, C
suppressed, b ~u, and u ~s or c ~d. As for the needed
strong quark pair creation, we can have uu, dd, ss, cc.
All these combinations are possible, unless there is no
phase space allowing them, as in the case of three
charmed quarks in the final state. In our pole model, the
intermediate states will differ from one of these combina-
tions to another.

Notice that among the final baryons, only a few are
stable with respect to strong and electromagnetic interac-
tions. Among the cuu, cud baryons, only A,+ with flavor
wave function c (ud —du)/V2 will be stable. Among the
:-,'s, =,+"=c ( us —su )/&2 and:-,"=c (ds —sd )/&2
are stable, the symmetric combinations =,+"=c(us
+su)/&2 and:-, "=c(ds +sd)/v'2 decaying by strong
or electromagnetic interactions into the =,"ones. Also,
Q(css) will be stable.
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In this paper we only compute the rates for a few of
these decays. To be definite, we only make the full calcu-
lation of the decay rates for the transitions of B„(bu )

and B d(bd ) into KM-allowed, C-allowed decays without
strange quarks in the final state: B„~(cdu,uuu ) or-
(cdd, uud) and B d~(cdu, duu) or (cdd, dud) and KM-
suppressed, C-allowed decays of B„and B d without
strange quarks in the final state: B„~(udu, uuu ) or
(udd, uud ) and B d

—+(udu, duu ) or (udd, dud ).
Moreover, we only consider ground-state baryon final

states B~X,X, A, N or X,A, A, A and B~XX or IVY.
In our pole model, where baryon poles dominate, the
lowest-lying intermediate states will be, in both cases,
X&,A& and Ab, Xb. The study of these modes wi11 allow
us to account for the ground-state contribution to be in-
clusive decay rates B„~A,++,B d

—+A,++ and
B„~pp+ pions, B d ~pp+pions.

Although we only consider, for reasons of simplicity, a
few final states, many other modes are allowed. Let us
restrict to B„and Bd. If a ss or a cc pair is created, we
will have other stable strange or charmed particles in the
final state, and those will not contribute to B„
~A,++;Bd~A,++ . . and B„~pp+pions;
B d

—+pp+pions. Among the rest of the decays into two
ground-state baryons, not computed in this paper, a few
can be easily obtained from Clebsch-Gordan coefFicients,
such as, for instance, the KM-suppressed, C-allowed
mode B d ~AA, interesting for tests of CP violation.
However, there are interesting modes for which our re-
sults cannot be applied easily, as they involve intermedi-
ate states with three quarks of widely different masses„
not considered here. One example is the KM-allowed,
C-suppressed mode B d ~AO+A, , also interesting in tests
of CP violation. In these modes we will have as inter-
mediate states =I„baryons, composites of a light u or d
and b, c quarks, three quarks with very different masses.
There is no di%culty of principle in treating these cases,
although the formalism would be heavier, as it needs the
diagonalization of the Hamiltonian (A6) for three un-
equal masses. However, as we discuss in the text, and we
have argued, the effect of the quark mass differences on
the weak and strong couplings is not very large, a factor
less than one order of magnitude in rate.

Our paper is organized as follows. Section II is devot-
ed to a rather long discussion of the various aspects of the
model: to define precisely what we mean by a pole model,
to discuss other competing mechanisms, and to analyze
the subtleties of this nonstandard application of the
quark model. In Sec. III we define the couplings, decay
amplitudes in the pole model, and give the rates. In Sec.
IV we give the final quark model expressions of the cou-
plings and discuss its ingredients and symmetry proper-
ties. In Sec. V we give the numerical results and in Sec.
VI we make a discussion of the different effects. Finally,
in Sec. VII we conclude. We postpone all heavy calcula-
tions to the Appendixes. In Appendix A we give the had-
ron wave functions in the harmonic-oscillator model with
unequal masses. In Appendix 8 we compute the weak-
interaction matrix elements at zero-momentum transfer,
and in Appendix C we compute the strong couplings with

the QPC model. Finally, in Appendix D we compute the
weak matrix elements at nonzero-momentum transfer.

II. GENERAL DISCUSSION OF THE MODEL
A. Diagrams contributing to Bbaryonic decays

The pole model we are considering here corresponds to
the process B~Bigs with the general configuration de-
scribed by the diagram of Fig. 1, treated in the particular
way pictured in Fig. 2, with low-lying b-flavored baryon
intermediate states Xb.

The first question to answer is why one chooses the
configuration of Fig. 1 rather than many others which are
possible. For noncharm decays, we can draw five of them
according to Fig. 3.

The first one [Fig. 3(a)j can be neglected with respect
to Fig. 1 for the well-known reason that it is the annihila-
tion into a light-quark pair. The matrix element can be
factorized into

M-f, q„&II~J&~0), (2.1)

where q" is the B momentum, and II is the hadronic final
state, produced through the current j", which is a light-
quark current (u, d). Formula (2.1) then implies the
divergence of this current Bp& and M contains as a factor
the very small current masses m, md, fthm is also small
(100—200 MeV). In addition, one could observe that ex-
clusive decays of the type H=pN*, for instance, will be
suppressed by form factors of the current matrix element
taken at the very large transfer q -25 GeV . It must be
recalled however that similar suppressions occur in the
diagram of Fig. 1, as calculated by the pole model: a
denominator corresponding to the propagator of the Xb
intermediate state at small momentum p& =m&, and an
additional weak vertex form factor taken also at large vir-
tuality (See Secs. IIB and IIC). Therefore the form-
factor suppression is not effective if we want to compare
to Fig. 1.

It must be noticed that Paver and Riazuddin' found
very large values for B d ~pp through annihilation, while
according to our argument, annihilation should be very
small. Their result comes from the pion-pole contribu-
tion. However, it must be observed that the pion contri-
bution by itself does not satisfy the PCAC (partial conser-
vation of axial-vector current) requirement that
Bp ~-m„+md. To satisfy this requirement, one must
take into account the y"y contribution, which almost
cancels the pion-pole contribution.

Figures 3(b) and 3(e) are characterized by the fact that

FIG. 1. B decay into baryon-antibaryon pair with weak in-
teraction within a baryon. X& and 2 are both made of light
quarks.
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B

(b)

A
C

FIG. 5. Other diagrams contributing to charmed final states.
(a) Meson annihilation into a charmed-baryon and an anti-
baryon. (c) Pion emission and charmed-baryon production.
(b) —(d) Charmed-meson emission by the weak interaction.

comparison to our estimate of Fig. 4:

B(B ~A,p ) —10 (2.3)

B. General discussion of the pole model

We now proceed to the discussion of the specific
method we use to calculate Fig. I, i.e., the pole model.
We think that there are two distinct levels in this idea of
using a "pole model. " There is first a quite general idea
which consists in saying that the process under con-
sideration passes through certain hadronic intermediate
states, and that it can be decomposed into two steps: pro-
duction of these intermediate states in the strong process
B~Xi,%z, where %2 is the accompanying baryon, and
Sb the intermediate baryon which then undergoes a weak
transition to the baryon S&.

This is the general idea of the pole model. In fact, it
includes the specific pole-model method that we adopt

here, as well as other approaches, such as the use of
second-order Hamiltonian perturbation theory, which
will also intervene in the subsequent discussion.

By itself, this general idea can be contrasted with vari-
ous alternative approaches. For instance, an alternative
evaluation would be possible by connecting directly the
quarks inside the initial and final states through free
quark propagators, as pictured in Fig. 6. This approach
has been followed for a variety of processes. ' Another
possible evaluation is through perturbative QCD, and in-
volves, in addition to free-quark lines, gluon exchange
(Fig. 7). And finally, there is the QCD-sum-rule ap-
proach, which cannot be pictured so easily. '

The advantage of our two-step approach with a selec-
tion of a few intermediate baryonic states is that it is
especially fitted for quark-model calculations. The latter
will yield easily the respective amplitudes for each step,
which correspond to "basic processes" in the sense de-
scribed in our book. ' Such basic processes are calculable
as matrix elements of a simple transition operator be-
tween hadron states, represented by their wave functions.
Moreover, one can use harmonic-oscillator wave func-
tions which lead to simple calculations.

Now, at a second level, the pole model is something
much more precise than the above two-step general idea;
it involves the appeal to pure pole terms, a notion that we
shall define with some detail below. We will distinguish it
from, for instance, the above-mentioned Hamiltonian
perturbation approach.

For the sake of clarity, we first present the technical
formulation of our pole model, and thereafter discuss the
physical background behind the technique. The calcula-
tion consists in calculating Fig. 2 as a Feynman diagram
with certain given couplings at the strong vertex BXbXz
and at the weak one %&A, , which shall be subsequently
determined by the quark model. The final states %&,Xz
that we consider will be only —,

'+ and —,
'+ baryons. The

intermediate states Xb will be only —,
' and —,

' baryons
and moreover only X& with —,

'+ will be produced at the
weak vertex. This selection of states results from general
principles (forbidding higher-spin intermediate states),
and from quark-model selection rules at the weak vertex
(to be discussed later), as well as from our choice,
motivated by simplicity, to evaluate only the decay to
ground state (I. =0) baryons. The relativistic couplings
are chosen to be the minimal ones, i.e., Yukawa for
—,
'+

—,
' +0 and —,

' +
—,
' 0 strong vertices, the standard

derivative coupling for —,
'+

—,
'+0 and —,

'+
—,
' 0 strong ver-

B

FIG. 6. Diagram contributing to B decay into a baryon-
antibaryon pair through free-quark intermediate states.
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FIG. 7. The perturbative QCD picture of B decay into a
baryon-antibaryon pair. The wavy line is a 8; the curled one a
gluon.

M=u(p&)(A+By )U(p2), (2.4)

where A and B are Lorentz invariants corresponding, re-
spectively, to the parity-violating (PV) and parity-
conserving (PC) weak interactions. Then A and B are
simply given by the products of the strong and weak cou-
pling constants for each intermediate state o., divided by
the mass difference m —m+ . For instance

1

ga

mp m~
(2.5)

where g and a are the strong and PC weak couplings.
This is what one would like to call a pure "pole term, "

but for this expression to make sense, we have to make
precise what is the function which is equal to a pole term,
since, up to now, in a two-body decay, everything is fixed
by the masses. In general, to introduce a function which
really presents such poles, we must extrapolate the ampli-
tude in some way. The quark model is defined in Hamil-
tonian formalism, and the simplest way to define such an
extrapolation is to maintain the external particles BX&%2
on their mass shell, and to relax only the energy-
momentum conservation by allowing a transfer k at the
weak vertex (Fig. 8) p~=p, +pz+k. The amplitude is
still defined by

M=(2~)'(%)%2I& (0)lB) . (2.6)

We can now look at the amplitude as representing a
three body decay B~%-&Xzo, where o is a "spurion", i.e.,
a fictitious particle carrying momentum k" and the quan-

FIG. 8. The three-body decay amplitude B—+X&%2o., where
o. a "spurion, "a fictitious particle carrying momentum k.

tices, and for the weak part, bilinear vertices of the form

gg for both —,
'+

—,
'+ and —,

'+
—,
' transitions (respectively,

parity-conserving and parity-violating).
The result of this choice of couplings can be displayed

on the particular case B—+pp. The decay amplitude
writes (for definiteness, we choose X, to be a baryon, and

Xz to be the antibaryon)

turn numbers of & (J =0—). This three bo-dy decay
amplitude can be analyzed in a manner entirely similar to
a two-body scattering amplitude. There will be three
Mandelstam variables s, t, u:

s =(p~ —
pz ) = (p, +k )

t =(ps —k)'=(pi+p~)'

u =(p~ —p, ) =(pz+k)

(2.7)

At the physical point k„=0 (corresponding to the de-

cay under study), s =m „t =m~, u =m 2. Since we want
to study the point k„=0, we can maintain k =0, while

varying freely s, t, u, subject only to the condition

s+t+u =m, +mz+m~ . (2.8)

We meet singularities whenever s, t, u, reach the mass
squared of some intermediate state: baryons for s and u,
mesons for t. We note that there is in fact no u-channel
baryon due to the b quantum numbers. The singularities
in t are those of ordinary mesons ~,p, . . . In fact, the
quark configuration corresponding to the singularities in
the t channel is exactly that of Fig. 3(a), i.e. , annihilation
of B into light quarks.

If we furthermore maintain t at its physical value
t =mz, M is then a function of the single variable s,
which has singularities for s =m, e being a b-flavored
baryon. More precisely, we have with our choice of cou-
plings for the PC amplitude of B~pp,

, (m„+m )
—kM-ga u y

s m
(2.9)

In fact, we have twice the number of invariants we had
in the two-body decay:

M=u [A+ 3'k+y'(B+B'g)]v (2.10)

but 3' and B' will not contribute to the real decay. The
four invariants are given by pure pole terms in the s vari-
able, corresponding to the —,

'+ and —,
' discrete intermedi-

ate states, i.e., a constant divided by s —m
Our assumption is then that even at low s =m, , i.e.,

very far from the pole position (which begins at m 2z —25

GeV ), the actual amplitude is given by a few such pole
terms corresponding to the lowest-lying baryonic b-

flavored intermediate states.
This assumption amounts to two distinct statements.
(i) There are appreciable pole contributions from only a

few discrete intermediate states.
(ii) There is no polynomial background P(s) as would

be generated by couplings with higher-order derivatives,
or t-channel-exchange couplings, or contact terms, . . . .
For instance, we reject the s dependence which would be
introduced by a —,

'+ intermediate state with derivative
strong coupling f that would give the contribution

m +2m m„+s —(m +m )k'
M —f au ) U . (211)

2 m o.

We have little to say in defense of these assumptions.
In the analogous case of nonleptonic hyperon decays, one
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uses Regge arguments to determine the high-energy be-
havior of the fictitious two-body scattering amplitude, '

and from this one deduces the well-known fact that the
PC wave (P wave) obeys an unsubtracted dispersion rela-
tion without arbitrary constant, while the PV wave (S
wave) requires a subtraction; then in turn this justifies the
pure pole model for P waves, while the remaining arbi-
trary constant in S waves is given by the commutator.

Nothing similar is available for our case. The Regge
analysis was formulated for small t, and is therefore
justified for the hyperon decays where t =m, but cer-
tainly not for our case where t =rnid. Moreover, in the
case of hyperon decays, the selection of a small number
of baryon poles could be justified by proximity argu-
ments, while here we are very far from any of the poles.

In the absence of any definite argument, we formulate
only some remarks.

(i) It is usual to assume that all the scattering is as-
signed to discrete intermediate states and that no addi-
tional continuum contribution is needed. This is the old
duality idea. It may be that in addition the residues of
the poles are rapidly decreasing above the lowest-lying &-

baryon states, giving on the whole a contribution that is
not too large. That this happens at least for radial excita-
tions is suggested by the somewhat analogous case of the
pion form factor, where the p pole residue seems to be by
far the largest, and also by the decrease of electromagnet-
ic couplings of the radial excitations of g and r.

(ii) The most serious problem we have to face is the
possibility of a polynomial background. We can say that
the contribution of t-channel exchanges at t =m~ is
small, since it corresponds to the B annihilation dia-
grams, whose magnitude has been shown to be small in
Sec. IIA. But we have reasons to expect that the s-
channel poles have to be multiplied by factors varying
rapidly with s, generating a polynomial background.

Indeed, the quark model suggests something of this
sort. One could imagine the four-point amplitude to be
calculated in second-order Hamiltonian perturbation
theory, with the weak Hamiltonian and the strong-
interaction pair-creation Hamiltonian or transition
operator as interaction Hamiltonians:

(2.12)

The matrix element wi11 depend on s, which is
equivalent, in the rest frame of the intermediate baryon
S&, to a dependence on k, the momentum of the two
other particles at the vertex B~X&X $2&~&,cr In.
fact, using, for example, harmonic-oscillator wave func-
tions, the nonrelativistic quark-model calculation will al-
ways yield, in addition to centrifugal-barrier factors

~

k ~,
an exponential factor exp( —k R i ), where R i is some ra-
dius squared related to the wave functions, and also a po-
lynomial in k R, for orbital and radial excitations, all

varying rapidly with s.
We will not use this method to calculate the decay am-

plitude at the physical point because while the weak ver-
tex X& —X, is then taken at zero transfer p& =p, , the

strong-interaction vertex must be considered at

2 2m —m& m+
b b

2m'
b

(2.13)

As explained below, ~k~ -6 GeV is in principle outside
the scope of the quark model, but we can dispose of it
reasonably well.

For the strong vertex, the process B~%& +%z is, of
course, not allowed, since B is stable, and either of course

FIG. 9. The decay of a B meson into baryon-antibaryon pair
according to the quark model, that involves two quark pair
creations.

~p2~ -miil2 in the B rest frame, therefore at very large
transfer ~pz -6 GeV, outside the scope of the quark
model, especially in the channel B~X&%2 which re-
quires two pair creations (Fig. 9). We prefer to use a pure
pole model, where only the calculations of residues is re-
quired, more accessible to the quark model as explained
below.

Nevertheless, from these quark-model considerations,
we suspect that the contribution of each intermediate
state is a priori, apart from the pole factor I/(s —m ),
affected by a rapidly varying numerator. Then, in order
that pure pole terms dominate, higher powers in s must
cancel, either by cancellations between poles, or with
some contact term, . . . , or a new regime must hold when
one passes to very large transfers not accessible to the
quark model. The analogy with the pion form factor and
the p dominance shows that such things can effectively
happen.

In any case, it must be emphasized that the effective
"minimal" couplings we introduce to define the pole
terms should Inake sense only to define the residues of the
poles, and not to describe the couplings away from these
poles; they should not be expected to fit the above-
mentioned variations of couplings implied by the quark
model in Hamiltonian formalism.

Under these assumptions, what we have to predict is
the strong and weak couplings at the corresponding pole.
For that purpose, we have to make precise the kinemati-
cal situation under which these couplings must be calcu-
lated. At the pole, Feynman and Hamiltonian formal-
isms coincide in that (i) every particle at the vertex, either
external or intermediate, is on shell, and (ii) energy-
momentum is conserved. This is not always possible with
real momentum.

As to the weak vertex, this corresponds to the energeti-
cally allowed, although quite fictitious, process
—+Xi+o or to the matrix element of the weak density at
k =0. The momentum transfer ~k in the B& rest frame
1s
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M-
Ei+k —E~

(2.14)

where the energy denominator E
&
+k —E =E~

2

We have assumed a global energy conservation and we
have assumed that the Z graphs which would also con-
tribute to the pole s=m are negligible. The pole at

b

s =m+ can be reached by choosing the spurion momen-2

turn (k„) in the weak matrix element so that
E& +k =E&, which corresponds to (2.13). On the other

b

hand, E~=E +E2 implies that to reach the pole, we
b

have to choose complex moment at the strong-
interaction vertex.

As already indicated, the strong-interaction matrix ele-
rnent in (2.14) requires two quark pair creations (Fig. 9),
and there is no standard calculation of this in the quark
model. One can bypass this additional difhculty by con-
sidering, instead of the decay B~%&%z, the amplitude in
the channe1%2B~X&o. It shall have the same invariant
amplitudes, i.e., there shall be the same functions of s, t, u,
with the same poles and residues. Therefore we can alter-
natively identify the residues we are looking for on the
new Hamiltonian perturbation-theory formula:

(&, ~.l~, )(~, H,„„.„,I~,B)M— (2.15)
Eq+ E~ —E~

instead of (2.14). The pole at s =m~ will be reached this
b

time by choosing complex mom enta to ensure
Ez+E~ =E in the calculation of the new matrix ele-

b

ment

(X, ia„,.„,iX,B ) (2.16)

which has the advantage of involving a one-pair-creation
process, which is well studied. In addition, we have now
an extrapolation to complex momenta which is more
moderate than in B~%biz. In the rest frame of %b, we
reach the pole by setting the X2 and B momenta to

is Xz~XbB which requires bb creation. The only possi-
ble real process would be %„~B+%2, but this is still for-
bidden by phase space for the lowest-lying excitations in
which we are interested. It may be just possible for the
X&( —,

'
) with %2 =nucleon.

Then, the couplings at the pole for the strong vertex
are just like the YKX couplings ( Y=A, X). They can be
defined only by analytic continuation. After having
defined the amplitude as a function of s by introducing
the spurion momentum k„, we can define the residue of a
pole at s =m+ independently of any interpretation of
the vertex as a real process. We can also relate it to
Hamiltonian matrix elements (disregarding any con-
sideration of the mathematical problems of continuation)
in the following way. The pole residues shall be the same
as found in the Hamiltonian perturbation theory contri-
bution of the %b intermediate state (2.12):

~m/ —(mg+m2) ~m/ —(mg —mp)

2m~

(2.17)

As we shall see, with (2.17) we can handle (2.16) reason-
ably well by the quark model, with some adaptation.

To avoid confusion, it must be emphasized again that
we have rejected direct use of the standard Hamiltonian
perturbation theory to calculate the process B~X&Xz.
We have used it several times in the discussion, but only
as an auxiliary mean to discuss the pole model. In partic-
ular, in the last steps, to correlate the pole residues with
Hamiltonian matrix elements which are more accessible
to the quark model. We do not mean either that the stan-
dard Hamiltonian perturbation theory is incorrect: we
simply cannot use it to calculate the physical process
with large transfers and two quark pair creations. More-
over it may be that more intermediate states are required
in Hamiltonian perturbation theory than in the pole mod-
el.

C. Discussion of the nonrelativistic
quark-model calculations

of the pole couplings

As we have said, the main motivation for the pole
model is that we are able to calculate through standard
quark-model methods the "basic processes" correspond-
ing, respectively, to the strong and weak vertices, as ma-
trix elements of simple transition operators. In particu-
lar, this has been rendered possible for the strong vertex
by crossing the vertex, so as to reduce it to the form
(2.16), which implies only one pair creation.

Yet, we have also to ask whether we are really under
conditions which allow us to apply the standard quark-
model calculations at the vertices. Indeed, we are using a
nonrelativistic model under conditions which may seem
a priori completely outside the scope of such an ap-
proach. And even after having answered the objection,
we will have to cut off the ambiguities which are unavoid-
ably present in applying the model to a relativistic situa-
tion.

Let us recall first that, from experience of more than
twenty years, the quark model seems to be able to de-
scribe soft vertices and transitions rather than only strict-
ly nonrelativistic situations. Soft vertices could be
defined as the ones not involving momentum transfers
greater than 1 GeV. By contrast, large momentum
transfers would require perturbative @CD methods. It
must be emphasized that such a definition applies far out-
side a true nonrelativistic situation. Internal velocities
are always of the order u/c —1 wherever light quarks are
involved. And, if the momentum transfer is 1 GeV, a
light hadron will also have a relativistic center-of-mass
motion.

Here we deal with light-quark hadrons ($2 and possi-
bly X,) and with hadrons composite of light and heavy
quarks (B and possibly %&). The fact that vlc remains
—1 for the light quarks has striking consequences: terms
of order u/c in the nonrelativistic calculation are not
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suppressed with respect to order (U/c) . Indeed, the PV
weak and the strong transitions of —, intermediate states,
which formally contain such a v/c factor (see the detailed
calculations in Sec. IV), are as large as the PC contribu-
tion of —,

'+ states, whence the possibility of a large ratio
PV/PC.

It is known that in spite of the large values of v/c, the
nonrelativistic quark-model calculations do rather well in-

related processes such as hyperon decays or weak radia-
tive decays . In these cases, the contribution of —,

' inter-
mediate states, as calculated by the naive quark model, is
crucial in solving the problems of S/P wave ratios or the
large X+—+py asymmetry. On the other hand, we would
not a priori trust calculations at large transfer, as is illus-
trated by pion and nucleon form factors. From the dis-
cussion of Sec. II 8, we know that the strong- and weak-
interaction vertices are in very different situations with
regards to momentum transfer, and we discuss them sep-
arately.

(i) Strong uertex As w. e recall, we have to calculate
gB by continuation of the transition matrix element

b 2

X& ~XzB. Considered in the rest frame p& =0, pz
= —q, pB =+q, the condition E =E2+EB implies

q =qo-(m~ —mz)z —m~~ . (2.18)

qo= —0.5 to 0.0 GeV (2.20)

In absolute magnitude, these momenta are in a range
allowing for a quark-model approach; we think however
that a specific problem arises for complex mornenta
around the value (2.19), as will be commented below. As
to precise values, we observe that the ones corresponding
to —,

' states are very sensitive to the state considered and
to the uncertainties in the spectroscopic model. We
therefore expect large uncertainties in the PV wave.

The quark-pair-creation model (Fig. 10) tells us how to
calculate the M matrix for the transition %i, —+XzB,
which in the case of a real decay, is related to the S ma-
trix by

S= 1 2ni5(Ef E; )5(—pf —. p, )M . — (2.21)

But M is in fact defined when EfWE; as well, since it
depends only on the momenta. We can interpret it, in
this case, as the effective Hamiltonian matrix element

We have used (2.17) and exploited the fact that m& is
very large to simplify the equation.

For low-lying excitations, qo&0 since m+ —mB -m„
b

while m& -3m„. Using calculations of Isgur, we find

A& at 5.64 GeV, X& at 5.82 GeV, and X& and A& ( —,
'

) at
6.25 and 6.4 CxeV, respectively. These are naive-quark-
model predictions. The —,

' masses can serve as upper
bounds for —,', relevant to our problem, which we locate
in the band 6—6.2 GeV. From this we conclude, for —,

'+
states and the %z =nucleon,

qo-——1 GeV (2.19)

and, for —,
'

B

FIG. 10. The strong vertex Xb&B according to the quark-
pair-creation model.

[such as (2.16)j with 5(pf —p; ) factorized. Therefore, we
can get the coupling at the pole we are looking for by set-
ting q =qo(0 in the general expression M(q), and iden-
tifying with the relativistic expression for the amplitude
in terms of the coupling constant.

In fact, this identification is subjected a priori to ambi-
guities. In the quark-pair-creation model, M&Pc is
defined with the standard nonrelativistic normalization of
states with a 5 (p —p'). However, given that the transi-
tion is really relativistic while the calculation of M is non-
relativistic, it would be also logical to identify it with the
relativistic M matrix, defined with an invariant normali-
zation (E/m)5 (p —p'), or with the noninvariant
5 (p —p'). In the same vein, instead of the expression
(2.17) for lqol, one could have used to calculate M&pc any
other expression having the same limit as lqo ~0.

In our papers, " we have understood the calculation
rules for M as giving the M matrix for noninvariant nor-
malization 5 (p —p ) with q fixed at its relativistic value
(2.17), all calculations being made in the rest frame of the
initial particle. For a real decay, this would give

E
IM(q. ) I' . (2.22)

This prescription has been tested over a very large set
of data, with an overall agreement obtained ' with a
value for the light-quark pair-creation constant @=3.
However, when we apply it to the present problem, this
prescription would raise serious difhculties. One would
write, for a —,

'+
—,
'+0 vertex, the equation

1/2

(2n) (SzB lH„„„sXi, ~ =
(2~) ~ (2Eii)' '

(2.23)
5

Rb~B + X ~ 2 QPC

The values (2.19) or (2.20) allow us to set safely Eii ——mz.
On the contrary, E ——m —mB is very variable accord-

s 2 b
ing to the preceding remarks, and then the factors
(Ez)'~ or Ez+mz in the left-hand side (LHS) of (2.23)
will lead to physically improbable variations of the cou-
pling constant expressed in terms of MQPc, whose varia-
tion is much smoother. In fact one readily sees that our
identification contradicts ideas about analyticity around

q =0. Nonrelativistic approximations of amplitudes
such as XzB ~%i o will have analytical properties
(smooth function with poles), which, in the relativistic
treatment, are presented by the invariant amplitudes
(with normalization and spinor factors dropped). The
normalization and spinor factors generate in addition the
so-called "kinematical" singularities, which precisely
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bother us in the present problem. To avoid this contrad-
iction, we simply set everywhere E2 —=m2.

Suppose now that we use the harmonic-oscillator wave
functions to calculate M&pc. From (2.23) or similar
equations, we see that the coupling constant as calculated
from M&pc will present a simple form: ~qo~ centrifugal
barrier factors cancel between each side, and the coupling
constant equals a polynomial in qo, times a Gaussian fac-
tor exp( —qoA ) where A depends only on radii and
quark masses, times hadron mass factors, and in particu-
lar the factor (2mii)'~ which will always spoil the as-

sumption of fIavor symmetry for the coupling constants.
In our calculations we have taken fully into account

the effect of unequal quark masses, but we have found
that the result is qualitatively similar for M(qo) as if one
had set mb =m„.

We find then for the couplings —,
'+

—,
'+0 expressions of

the form (cf. Sec. IV)

gy ~ii ~ +2mg2mpB exp( qoA ) (2.24)

where B and 3 are combinations of the wave function ra-
dii of the usual light-quark hadrons. The factor leads to
rather large values of g /4m as compared with the corre-
sponding gz~x. . For the analogous gA~x. (which is better
known than gzx&) we find, in the QPC model,

2
g ANK

4. (2.25)

which is very encouraging since we have no fitted param-
eter. For the sake of completing the discussion, let us re-
call that the corresponding result for gNN /4~ is predict-
ed too small in the QPC model due to the factor
(2m )' . However, we cannot believe such a crude
model in this case due to the exceptional smallness of the
pion mass related to its quasi-Goldstone character.

In the case of the —,
'+

—,
' 0 S-wave couplings, there is

in the expression of M&pc (cf. Sec. IV) a rapidly varying
polynomial ( 1 —

A,qo) with A, )0 and large magnitude
(-2). For qoSO, the sign is safely determined, but the
absolute magnitude can be very much enhanced accord-
ing to the precise mass difference X& B This —is .one
serious source of uncertainty concerning the magnitude
of PV waves.

In the PC case ( —,
'+ intermediate state), we encounter a

much deeper problem. Although the absolute value of qo
seems to allow for the use of the quark model, it can be
seen that something very unphysical happens at qo — 1

GeV when we use the quark model. This is most clearly
seen by using Coulomb wave functions fitting the same
radii which we have determined by the standard phenom-
enology. Then, calculating the QPC matrix element, one
finds a strong maximum near q = —1 GeV . This max-
imum is seen to be related to the pole of the Coulomb
wave function at negative q . That such an enhancement
must not be considered as physical is clearly seen by con-
sidering the corresponding form factor, which gets a pole
for the same reason. When one considers instead a
confining potential, there is not a maximum, but a very
steep increase of the matrix element. The softer the

confining potential is, the steeper the increase near

q = —1 GeV . We must therefore consider that this in-
crease is unphysical, because it corresponds to an un-
physical enhancement in the form factor. In fact, we al-
ready observe this increase in the harmonic-oscillator
case. We cut off this unphysical effect by relying on a
smoothness assumption: we assume that the matrix ele-
ment remains a linear function of q, with coefficients
fixed around q =0, a region in which we trust the quark
model.

(ii) Weak uevtex. We have to calculate

(2m. ) (X,( —k )~& (0)~Xi,(p=O)) . (2.26)

U, C

FIG. 11. The weak vertex XqX& where X& can be a charmed
or a light baryon.

The three-momentum transfer ko is very large in con-
trast with the one at the strong vertex qo. According to
(2.13), ko-6 —9 GeV . This is of course due to the fact
that, through the weak interaction, we have a decay with
a very large change of the quark mass b ~c or b ~u.

In principle, we cannot claim to make a direct quark-
model calculation of such a hard process. We follow the
line of Altomari and Wolfenstein in the B~D,D*
semileptonic decays. We calculate the couplings with the
quark Inodel at k=O and we extrapolate at ko by using
polelike form factors. For orientation, it is nevertheless
useful to discuss first the k dependence predicted by the
quark model. It also appears that finally the nonrelativis-
tic calculation would not be too bad for the b —+c transi-
tion.

The quark model for the matrix element (2.26) is visu-
alized in Fig. 12, with a wavy line for the spurion. This
calculation is new, since usually one calculates only at
k=O. Also, we have made a complete calculation of the
effect of unequal quark masses m&&m, &m„, S, being
possibly a charmed baryon. This calculation is especially
nontrivial for the complicated PV weak operator, and the
effect of unequal masses is especially important in that
case.

As to k dependence, one would find none for a
meson-meson transition, since it is a pointlike interaction.
A form factor is generated for baryon transitions by the
presence of the spectator quark. In fact, the baryon
problem is analogous to the one of a current density ma-
trix element between meson states, since the baryon can
be viewed as a quark-diquark composite, with a spectator
quark and the diquark having a point interaction analo-
gous to the photon coupling for a quark. Using
harmonic-oscillator wave functions, we find (Appendix
D) the usual exponential factor, with a smaller slope:
exp( —k R /24) in the equal quark mass case, instead of
exp( —k R /6) for a current interaction. In the case of
the decay of an orbital excitation X& ( —,

' ), one would ex-
pect, just like in the case of radiative decays, a further po-
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lynomial dependence on k . It is found indeed, although
it disappears in the equal-mass limit.

The effect of unequal quark masses is especially impor-
tant on the exponential factor, which becomes

R ' 3mexp—
24 2m +mq

(2.27)

where q, =c or u. For a c quark, it depresses consider-
ably the slope, just as in the case of a b —+c semileptonic
decay, while for q =u, one still obtains exp( —k R /24)
(the dissymmetry between the final and the initial state is
due to the choice of frame: the Xb rest frame). Therefore,
with k -6 GeV, we would find a large suppression (a
factor -0.07) for the Xb N tra—nsition and a moderate
one (-0.7) for Xb —A, .

Let us now pass to the polelike form factors which ap-
pear more reasonable, at least for the %& N tran—sition.
We write

1 —(m& —m, ) /m~
F(k )=

1 —k /m-B
(2.28)

F(0)=1— (2.29)

From the above analogy with a current density matrix
element, and with the emitting quark substituted by a di-
quark (emitting a spurion), we expect that 8 is a
diquark-antidiquark system (Fig. 12). To be simple, we
evaluate the masses very crudely: m+ =mb+2m,

b

m& =m +2m, m- =mb+m +2m, whence
q&

~ B q&

(mb —m )

F(0)=1-
(mb+m +2m)

q&

0.8 for q& =c,
0.4 for q& =u . (2.30)

We find therefore the same trend as for the quark-
model form factor: although k is nearly equal for the
two cases, the decay to u-quark baryons is more

B is the mediating hadron with quantum numbers of B
for flavor and 0—for J (as & is a scalar or pseudoscalar
operator). The form factor is normalized at k=0. We
make the quark-model calculation at k =(m& —

m& ),
and we extrapolate at the spurion mass, k =0. There-
fore, one ends with a reduction factor

(m~ —m, )

suppressed than the decay to charmed baryons, although
the effect is much more moderate. We assume for simpli-
city that the same form factor applies to PC and PV ma-
trix elements, although we could expect a more compli-
cated behavior in the latter case.

To sum up, we have found that, at the strong vertex, it
was possible to apply the standard Po quark-pair-
creation approach under reasonable conditions. On the
other hand, at the weak vertex, the large momentum
transfer would a priori prevent a quark-model approach.
Nevertheless, we can rely on the analogy with semilep-
tonic b ~u, c weak decays of mesons to make reasonable
assumptions. This is to be contrasted with what the situ-
ation would have been if one had tried to apply directly
the method of second order perturbation theory (2.12):
the weak vertex would have been calculated at k=0, a
certain improvement indeed, but the strong vertex would
have required two pair creations and large transfers a
rather uncontrollable situation at present, whence the ad-
vantage of the pole model, which would not occur in
hyperon nonleptonic decays, where any transfer is small,
and where the analogue of (2.12) presents definite advan-
tages.

As a last remark, we note that, at zero-momentum
transfer, the conservation of J implies that the spins of
Xb and X& should be equal. Therefore one finds the re-
sult, used in our papers on nonleptonic and weak radia-
tive decays, and on the neutron electric dipole mo-
ment, ' that with %, of J =

—,
'

( —', + are forbidden ), we
have the contributions of intermediate states Xb of
J =

—,
'+ or —,

' for PC and PV waves, respectively. This
is no longer true if k&0, and one should include other in-
termediate states, for example, —,

'+ for the PV wave and
for the PC wave. For simplicity, we have not tried to

evaluate such contributions.
For the evaluation of the quark-model matrix elements

at k=0, we have to know the wave functions. We still
use the harmonic-oscillator wave functions, but we are
conscious that here the only argument is one of simplici-
ty. In contrast with the strong vertex, the weak interac-
tion is not a peripheral one, it implies essentially short
distances, specially in the —,

'+ —
—,
'+ transition, and this re-

quires an accurate knowledge of the wave function. The
harmonic oscillator is in gross error for the crucial quan-
tity determining the —,

'+ —
—,
'+ matrix element, it gives, for

purely light-quark masses,

(2.31)

a (k)

FIG. 12. The weak vertex XbX& at nonzero-momentum
transfer k, carried by the spurion o.

while a realistic estimate would be rather 0.8 —1X10
GeV . The estimate 10 GeV is confirmed by a recent
calculation of Gignoux and Silvestre-Brac. On the other
hand, we have no simple way to estimate the effect of un-
equal quark masses or the —, orbital excitation transi-
tions except by using harmonic-oscillator wave functions.
A possible attitude is then to rely on the harmonic oscil-
lator to estimate ratios of PV/PC or unequal/equal quark
masses matrix elements, but to calibrate the absolute
magnitudes by the estimate for the case of purely light-
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quark baryons:

(y, ~5(r, —r2) ~go) —10 GeV (2.32)

D. QCD asymptotic behavior and the pole model

Quite apart from the QCD-sum-rule calculation by
CZ, ' we think that their discussion, based on QCD
asymptotics of a previous pole model calculation" is very
interesting, and we can answer some of their objections
or comments.

If one counts powers of mb for mb ~ ~ as predicted by
QCD, one finds, according to CZ

I (8 ~M,%~)=0 ( 1/mi, ),
I (B~NK)/I (B~NN)=0(1) .

(2.33)

(2.34)

None of these relations is satisfied by the pole model of
Deshpande, Soni, and Trampetic" who would find, as
pointed out by CZ

I (8—+Nb, )=0(mb),
I (8 NN)=0(1/m )

(2.35)

(2.36)

and neither by our results, which are however closer to
the ones of CZ. We find, without the weak form factor
F(0) Iformula (2.30)],

I (8 ~Nb, ) =0(mb ),
I (8 ~NN ) =0(1)

and including this factor we find

r(8 NE) =O(1),
I (8 ~NN) =0(1/m~ )

(2.37)

(2.38)

(2.39)

(2.40)

Ithe intermediate results (2.37) and (2.38) are given only
to clarify the discussion].

Having these types of behavior in mind, we can
proceed to the discussion. First, we must emphasize that
the full predictions of QCD asymptotic behavior are not
expected to prevail in principle except for very large
transfers or equivalently for very large mb. Even in the
weaker form advocated by CZ, with nonasymptotic wave
functions, they have been controversial. And finally, in
the case under concern, CZ themselves recognize that the
asymptotic contribution is anomalously small.

These objections must be balanced with the fact that
the power counting works in the case of form factors at
rather small g; then it could well be indicative for the
mass behavior at moderate mb. At least, it is in this sense
that CZ are invoking QCD asymptotic behavior in their
report and it is within this context that we discuss the
power behavior of our own model. The use of asymptotic
behavior will be the following in short: if the falloff of the
pole model is slower than predicted by QCD, we take it
as an indication that it probably overestimates the rate at
large mb, although we cannot say at what precise value of
mb it must fail. In addition, we suspect that the bigger
the discrepancy in power behavior, the more we expect

the rate to be overestimated. These conclusions, al-
though rather naive, seem confirmed by the failure of the
predictions for the modes with a A.

Our pole prediction, without the form factor for the
weak transition, could be compared to a calculation of
mesonic decays (e.g. , 8 ~urer) through a 8*-pole-
dominated form factor (Fig. 13)

(2.41)

The power behavior of g + is found with help of the

QPC model, or, more safely, through PCAC and the
quark-model estimate for the axial-vector B*—B current
coupling: g~, ~ =0(mb). The behavior of f, is deter-

mined by the wave function at origin of the B*, which
depends only on the reduced mass f +=0(mb ). Final-

ly

I (B~rrrr) =0(mb ), (2.42)

FIG. 13. Pole model for B-meson decay into a pair of light
mesons. The intermediate state B* is a 1 meson.

This disagrees with the CZ asymptotic prediction
1 (8~~~)—1, but less than (2.37) and (2.38) do with the
similar CZ prediction (2.34). This difference is under-
standable from the discussion below on the further
suppression of baryonic decays.

For baryons, somewhat similar to the electromagnetic
nucleon form factors, CZ expect a steeper falloff, which is
attributed to the necessity to create an additional qq pair
out of the vacuum. This additional effect also explains
the difference between charmed and noncharmed decays
according to CZ, because the momentum of the created
quarks is constrained to be different according to the final
baryon wave functions: it is hard in a proton, and much
softer for a A, . In pp, this would explain the additional
factor 1/mb for baryons.

It is remarkable that our weak form factor includes
qualitatively the same effect. As we have observed in the
preceding paragraphs, in our method the strong-
interaction vertex is soft, and it is the weak vertex which
is hard. Nevertheless, the effect is essentially the same:
the weak form factor implies a further depression of
baryonic decay (relative to the meson decay) due to the
spectator quark. In the weak transition B*—a such a
weak form factor is indeed not present (due to factoriza-
tion or, equivalently, to the point character of the in-
teraction). Moreover, this effect differentiates between a
A, and a N at the weak vertex.

As one can easily show, the marked difference in the
form factors as calculated in the quark model is essential-
ly due to the fact that in a system with a very heavy
quark, this one carries almost all the momentum. There-
fore the spectator is soft, while if all quarks are light the
momentum is shared between all quarks, and the specta-
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tor is harder. We note that the spectator quark is pre-
cisely the same as the one coming from the created pair
in the CZ scheme.

This weak form factor introduces an additional 1/mb
factor in the power counting. But since the strong-
interaction coupling has an additional power mb, in our
quark-model calculation for B~pp we find in the rate
only one power less than Deshpande, Soni, and Trampet-
ic [compare (2.36) and (2.40)j. The case of NA will be
discussed below.

The remaining diff'erences with QCD asymptotics are
that (i) our eff'ect is apparently much weaker, especially
when we substitute, as it seems logical, the Gaussian form
factors by pole-dominated ones, and (ii) the additional
power introduced by our weak form factor is only 1/mb
in rate, which is not sufficient to get (2.33).

Concerning the ratio XA/NX, we also observe an im-
provement over Deshpande et al: we get O(mb ) instead
of O(mb). This is due to our more homogeneous treat-
ment of strong coupling constants by the quark model in-
stead of Aavor-symmetry arguments. Indeed, while they
assume

~b BA/gBb BN 1 (2.43)

(equality to couplings for light quarks), we find, through
the Pp model,

gBbBb, /gBbBN O( /mb ) (2.44)

It is in order here to support our prediction (2.44) to
note that in the case of a coupling constant such as

g +, , our prediction through the Pp model is in agree-
b b lT

ment with the power counting deduced from PCAC and
the axial-vector current coupling %b —%'b.

We note that an important contribution to the relative
enhancement of B ~pp is due to the introduction of the
PV wave. We are then in agreement with the qualitative
arguments of CZ. ' '

Nevertheless, we do not get, as far as mb dependence is
concerned, I (B~NZ)/I (B +NN) —1 as s—eems implied
by QCD. ' ' We can trace the difference back to the be-
havior of the Rarita-Schwinger spinors as compared to
ordinary Dirac spinors. Indeed, on passing from the ver-
tex Xb~BX2 to the reaction B~%&%z, one observes
that, leaving aside factors with identical mb power behav-
ior, spinor factors uu or u y u with soft momenta are sub-
stituted by uU or uy U with hard momenta in the case
Xz= —,'+, while in the case %z= —,'+, we have uuo or

uy uo (0 component of the Rarita-Schwinger spinor u„)
substituted by uvp or uy vp with hard momenta. While
we have

uu -uy'v =O(m„) (2.45)

we get

uuo-uy'vo=O(mb)

due to the factor co=0(mb). We do not know at present
whether this difference has any physical significance. It
can be seen to be general in pole models, necessarily at

odds with QCD powev counting when a high spin is
present.

Take, for instance, the m —co electromagnetic transition
form factors, as compared to the pion form factor F (q ).
QCD predicts, according to CZ, F „(q ) —1/q, while a

p pole model of course gives F „(q )-1/q, just as for
F (q ). Indeed, while the cu spin implies a cu vr co-upling
with more derivatives than for the ~-~ coupling, the
power counting finds a smalher algebraic power of q for
the matrix element involving the spin-one particle (the
power decreases with helicity change). We do not know
how to cure this defect of pole models. From the above
argument, we can simply expect that for very large m&,
the XA rate will be overestimated by the pole model as
compared to the XX rate, but we do not know how large
m& must be.

Similar considerations would explain the different
power-counting rules of mesons (2.42) as compared to
B~NN without the weak form factor (2.38). It can be
ascribed to the fact that in B~~~ the B* requires
derivatives, not present in the spin- —, spinor couplings:
the scalar product in (2.41) grows more rapidly with mb
than the spinor factor uu when the soft momenta of the
quark-model calculation of residues are substituted by
the large momenta ( —mb ) of the overall reaction.

Then, an important comment is in order: the remaining
discrepancies between our calculation and the QCD
asymptotic behavior must be attributed to principles in-
hevent to the pole model itself, and not to the quavk model-
calculation of residues which seems always in agreement
with more general approaches. For instance, f „ is in

agreement with asymptotic counting, and our estimate of
strong coupling constants, when a m is involved, is in
agreement with the PCAC estimate (with the rather safe
power counting of the axial-vector current of the quark
model, also adopted by the QCD-sum-rule people).

In summary, we have done the best that we can do to
estimate the residues of the pole model, and the question
is whether experiment will confirm or invalidate the use
of the pole model at the physical value of the bottom-
quark mass.

III. COUPLINGS AND DECAY RATES
IN THE POLE MODEL

Once we have discussed the basis for our pole model,
we will now write the following.

(i) The expressions of the partial decay rates of the
different processes B~Xi%2 in terms of the couplings
BSi%2. We restrict ourselves to ground-state
baryons. X&,Xz can also be charmed baryons or N, b, .

(ii) The expressions of the eff'ective couplings BX,Xz
(parity conserving and parity violating) in terms of strong
(BXbXz and BXb%2) and weak XbX& (parity-conserving)
and %b X, (parity-violating) couplings. Xb and Xb
denote, respectively, a —,'+, —,', b-composed baryon.

(iii) Finally, we will obtain the quark-model expres-
sions for the total effective couplings in terms of the
strong and weak couplings calculated by the quark model
in the Appendixes.
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A. Effective couplings and decay rates

CP invariance constrains the total BX&%2 couplings to
be (neglecting possible derivative couplings)

&~(A,A, 4a 0z—
,4x,4a»

(3.1)
iB ((t'~ y Q~ Pa+ Q~~y /~2/a )

for %&,%2 —,
' baryons and

4x, l'A, a„0a A,—)"A, a„4a
(3.2)

y a„y,++q q ay, )

for %, —,
' and Xz —', + baryons. P„denotes the corre-

sponding Rarita-Schwinger field and the factor MB is
introduced to ensure that C,D are dimensionless. A, C
are parity-violating and B,D, parity-conserving cou-
plings. Notice that we have changed the notation rela-
tively to Ref. 6. We do not consider two —,

'+ baryons in
the final state due to the selection rule of our model that
forbids the process B—+ —,

'+ —', + due to the vanishing of
the matrix elements (%& or X& & —', + ), as discussed in
Sec. II.

After some algebra, we find the following decay rates
in the B center of mass:

respectively, for parity-conserving and parity-violtating
amplitudes, and the strong couplings will be

And the strong couplings will be

Ega~,x„fz,r 'A, 4a + 4~,l'A, 0a

ga~ ~*(4~*%,0a+ A, W~,*Pa»
(3.6)

if X2 is a —,
'+ baryon, and

h B2b
(y~ y~ a„y, +y~ q~ a„y,'),

(3.7)

B. Effective couplings in terms of weak
and strong couplings of intermediate states

In our pole model, the intermediate states are —,'+(Xb )

and ,' (—Xb) baryons containing a single b quark. We
now write down the couplings involving these intermedi-
ate states.

The weak couplings are

&~,~, (4~,A, +A,A, »
(3.5)

&b *

(Ma+m, +m2) k
r(B

4~ (E, +m, )(E2+m~)Ma

[(E,+m, )(Ez+m2)+k ]+ Bl'
(E) +m ) )(Eq ™q)Ma

(3.3)

for $&,%2 —,
'+ baryons with masses and energies

m &, m2, E&,E2.
For the case of X& —,

'+ and %z —,
'+ baryons we find, in-

stead,

if%z is a —', + baryon.
From (3.5)—(3.7) we will obtain the effective total cou-

plings (3.1), (3.2) by the corresponding Feynman dia-
grams. Remember that the s-channel meson intermediate
states give a negligible contribution, as discussed in Sec.
II. We obtain

2 b b 1
gBSX* *X

mi m~g
b

r(B 8$, )

I(E, +m, )(E2+mz)+k ]

6~ m z (E, +m, )(Ez+ m2 )Ma

(Ma+m)+m2) k
+IDI' (3.4)

(E) + m ) )(Eq ™q)Ma

where m2, E2 are the mass and energy of the spin —,
'

baryon. Both in (3.3) or (3.4), B, is a —,
'+ baryon,

charmed (A,+,X, ) or a nucleon.
Notice that in (3.3), (3.4) the powers of k correspond to

the expected behavior for the allowed partial waves:

ga2b a b +]
Ba~@ = g

1

if Xz is a —,
'+ baryon, and

h ~~,b
2 b b 1

Cap~ = —g
m& m

b b

h aBX2%b Xb X )

Da~ g mi m~

if Xz is a —,
'+ baryon.

IV. QUARK-MODEL EXPRESSIONS
OF THE COUPLINGS

(3.8)

(3.9)

B—+ —'+ —'+ l =0 for parity conserving

l=1 for parity violating,

B—+ —,
'+

—,
' +, l=2 for parity conserving,

l'=1 for parity violating .

We need now to identify the Lorentz-invariant weak
(3.5), and strong couplings (3.6), (3.7) with their corre-
sponding expressions in the nonrelativistic quark model,
computed, respectively, in Appendixes B and C. Once
these expressions are obtained, we must sum over the in-
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termediate states following (3.8), (3.9). For example, for a
transition such as B ~np we must sum over the inter-
mediate b-Aavored baryons Xb, Ab —,

'+ for the PC ampli-
tude, and Xb*, Ab —,

' for the PV amplitude. For
B ~A,+5++, for example, we must consider Xb and
y+g

b

We will first give the final results for the transitions

computed in this paper, and we will at the end comment
on the factors entering in the expressions.

A. B~NN transitions

We find for parity-conserving couplings, from (3.8),
(B13), (B14), (C8), (C10),

. 6 1
BaNN —i,—Vub 'Y

v 2 mN p?z~
b

pp
4

+Mid —~' mivIoR' ci, (ab13b Ab) Bbexp( —CbR k ) X —2, B ~np,
1, B —+nn,

(4.1)

and for the parity-violating ones, from (3.8), (B34), (B35), (C15), (C18)

Aii~~ —i —V~b y QMii 2+3 7r ci' ab
. 6 1 ]/4 0 R pl 3/2

2 m~ m mR R
b

1, B ~pp ~

X(/3i, A, )' '[3—B,D, (k'R')] epx( C,R'k'—)X 1, B ~np,
0, B —+nn .

(4.2)

Notice that we have assumed degeneracy of the inter-
mediate states, allowing factorization of the energy
denominators. The factor Io comes from the wave func-
tion at a zero interquark distance (811). The factor Mi'i

comes from the relativistic expressions of the strong cou-
plings in the Lorentz-invariant couplings, that involve a
factor 1/M~, that must be identified to the quark-model
results. ' The mass-dependent factors cb, cb', ab, Pb, Ab,
Bb, Cb, Db are given in Appendixes B and C and k is the
momentum squared entering in the quark-model strong
couplings. We will discuss its actual value in the next
section.

Equations (4.1) and (4.2) satisfy separately the isospin
relations

M(B ~pp ) M(B ~—nn ) =M(B ~np ) (4.3)

that follow from the AI= —,
' rule, a consequence of the

color antisymmetry of the baryon wave functions and the
fact that we consider only weak interactions between
quarks within a baryon.

B. B~N 6 transitions

We find, from (3.9), (B13), (B14), (C9), (C10) for the
parity-conserving couplings:

6 1
DBbN I i Vbu ~v 2 mN m~

b

—v'3, B pb, ++,

m~V Mii~' IoR' cb(abPi, Ab) B„exp( —CbR k )X ' —o —+1, B —+pA

1, B ~nA

(4.4)

and from (3.9), (B34), (B35), (C16), (C19),

CasN 0 ~
(4.5)

i.e., the B~%5 transitions turn out to be purely parity conserving. These couplings satisfy the AI =
—, isospin relations

M(B ~pb, +)M(B ~nb, +)M(8o~pb, +):M(B +nb, )= —&3:—1—:1:1 . (4.6)

C. B—+X,N transitions

is now a ground-state —,
'+ charmed baryon. We obtain, from (3.8), (B44), (B45), (C8), (C10), for the parity-

conserving couplings,
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Bll~& =i —Vcbf' V Mllmlv lr IoR cb (abpb Ab) Bbexp( —CbR k )X. G 1 2 2 i/4 I3/2 3/2 2 2
c V2 Pl~ m 3

C b

—23/6, B- XoP,
—3/3, B o~X+p,
—1, B ~Xp,
V'6, B' Xon,

and, from (3.8), (856), (857), (C15), (C18) for the parity-violating ones,

(4.7)

G 1
BXX b 1 V™ll

2 Pl~ Pl~g
c b

0 23/2

2 Io R'
b b b b b

lrl/4 a3/2(p A )5/2[3 B D (R 2k 2) ]exp( C R 2k2)
b

yO—

9 1

bc 3+3 bc

9V'Z —V'2

Bo @+-
for o +

cp~

B ~X,n,

(4.8)

where the mass-dependent factors cb„c&,', d&,
' are given in Appendix B. These amplitUdes satisfy the

b,I=1 (b —+c, u ~d ) isospin relations

M(B ~X,n )+M(B ~X,p) =3/2M(B ~X,+p) . (4.9)

D. B—+%,A transitions

Finally, we obtain, from (3.9), (844), (845), (C9), (C10), the parity-conserving couplings,

Dz~ ——i Vby- V Mzm& —lr IoR cb, (abI3b Ab)
. 6 1 4 1/4 t3/2 3/2

m& —m& 6
C b

1, B A, 5
—V'3, B -~W+S++,
3/3, B B X,+b, ++,

XBb exp( —CbR k )X '

+—++ (4.10)

3/6, B XA
—V'6, B X,A+,

and, from (3.9), (856), (857), (C16), (C19), for the parity-violtating couplings,

. G 1C =i —V y m —m
QM ' RR' ab (11 A ) BbDbexp( —CbR k )

—V'3, B A,+b, +,
3, B %+2++

B o~r, +a+,
II —V'3, B ~X,+ b,

v'2, Bo Xoi3. o,
B ~Xone+ .

(4.11)

Now the p& amplitudes do not vanish, being proportional, through db,
' to m, —m. Equations (4.10) and (4.11) satisfy

the AI = 1 isospin relations

M(B ~A,+b, )/M(B ~A, b, +
) = —1/V 3,

M(B +X,+b, +):M(B +X,+b, + ):M(B ~—X,b, ):M(B ~X—,b, +)=1:—V 3:3/2:—V'2 .
(4.12)
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TABLE I. Numerical results for the branching ratios and I /I " for the different charmed- and
uncharmed-baryon —antibaryon Anal states. We have taken the values V,&=0.046, V„b =0.005, and
~&=10 ' sec.

Mode

~pp
B ~np
B '~nn
B —+X,p

B X,n

B ~A,+p

Branching
ratio

0.74 x 10-'
0.17X 10
0.74 x 10-'
0.15x 10-'
Q.29 X 1Q

0.58 X 10
0.11 X 10

I Pv/I Pc

0.79
0
0.79
0.5 X 10
0.52
0.54
0.59

Mode

g ++

B ~nA+
BO g+
B ~nA
B A,+6+

A+g ++
B'-r,:~
B X,A

B ~X 6+

Branching
ratio

0.32 X 10
0.11X 10
0.11 X 10
0.11x 10-'
0.12 X 10
0.36 x 10-'
0.29 X 10
0.86 X 10
0.57 X 10
0.57 X 10

I Pv/I Pc

0
0
0
0

0.63 x 10-'
0.63 x10-'
0.65 x 10-'
0.65 x 10-'
0.65 X 10
0.65 x 10-'

Let us now give the numerical results.

V. NUMERICAL RESULTS

We give first the final results for the different modes,
the branching ratios and the ratio between the parity-
violating and the parity-conserving rates (Table I). These
results take into account all of the effects: (i) quark mass
diff'erences (mb =4.950 GeV, m, =2.0 GeV, and
m =0.33 GeV for the light quarks); (ii) strong-coupling
form factors F, (k ) with linear extrapolation, keeping
only the order k R in the expansion of the exponential;
(iii) weak form factors F (k ). The rest of the mass pa-
rameters are Mz =2.284 GeV, Mz =2.455 GeV,

C C

M~=5. 278 GeV, and M =5.640 GeV, M+ =6.040
b b

GeV, where %& and Xb are the intermediate b baryons,

of, respectively, J =
—,'+, —,

' . Moreover we take R =6
GeV and R ' = 10 GeV for the light baryon and
meson square radii, and Io=(t/&0~5(r& —r2)i/0) =10
GeV for the light baryon wave function at zero inter-
quark distance squared. We have discussed all these pa-
rameters in the preceding sections. Moreover, we take
V,b =0.046 and V„b =0.005 and ~~ =10 ' sec.

In these results we have many effects involved (quark
mass differences, form factors, etc.). It is necessary to
make a discussion of how these different effects enter in
the final results. To this aim, we have selected a few tran-
sitions, significant of the different situations. For our dis-
cussion we select the branching ratios and the ratio
r =r /I between the parity-violating and the parity-
conserviny rates for a few transitions such as 8 ~pp,
B —+pA, B —+A, p, and B ~A, 6 . We select
also some weak and strong couplings: the weak couplings
a(Xb+p ), a(X&+X, ) (parity conserving) and

TABLE II. A few significant branching ratios, ratios r = I /I, weak and strong couplings to show the sensitivity of the results
to the different effects: (1) includes all the effects (quark mass differences between mb, m„m, weak and strong form factors) with

linear approximation for the strong form factor; in (2) we show all the effects plus the full exponential of the strong form factor; in (3)
we set the strong form factor F, (k ) =F,(0); in (4) we keep the strong form factor with the linear extrapolation but we set the weak
form factor F (k ) =1; in (5) we set both F, (k ) =F,(0) and F (k ) =1; in (6) we take the limit m, ~m =0.33 GeV together with

F,(k )=F,(0) and F (k )=1;finally in (7) we take the limits mb, m, ~m =0.33 GeV together with F, (k )=F,(0) and F (k )=1.

B(B' pP)
B(B ~pA+ )

B(B A,+p )

B(B— A++ ++)
r(B ~pp)
r{B -~p5 ++

)

r(B —+A,+p )

r(B ~A+6 ++
)

a(r„+p)

b (&b+ *(P'y')p )
b(Xg *lP'y')X,+ )

g(Xb pB )

h (Xb+ 6++B—
)

h(X„+*(g'y')b, ++B )

0.7X 10
0.3X 10

10
0.4X 10
0.79
0
0.59
0.6x10-'
0.1x 10-'
0.2X 10

—0.4x 10-'
0.6x 10-'

—0.1 X 10'
—0.7X 10
—0.4X 10
—0.3X 10

(2)

0.1 X 10
0.2X 10
0.2X 10
0.17
0.48
0
0.36
0.2X 10
0.1x10-'
0.2X 10

—0.4x10-'
0.6X 10

—0.2 X 10'
—0.2x10'
—0.4x10
—0.4x10'

(3)

0.2x10-'
0.4X 10
0.2x10-'
0.4x10 '
0.76
0
0.58

&0-'
0.1x10-'
0.2X 10

—0.4X 10
0.6x10-'

—0.6X 10
—0.2 X 10'
—0.2X 10
—0.1 x10'

(4)

0.4X 10
0.2x10-'
0.1x10-'
0.5 X 10
0.78
0
0.58
0.6x10-'
0.3x10 '
0.3 X 10

—0.1X10 '
O.8 x1O-'

—0.1X 10
—0.7X 10
—0.4x10
—0.3 X 10

(5)

0.1 X 10
0.3 x10-'
0.3 X 10
0.6X10-'
0.77
0
0.58

1O-'
0.3 X 10
0.3 X 10

—0.1X10 '
O.8x1O-'

—0.6X 10
—0.2 X 102
—0.2X 10
—0.1x 10'

(6)

0.1x 10-'
0.3 X 10
0.2X 10
0.4x10 '
0.77
0
0.56
0
0.3 x10-'
0.2 x10-'

—0.1 X 10
0.7X 10

—0.6X 10
—0.2 X 10
—0.2 X 10
—0.1 X 10

(7)

0.3 x10-"
0.5 X 10
0.5 x10-'
0.8 X 10
1 ~ 15
0
0.86
0
0.2X 10
0.2X 10

—0.1 X 10
1O-'

—0.1X 10
—0.5X 10
—0.2 x10
—0.2X 10
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b(Xb *(g'y')p), b(Xb *(g'y')X,+) (parity violating) and
the strong couplings g(Xb pB ), h(X&+b, ++B ),

g(Xb *(g'y')pB ), h(X b
*(g'y')b, ++B ) involving X

and b, and Xb and %b baryons, respectively. These cou-
plings are dimensionless, defined in Eqs. (3.5)—(3.7). In
Table II we give the numerical results for these couplings
in the different interesting limits.

In column (1) we plot the results taking into account
all the effects: the large mass differences between mb, m„
and m, the strong from factors F, (k ) keeping only the
linear terms in k R, and the weak form factors F„(k ).
In column (2) we plot what we would obtain in the same
conditions but if we had kept the full exponential form
factor of the QPC model. Of course, then the strong cou-
plings would increase enormously. In column (3) we take
into account the quark mass differences and the weak
form factor F (k ), but we set F, (k )=F,(0). The
strong couplings decrease. In column (4) we take into ac-
count the quark mass differences and the strong form fac-
tor F, ( k ) (with the linear terms), but we set F ( k ) = 1

for all transitions. The weak coupling s increase. In
column (5) we take into account all the quark mass
differences and we set both F, (k )=F,(0) and
F (k )= l. In column (6) we keep F, (k )=F,(0) and
F (k )=1 and moreover we set m, ~m =0.33 GeV to
see the effect of the charmed-quark mass; in particular we
see that the parity-violating waves involving a charmed
baryon and a 6 vanish in this limit. Finally, keeping
F, (k )=F,(0) and F„(k )=1, we make mb, m, —+m
=0.33 GeV to see the effect of the large quark masses
relatively to the light-equal-mass case.

We will comment on these results in the following sec-
tion.

VI. DISCUSSION OF THE RESULTS

As already emphasized, there are really two indepen-
dent ingredients in the calculation of B~X,X2. One is
the pole model; the other is the quark model prediction
for the pole residues. Although experiment shall test
only their combination, the latter have to be discussed
first by themselves, because the coupling constants of
strong and weak vertices have their own physical
significance. Indeed, they could be measured separately
in other processes (although we do not have presently
these processes at our disposal), and the predictions of
the quark model for them could be valid even if the pole
model was ruled out. In addition, it is the pole-model
idea which includes the most doubtful assumptions in the
present context, although it has been successful else-
where.

A. Predictions of coupling constants and branching ratios

The predictions for "coupling constants" (generic
denomination for the strong- and weak-interaction ver-
tices) depend on a series of parameters which have been
discussed in our book. " These include quark masses, the
light-quark meson and baryon radii R and
R ', the squared baryon wave function at
r

&

=r2, ( Po ~
6(r

&

—r2) ~ gb ) =
~ g(0) ~, and the quark-pair-

creation constant y. Quark masses and wave functions
can be determined in principle from spectroscopy alone.
R and R ' are safely fixed by the quark masses and the
orbital splitting, rather independently of the potential.
~g(0)~ depends on more refined and more disputable
knowledge of the potential, but it exceeds certainly the
harmonic-oscillator estimate. For the strong vertex, y
has been chosen to fit decay widths once radii have been
determined.

We warn the reader that quite different values are en-
countered in the literature. We do not want to discuss
here the various reasons leading to such discrepancies.
But one must be aware that they would lead to
significantly different predictions, especially for the weak
matrix element. The best we can say is that our choice of
parameters results in an overall satisfactory picture of ra-
diative decay widths, Okubo-Zweig-Iizuka-allowed
strong decay widths, and baryon nonleptonic decays.
This gives us confidence in the extension of such predic-
tions to heavy quarks. However, this extension itself re-
quires new assumptions which have been discussed in de-
tail in Sec. II, and which lack experimental support.
Some are motivated only by calculational simplicity and
could be tested by numerical computations. These in-
clude the use of the harmonic oscillator to treat the un-
equal quark mass effects. For strong vertices, the rough
success of the analogous calculation of OZI-allowed char-
monium decays gives encouragement. Others are really
new physical assumptions and would deserve independent
confirmation. These include the weak "nonleptonic form
factor, " and the extrapolation of the strong vertices form
factors to negative q . The latter is supported only weak-
ly by our estimate of gx~~ (2.25), since there q is small
and therefore the form factor effect is moderate.

Let us then just quote the trend and magnitude of the
new effects we have considered.

First, we observe that, by mere definition of the relativ-
istic coupling constants, our treatment leads to a factor
(2M')' in their quark-model expression [note that in
the —,

'+ case, this is true with our own definition of the
coupling, that includes a factor Mz, in analogy with M,
to make the coupling dimensionless; otherwise, one gets a
factor (2M&) '~ ]. This results systematically in larger
couplings for heavy flavors, and rules out from the begin-
ning any prescription of algebraic symmetry with usual
hadron couplings.

Now, we have two main specific effects in our quark
model: (i) the effect of unequal quark masses on the ex-
pression of the matrix elements in terms of internal wave
functions, and on the internal functions themselves
(modifications of the radii); (ii) the effect of the large
transfers both at strong (q (0) and weak (k )0) ver-
tices. These we label, respectively, as "unequal-quark-
mass effects, " and "form-factor effects. " We emphasize
them by comparing them to a "systematic" calculation,
where the quark masses would be all equal to m, the
light-quark mass, and where the transfer is negligible.

The numerical results that justify the following discus-
sion are given in Table II. Let us first describe this table,
and then comment on it. The comparison of columns (1)
(strong form factors with linear extrapolation) and (2)
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(strong form factors with the full exponential) shows
stronger departures for the 6 (a factor -2) than for the
N couplings (a factor close to 1) since the value of ~k R
is bigger for the former. The comparison of columns (3)
and (1) shows the effect of the strong-coupling extrapola-
tion from k =0 to k &0; this effect increases the X cou-
plings by a factor -2, and the 6 ones by a factor —3.
The comparison of columns (4) and (1) shows the effect of
the weak form factor; its effect is to decrease the weak
couplings: a factor -0.5 for the Xb —N transitions, and a
factor closer to 1 for the Xb —X, ones. The comparison
of columns (5) and (1) shows the combined effects of the
strong and weak form factors. Their overall effect is to
decrease the NN rates by a factor -0.7, the XA ones by a
smaller factor. On the contrary, the X,N rates increase
by a factor —3 and the X,b increase by a factor —7.
This different behavior results from the fact that the
weak Xb N tran—sitions have a larger weak form-factor
suppression than the Xb —X, ones. The comparison of
columns (6) and (5) allows us to appreciate the effect of
the m, —m mass difference (neglecting the weak and
strong form-factor extrapolations). The parity-violating
X,b, waves go to zero in the limit m, ~m, but the other
results are rather stable: the rates gj, N and X,b, decrease
by a factor —1.5 to 2 in this limit. Finally the compar-
ison of columns (7) and (6) allows us to see the effect of
the large m& mass in the weak and strong couplings: all
couplings remain about the same magnitude within a fac-
tor 2. For the ground state, the weak couplings increase
relatively to the mb —+m limit, since the wave function at
small distances is larger for a heavier quark; but this pat-
tern is reversed for the excited states. On the contrary,
the strong couplings decrease relatively to the mb~m
limit. Note that the I /I ratio for the X transitions
is stable in all the limits considered, except somewhat for
the situations of columns (2) and (7).

Let us first discuss the noncharmed vertices. Unequal-
quark-mass effects result in an important depression (fac-
tor —2) of —,

'+
—,
'+ strong vertices, and a weaker depres-

sion of —,
'

—,
'+ ones. As to the weak vertex, they enhance

moderately the —,
'+

—,
'+ ones, and they depress the —,

'

ones. The strong vertices —,
'+

—,
'+ are markedly depressed.

Form-factor effects are simpler: strong coupling s are
enhanced by a factor -2—3, and weak couplings are di-
vided by a factor -2.5. Combining the two effects, one
sees finally that strong vertices —,

'+
—,
'+ are roughly equal

to their symmetric, while —,
'

—,'+, —,
'+

—,'+, and —,
'

—,
'+ are

somewhat enhanced. Weak vertices, on the other hand,
are suppressed, through the combined effects, by a factor—2 and 4, respectively, for —,

'+ (PC) and —,
' (PV).

Charmed decays differ only by the weak vertex. At the
weak vertex, the effects of unequal quark masses and
form factors are much smaller than in the noncharmed
case, and the values are close to the symmetric case.

For the noncharmed decays, the final result of the two
effects on the branching ratios is roughly the same as the
one of unequal quark masses, since the effect of form fac-
tors nearly cancel between the weak and the strong ver-
tex. The parity-conserving wave in —,

'+
—,
'+ and

which is pure PC is a bit suppressed (1/3 in width), while

the —,
'+

—,
'+ PV wave is more markedly suppressed (1/5 in

width) with respect to the symmetric value. Since
charmed decays are only slightly affected at the weak ver-
tex, the effects in that case are controlled by the strong
vertex. According to the discussion made above, the re-
sulting effect is a small enhancement for —,

'+
—,
'+ decays,

and a strong enhancement for —,
'+

—,
'+. On the whole, al-

though each factor may seem appreciable, the general
picture obtained is not too different from what is given by
the "symmetric" values. Indeed, we must expect very
large uncertainties of all origins in such a calculation, and
factors of -3—5, for instance, must therefore not be con-
sidered as very significant.

The result of our predictions for the branching ratios
can be appreciated only in comparison with parallel cal-
culations, or other models, or experiment. This we do
separately in the next paragraphs. Let us only emphasize
two main typical features of our predictions. First, the
ratio I (8 ~pb, ++)/I (8 —+pp) is very large. This is
due to large algebraic factors at the strong vertex, which
are also present, for instance, in the ratio gz&z/gz&z, and
this is not affected by the above effects of unequal quark
masses and form factors. One ends with a ratio -50. A
similar ratio is found for 1 (8 ~A,+X + )/I (8 0

—&A,+p), since it depends on the same strong vertices.
Second, the ratio I /I in pp is close to one. This
does not result from algebraic factors, because, in the
nonrelativistic limit, the ratio would be suppressed, in
width, by (v/c) . It reAects the fact that, in the quark
model, whenever light quarks are present, there are large
internal velocities. On the other hand, the ratio I /I
is zero for the 6 decays in the symmetric m, =m limit,
and it remains small after introducing quark mass
differences. This could be a striking feature to be tested,
especially since it can be expected to survive the
difficulties of the pole model for the 6, which we have un-
derlined.

Let us now compare our calculation with previous
theoretical work. We will limit ourselves to the discus-
sion of the pole model of Deshpande, Soni, and Trampet-
ic and the QCD-sum-rule calculation of Chernyak and
Zhitnitsky. ' ' For completeness, let us quote other
theoretical works. Li and Wu have studied Aavor-
symmetry predictions for charmed baryon-antibaryon de-
cays. Motivated by the old ARGUS data on the modes
pp~+ and pp~+m, Gronau and other Rosner develop a
statistical model of multipion production in B decays.

B. Comparison with Deshpande, Soni, and Trampetic

The work of Deshpande, Soni, and Trampetic" only
aimed at giving an order-of-magnitude estimate of
baryon-antibaryon decay rates in a crude approach to the
pole model. The comparison with this work seems, how-
ever, necessary, because their results have been discussed
in the report by Chernyak and Zhitnitsky at the Munich
Conference, and their work could be considered as
representing the pole model. We must emphasize that
while their final results are numerically close to ours, this
is due to a numerical accident.

We note first that their phase space contains factors
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which we are not able to understand (of course, we disre-
gard factors due to a different definition of the —,

'+ strong
coupling constant). But it happens that such factors
seem harmless in the limit M~ )) light hadron masses.

Of deeper physical significance is the difference in the
calculation of the weak transitions. Their treatment of
the unequal quark masses, borrowed from Ref. 30, does
not take into account the full Pauli antisymmetry of the
wave function. They symmetrize independently the space
wave function, thus leading to spurious overlaps between
permuted terms, which should disappear in a correct cal-
culation because they should be associated with orthogo-
nal spin-isospin wave functions (if the quark b is first
chosen in the position 3, then by permutation it comes to
position 2, and the associated Aavor wave function is au-
tomatically orthogonal to the previous one). Another
mistake we noticed is that, after having taken into ac-
count the mass of the b quark, they borrow the radius
R (R in our notation), which should be the unbroken
one, from a B-meson calculation, ' which already takes
into account the effect of the b-quark mass. Moreover,
even with equal masses, there is no direct relation be-
tween the meson and baryon radii, since their definition is
different, and since the effective potential is different. In-
stead, one should simply take R to be the same as in the
nucleon case. Quite accidentally, the combination of all
that results in something not too far from the harmonic-
oscillator result in the symmetric case.

As to the strong couplings, Deshpande, Soni, and
Trampetic write certain equalities between heavy quark
and nonstrange coupling constants, which have simply no
reason to hold Itheir equation (12)j; indeed, at least some
SU(6) algebraic coefficients should be present, identical to
those which relate the usual X couplings to the non-
strange couplings. In addition, our analysis finds several
other factors which differenciate X& couplings from usual
X couplings; one is the kinematical factor (2M')'~, the
others are the unequal-quark-masses and form-factor
effects (see Sec. VIA). All these factors, some of which
are large, but act in opposite directions, result quite ac-
cidentally in a rough equality of the couplings.

All in all, we see that our calculation is at odds with
the one of Deshpande, Soni, and Trampetic, although
there is a rough similarity of the final numerical results.
The differences, which touch the analytical expression,
may be illustrated by the different asymptotic powers of
mb found in the two calculations (see Sec. II D).

C. Comparison with the work of Chernyak and Zhitnitsky

The comparison with the work of CZ' ' has quite a
different meaning. It is a comparison with a really
different method not relying on the pole model, but on a
direct evaluation of the process as a whole. Of course, no
comparison is then possible for the separate strong and
weak couplings constants, which are not calculated by
CZ. We take it as an assumption, based on our
confidence in the quark-model estimate of the latter, that
the differences in the prediction of the branching ratios
by the two approaches are to be attributed mainly to the
difference of the two general methods of pole model and

QCD sum rules, rather than to some incorrect treatment
of the coupling constants.

The main observation is that, on the one hand, there is
a very strong discordance for —,

'+
—,
' + decays, which we

find much larger, while, on the other hand, the —,
'+

—,
' +

predictions grossly agree; yet we find them larger than
CZ, the discrepancy in the latter case does not exceed the
large uncertainties expected from both models. One
notes the encouraging fact that for —,

'+
—,
' + decays, the

best agreement is for charmed decays, where the quark
model is expected to be safer, and maybe QCD sum rules
too. Another encouraging fact is that quite different
methods lead to a rather similar I /I ratio, close to
one, in the B ~pp mode. A careful comparison shows
that the agreement extends to the sign of the amplitude
ratio.

The direction of the discrepancies seems to parallel the
one observed in Sec. III D for the asymptotic power of
mb: the —,

'+ —', + pole-model prediction exceeds the QCD
prediction by four powers of mb in width, while the
difference is two powers only for —,

'+
—,
' +. We think that

from the very general point of view of the quark model,
which considers the X and 6 as entirely similar particles,
this result is unsatisfactory, because it means that, in con-
trast with QCD asymptotics, X and 6 are behaving
differently. We are tempted to put the blame on the pole
model; at least with ususal couplings, it tends to overesti-
mate amplitudes for high-spin particles. We are now also
tempted to explain in the same way the very large numer-
ical discrepancy with CZ in the —,

'+ —', + case. Although
we know that the CZ contribution does not follow the
QCD asymptotic behavior, we may suspect that they give
a similar behavior in mb to —,

'+
—,
' + and —,

'+
—,
' + branching

ratios, in contrast with the pole model.

D. Comparison with experiment

It must be stressed that the evaluation of the overall
process in our model shall suffer from many large uncer-
tainties, inherent to almost all stages of the calculation,
which cannot be quantified a priori. Therefore, disagree-
ment with experiment should not be interpreted too has-
tily, even with large discrepancies. Yet, the data seem to
confirm our doubts about decays involving a A.

Although there is yet no direct measurement of any of
the predicted processes, we can still learn something from
two sources: (i) the inclusive branching ratio B ( B
—+A,+X)-7%, well known; (ii) the upper bounds on
noncharmed decays B~pp +pions.

The prediction for charmed decays with b+ and a
A,+ clearly exceeds the experimental inclusive value
B(B~A,+X ) —7%. Summing A, 6 and X,6
leads to more than 50% (of course, these percentages are
a way of expressing the partial computed rates, normal-
ized by rb ). Since the inclusive rate must be a generous
upper bound for 6+ decays, we find a very large
discrepancy with experiment, exceeding the allowed un-
certainties.

Let us recall that some years ago, the ARGUS Colla-
boration claimed to have seen the modes pp~+ and
pp~+~ . Now the CLEO Collaboration gives only an
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upper bounds for these processes:

8 (pea+ ) & 1.4 X 10

8(ppm+n ) & 2.9 X 10
(6.1)

VII. CONCLUSION

Having carefully discussed the pole model as regards
many of its aspects, ranging from general principles to
detailed quark-model calculations of the relevant hadron-
ic quantities, we have obtained a large set of predictions
which converge with the alternative QCD-sum-rule ap-
proach' ' towards certain similar conclusions, including
a very rough order of magnitude, for the —,

'+
—,
' + final

states. This is not true for the —,
'+

—,
' + branching ratios,

which are much larger in our case. Since we have found
a rationale concluding to the failure of the —,

'+
—,
' + predic-

tions, namely, that the pole model is badly behaved for
high-spin particles, we think that this rough convergence
is encouraging for both approaches which have each their
own merit.

On the other hand, our calculation cannot be con-
sidered as a firm prediction, since it relies on many prob-
lematic assumptions: a certain type of coupling, selection
of a few intermediate states, crossing of the strong vertex,
extrapolation to complex or large momentum transfer.
Neither is the QCD-sum-rule approach to be considered
as more trustable, in view of the complexity of the treat-
ment and of the many assumptions which it also includes.
In fact, there is not a detailed critical discussion available
in the CZ papers. Therefore, only experience will tell us
whether the assumptions on both sides are correct, and
which succeeds the best. It seems to us that if it is
correct, the pole approach would have the advantage of a
relative simplicity. It should also be suggested that even
if the pole model would reveal quantitatively unsatisfac-
tory, some results could be of more general validity: e.g. ,
the ratio of PV to PC waves or the algebraic relations
that correspond to the AI =

—,
' rule.

These bounds do not favor our prediction for
8+~@6++-3X 10 . It is true that V„b is not yet
safely known, and that, once more, there are large uncer-
tainties within out hadronic model. Therefore, the

difhculty is not conclusive by itself, but points to the
same direction as previous observations: the predictions
for decays involving 6 are anomalously large. As to the

final states, there is nothing to say, except that

they are compatible with the present bounds
8 (8~A,+X ) —7% and 8 (8 ~pp ) & 0.4 X 10 (Ref. 34).
We must wait for more precise data.

H=g +Kg(r, —r )
P(

2m;
(A1)

and the relative coordinates

gm, r,
R=

gm;

1p=- —(ri —r»
2

2

3

m 111+m2I2
I3

m1+m2

(A2)

1/2
3 m3

r1 2 R+ X+v'Z
2 gm,

m2

mi +m2

r3=R—
1/2

m1+m2
2 gm,

(A3)

and from dg= g, (Bgldr, )dr; (G. =x,y, z) we can read
relative momenta:

Pz P1+P2+ P3 ~

m2
pi —v2 P2m1+m2 m1+m2

1/2 ' 1/2
3 m3 3 m1+m2

(Pi+P~) —
2 P3,~m; 2 ~m;

p =v'2 (A4)

or
m1 2

g m;

1/2
2 1,2 1

PR+
3 + P~—

V2 PP

1/2
m3 2

px.~~ m,

(A5)

In terms of these variables we can write therefore
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APPENDIX A: WAVE FUNCTION
OF HEAVY-FLAVOR HADRONS

1. Baryons

Let us consider the harmonic-oscillator Hamiltonian

2
Pz

2+m,
1 1 1+- +
3 m1+m2 m3

1
pa+ 4 m1

2
Pp

2 2m 1+m 2 m2 m1+K 3A +2 1+ p'+2v'3 p A,

(m &+mz) m1+m2
(A6)
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Note that, in the case m1&m2&m3, the Hamiltonian is
not diagonal in the base A, ,p. However, we will limit our-
selves here to the case m, =mz=m&m3. We obtain, in
this case,

Po(p~ pp) =&oexp— p~R ~ p,'R,'
P P

2 2

I ~R ~ p,'R,'
P P

2 20](p~ pp)=&o&] (ppRp)exp—
8= + + +3K(p +A, )

2M 2m & 2m

with

(A7)

]t'](pA, pp) =+0&l (ppR p)e](p
p,'R,'

P P

2 2

3mm 3M=2m+m3, m& =
2m+m3 p

m =m (A8) (A16)

We will consider transitions involving only the
ground-state and L =1 baryons, whose wave functions
will be given by

with

1/2

$0(p, A, ) =Noexp

f'](p, A, ) =X]P ]
P

4'(p ~)=&]&]

p

pexp +
2R2 2R2

pexp — +

The Schrodinger equation gives

2m+m3
R R, R =R

3m 3

where R is the radius in the equal-mass limit

6mK =R

We normalize the wave functions according to

f Q d r, 5 —,
' g r; l

]tt( I r; I ) l

= 1 .

(A9)

(A10)

(A 1 1)

(A12)

(A17)

Notice that all the dependence on the large mass m3 is
contained in R &.

To construct now the total wave functions for baryons
with one heavy quark, containing space, spin, flavor, and
color degrees of freedom, we have to take into account
the Pauli principle. In the spatial wave functions written
above we have singled out the quark labeled 3 as the
heavy quark. Let us call these spatial wave functions
I/fo( ]$3 ) ]1 ] ( ]$3 )

and ]t ]( ] 23 )
where the ordering 1 23 singles

out the last quark 3 as the heavy quark. Let us now con-
struct the total wave functions. We will be interested in
the lowest-lying heavy baryons, namely, those made out
of u, d and a heavy quark Q that could be c or b We are.
then restricted to consider A or X type baryons and their
L = 1 excitations.

To construct the wave functions for unequal masses it
will be convenient first to write down the equal-mass limit
wave function, in a particular way. Consider the octet
and decuplet ground states in the well-known notation

—(4'x'+ 0"x"»1

Performing the change of variables, we find the Jacobian

B(r„r2,r3)

B(R,A, p)
=3&3, (A13)

i.e., the same value as for equal masses. We obtain the
nor malizations

'P(56, 5 =
—,', 10)=P, P'y',

(A18)

where the P and y are the Aavor and spin wave functions
given in Chapter 1 of our book.

Using the relations

XO=,X1=1

(3&3R,'R,'~')]" '
8~
3

1/2

Xo (A 14)
+312 2 7123 2 +123

+231 2 +123 P +123

with R&,R given by (A10).
We wi11 need also the internal wave functions in

momentum space, g(p„pz, p3), normalized according to

(A15)

+312 2 +123 2 +123

+231 2 +123 I+123

(A19)

The expressions are
we can rewrite the Aavor-spin parts of the wave functions
(A18) in the form
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—(0'xX'+ NxX" ) = — — g 0]23X']'23
2 3 P(123)1, , „„1—((()'AX'+(t'A'X") = — — X (t']23X]23
2 3 P(123)

1
(t"Xx'= ~- g 4]23X' r

P(123)

(A20)

where the sum extends over circular permutations of
(123) and p]23 Ijk]23 are the flavor wave functions sym-
metric or antisymmetric under the exchange 1~2:

For y' we do not need to specify the ordering as it is to-
tally symmetric. Note the difference in sign between the
first two wave functions in (A20) and (A22). We will

adopt this last more natural convention in all our calcula-
tions.

Let us now write down the wave functions for the
(70,L =1) states. Let us consider first the equal-mass
wave functions and transform them in a convenient way
to read the wave functions in the case of a heavy quark.

The total wave functions are

1
(t]23=uuQ, (du+ud)Q, ddQ,

2

A —(du —ud )Q
2

(A21)
+j (7o,L = l,s=-,', 8) =-,' [([4'x'lj + [Ax"lj )0'

+([4'x'l —[0"x"l )4'" l

that single out the quark 3 as the heavy quark.
From the forms (A20) and the spatial wave function

l//0( ]23) (A9) or (A 16), that treats the quark 3 as heavy, we
have the total wave functions that obey the Pauli princi-
ple:

+J (7o L =1 s =-,', 8)=
2

([Ãx'l j 4'+ [K'x'l j4"),
(A23)

—([Kx'lj +[4'x"lj )4"

—( [el'x' l
—

I: Olx" l

10 (56r S
2 r 8r ~ ) g ]to(]23)P]23X]23

3 Pl]23)

1
%(56rS=—„8,X)= — X ]t'o(123)(t'123X]23 .

P(123)
1

%(56r S—
z r 8r X)— — X 40(123)0123X]23 .

P(123)

(A22)

where the mixed symmetric wave functions gI, @]', . . .
are, respectively, antisymmetric and symmetric relatively
to the exchange 1~2.

Using the same method as before we can write down
the equal-mass wave functions in the form

1 g 1+J (70r L 1r S 2 r 8r ~ ) — g 4'123 [ Pl(123)x]23 Pl(123)X]23]j r
3 P(123) 2

1
Vj (70,L = 1,S =

—,', 8, A)= — — g $]23 —[Q](123)X]23+/](]23)X]23lJ
3 P(123)

s MPj (70,L = 1,S= —', , Sr X ) = — — Q $]23[$1(123)X]23l J
3 P(123)

1
J (70 L 1 S

2
8 A) — g ( 123[41(123)X123lj

3 P(123)

(A24)

M 1 I M0 J (70,L = l,s =
—,', 10,&)= — g (| ]23 [01(123)x]23 Pl( 123)x]23 l J

3 P(123)

1 M+J (70rL 1rS 2 r lr A) — g '(t'123 —[gl(123)X]23 Pl(123)X]23 lj
3 P(123) 2

Of course, SU(3) is not a good symmetry when we are dealing with hadrons composites of u, d quarks and a heavy
quark Q, and the states with the X (or A) quantum numbers will be substantially mixed. The eigenfunctions corre-
sponding to the variables p and A, correspond to different eigenvalues. The correct wave functions in the unequal-mass
case wi11 then be
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1 MO'J (70&L = 1,S=
—,', X, ) = — g $123[it'1(123)+123]j

3 P(123)

+j (70,L =1,S=—,'&&1, ) — — g ()t)23[ tjl(123)7123]j+3 P(i23)

J(70,L= 1,S=—,'&A, )= — +4123[01(123)X)23]J
3 P(123)

j (70,L = 1,S =
—,', Ab ) — — g $123[$1((23)X)23]j

3 P(123)

(A25)

O'J (70,L = 1,S=—', & X)= — g $123[/)()23)X)23]j+3 P(i23)

1
O'J (70,L = 1&S=

2 &A) — g (I)123[41(123)X)23]j
3 P(123)

where a, b denote the two S=—,
' linearly independent

states. As in the case of the ground state, we will adopt
the conventions (A25) for the L = 1 wave functions when
dealing with a heavy quark.

2. Mesons

We will need in some calculations the harmonic-
oscillator wave functions of mesons made out of quarks
of unequal masses.

Let us consider the Hamiltonian

with

4mC =R ' (A30)

Sm&m2 C=R
m) +m2

(A31)

These equations will allow us to compare the equal mass
radius R' to the case of unequal masses R. We will use
the flavor wave functions for B mesons:

For m)&m2 we will have exactly the same form, but
with R' —+R, with

PiH =g +C(r 1
—r2)

2m;
(A26) P(B d)=bd, P(B„)= bu, P(B—, )=bs . (A32)

that, making the change of variables

m irk+ m2r2R=
m) +m2 2

m2p, —m, p2
PR Pi P2& PP mi +m2

gives the expression
2 2

H= " + P +2C
2(mi+m2) 4m) m2/(m) +m2)

(A27)

(A28)

APPENDIX 8: WEAK MATRIX ELEMENTS

Let us now consider the matrix elements of H
between baryons, of the type ( N i(H (Ab ),
( N i H„ i) Ab ), ( A, i H„~Ab ), ( A, ~ H„ i Ab ), etc. , where
Ab, Ab are, respectively, —,

'+ or —,
' states.

To compute these matrix elements we will have to con-
sider the wave functions for baryons containing a
diA'erent heavy quark in the initial and final state. To
have the general case, let us consider the Hamiltonian

Let us compare with the equal-mass limit. Assuming
flavor independence of the potential we have, for
m, =m2 =m, the ground-state wave function

H = V,b[c y„(1 y, )b ]-G
2

X [dfjy„(1—y~)up]+H. c. , (81)

p2R i2

exp P

4

4o(V) =
3/4

exp P
R'

3/4

1)'o(P, )=
R'

(A29)

where (x,P are color indices and for b —&u transitions we
must replace c, V,b

—+u, V„b. We will neglect for the mo-
ment all other operators that appear when taking into ac-
count QCD short-distance radiative corrections.

In the lowest order in a U/c expansion we have, in
first-quantization formalism and in momentum space (the
color overlap gives just 1),

IXJ
(82)
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H = —V gr' 'v'+' —(o —cr )
G

w ~2 cb i j i j
lWJ

p;+p,'
2m

PJ

2mb

I

PJ

2mc

pi p& PJ

2mb

PJ

2mc
( o; X o. ) .+H. c. , (83)

where r( 'u =d, v'+'b =c (or v'+'b=u for b~u transi-
tions).

To compute the matrix elements we will follow now
the same steps as in our paper on nonleptonic hyperon
decays. We will fjrst compute the Ab, Xb ~X transitions,
as they are simpler, and later the Ab, Xb —+A„X, ones.

1. Ab, Xb ~&transitions

Since, up to the V„b Kobayashi-Maskawa matrix ele-
ment and mass differences, these transitions are identical
to A„X,—+%, we will obtain, in the equal-mass limit, the
same ratios than for strange baryons.

a. Parity conserving matrix elements

1 gb&&l(1 —tr) oz)rI 'Vz+'l&b &

2
(84)

where the overlap is taken in spin, Aavor, and space.
Moreover, since wI 'vz+ 'p)23(Xb ) =~I 'vz+'$23)(Xb ) =0,
as in p,,k (Sb ) the heavy quark is in position k:

We follow the same steps as in Ref. 8. From the total
symmetry of the wave functions (A18), (A22), (A25) we
obtain, calling Sb =Ab, Xb,

(2~)3& BOIH" lzb &

(2~)'&XIH.' IXb & =6 V„,
2

(0123 X)23 +(123X)23)(jp ( ol ~2) 1 V2 I PO(31 2)031 2X31 2&

6
(85)

where (ti p(3, z) denotes the ground-state spatial wave function when 2 is the heavy quark and fp the spatial wave function
with all quarks degenerate. We have g»z =p3Iz for a Ab, and g3, z =y3'Iz or g»z for Xb. Since
(1—o, oz)IX)23& 0, (1—(T) oz)IX', 23& 41X)23& we are only left with one term:

(2~)'&&IH„' I&b &
—6 —1'„b —~- &X(23IX3)2&&(t)231~I vz 1/3)2&ib, (86)

where Ib is the space matrix element

J 0o (P P»P )|t'o» (P P»P )t)(P P )QdP dP b(QP @(gP )
(2~)' J J

=
& (t'pl&(r) rz) I pb()23) & (87)

where the independent integration on pl, pz and on p'„pz
corresponds to the fatness in momentum space
16(r)—rz) in configuration space] of the interaction. We
formulate the calculation in p space as it will be then
easier to compute the matrix elements of H (83). The
spin matrix elements are, from (A19), 1 Sub

Ib =
(2~) g 1+7(2

3/2

To compute the spatial integral we must take into ac-
count the ordering Qp(3) 2) that differs from the one in
(A16). A straightforward calculation gives

& X)23 IX312 & 2 r & X(23 IX312 &

& X1231X312&
=o .

The fiavor matrix elements will be, from (821),

(88)
1/4

2m +fPlb

3mb

(810)

gO

&2&41231+1 2 1431"2& 2&41231+') vz 1/3)'2&

g+
P lr v

+
ly

b
&

I
Ip =

& &pl &(r) rz) I gb(3)2) &
=

(2~) R
(811)

We recognize the matrix element in the equal-mass
limit

I
v'2 (89) and the factor
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8eb

1+7CXb

3/2

(812)

contains all the dependence on the heavy-quark mass,
cb ~ 1 as kalb ~m.

We obtain finally the matrix elements

(2lr )'
& &

I

0"I&b &
=6pc

2
(813)

Io is the spatial matrix element in the equal-mass limit,
and all the dependence in the unequal masses is given by
the mb-dependent factor in (812).

It is instructive to point out that, for instance, the ratio
Ab ~n to A~n will be given by

& n IH."IA, & V„„
cb

( n
I

H'c
I
A & sin ec

(815)

that contains the KM mixing parameters and a mass-

where F changes for the different transitions (note the
difterent sign for X+—+p than in Ref. 8 due to the oppo-
site phase convention"):

F(Lb+ ~p ) =3/2F(Xb ~n ) = 3/6F—(Ab +n ) =—6 .

(814)

dependent factor, computable in the harmonic-oscillator
case. In this way we can relate the matrix elements
%b +N—to the measured ones in nonleptonic strange
hyperon decays.

b. Parity-violating matrix elements

Let us now compute the matrix elements of H be-
tween —,

' and —,
'+ states. Calling any wave function of

the type (A25),

1
1/2( ' ) X ~123I~](123)X]23]1/2

3 P(123)

(816)

where (I) can be p or p, ]t) can be g'„or g']' and X can be
X', X", or y'.

As we will see in Appendix C, the only nonvanishing
strong couplings concern the states of the ]t)]' type; the
states of the P'] type give zero strong couplings in the
spectator quark hypothesis of the QPC Po model of
strong decays. Therefore, although the weak couplings
involving excitations of g] and P']' types are both nonvan-
ishing, we only give the results for the latter.

From the total symmetry of the wave functions we ob-
tain, calling Xb a —,

' b baryon:

—&(0]23X]23 4]23X]23)AIOss(1 2)rI U2 l&3]21 4](3]2)X3]2]]/2&2
(817)

where Oss is the spin-space part of (83) for m, =m.
Now, Oss is antisymmetric in spin and antisymmetric in space, in the indices (1,2). On the other hand, X can be X,

X",or X'. Using (A19) we obtain

& (())]23X]23+4]23X]234'01Oss(1 2)r'] 'U2+ I]I 3]2r4](3]2)X3]2]]/2 &

('$1231+] U2 14312 & &X]2340 Oss( 1&2)1141(312)X]23]1/2&

2&&]23lr'] "2 1&312 &x]23@01 ss(, 2)lip](3]2)x]23]]/2&,

& (0123x]23+4123x]23)401oss(1, 2)r'] 'U
2

'
I &312I $1(312)x312]1/2 & (818)

14312 & &X]23&01Oss(1, 2) I I:g](3]2)X]23]]/2&

'U2+' (t'3]'2 & & x]23])ro I oss(1 2) I]j'j](3]2)x]23]]/2&

( ((It ]23X]23+It ]23X]23)|/01 Oss( 1 & 2)&~i U 2 143121.01(312)X312]1/2&

( $]231r] U 2 I t3 (&&]2x]23401oss( 1 ~ 2)1 ( 41(312)x]23]1/2 &

We are left therefore with the spin-space matrix elements

&x12300loss( &2)l I Pl(312) x]23 1]/2&. (819)

where Xf=X' or X", X'=X",X' or X', and g]=g] or g]'. It will be convenient now to consider the spatial matrix ele-
ments.

We have two spatial combinations in (83) (for m, =m ):

P&+Pi P2 + P2

2m 2mb 2m
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The spatial integral to consider, analogous to (87) will be now
1/2

1Jb= (2' )

4~
3 0 P] P2 P3 1

P1—11
2fPl

P2 P2

mb 2172
01(312)( P 1 ~ Pz ~ P3 )

X5(p3 —p3)+ dp, dp,'5 g p. '(3 g p'.
'

(821)

where p) =p) or p)'. We obtain, for the case of interest,
1)/)', independently of the + sign in (820),

II
Cb =

v'3

2mR
5/2

5+7
Plb

Sub

1+7ab'

(822)

where Io is the equal-mass matrix element (811) and the
factor cb' contains all the dependence on the heavy mass

mb and is equal to 1 in the limit mb ~m.
Taking into account that, in the equal-mass limit, we

have

A)2 2 4)23+
2 4)23 (823)

and we can check that we obtain the same result as in
Ref. 8, since the component g)'23 would not contribute
due to the antisymmetry of the spatial operator under the
exchange 1+-+2. We obtain, as expected, in the equal-
mass limit,

J(R f. 8) (824)
2mR 2mR

consistent with what we found, a factor v 3/2 coming

from (823), and a factor V'2 from a di6'erent definition of'

the spatial integrals [(821) here and (29) in «f. 8«.

We have computed the spatial matrix elements and we

are now left with the spin-space matrix elements (819)
where Oss(i, j) is given by

Oss(i, j)= —(cr; —o J )
Pi+Pi

2m

I

PJ PJ +l
mb 2fPl

P&. P].

2m
PJ PJ

2m b 2' ~ (o, Xo ) . . (825)

Because of the total symmetry of the nucleon spatial
wave function po(p'„pz, p3), the term (p', —pz)/2m that
appears in both terms of (825) will not contribute and we
are left with an effective operator for each matrix element
(819):

&X)23 POl ~ Ol I. Pl(312}X)23«1/2 &

1 )S+ 1/2

&&)23ll~ll&)23 & & lt/Ol
O' '

I @)(3)2)&

2

(829)

&7123 POl& &
l [41(3)2)X}23«1/2&

where X is a spin operator

(826)
where S denotes the total quark spin: —,

' for g', g", —,
' for

The spatial matrix element is just the integral Jb
(821) computed above,

X= —(o, oz)+i(o—) Xoz) (827)

&Nolo( )*ly( '

and the spin reduced matrix elements are given by

(830)

0="
2m

P2

2' b

and G is an orbital part,

(828)

&712311&ll&123&

&x)23ll&ll&'& =3 2&&)23ll&ll&)'23 & =8

and we obtain finally, for the matrix elements (819),

(831)

that enters in the estimation of the integral J (821). In
(826) y, 23 on the left can be y')23 or g'23 and on the right

tl S I
+123 +123 +123'

Applying the Wigner-Eckart theorem, we obtain, after
some angular momentum algebra,

& +123 POl OSS( ~ ) l [41(312)7123«) /2 & Jb

&X)234QlOsS( 1 2)
l [41(312)7123 «)/2 &

—0

& x]231)/o I oss( 1,2)
l [g)(312}x')23«) /2 &

=4&2Jb

(832)
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where Jb is Jt' (822) if ])'j] is g]'. Owing to the different
phase convention for g', y" here than in Ref. 8, we find
the opposite sign for the last matrix element in (822).

We have to compute a few liavor matrix elements from
Eqs. (818) [using the wave functions of Ref. 4 and (A21)]:

F(Xb (PI'y")~P ) = —3,
F(Xb(1tj']'y") n }= 3

2
'

F(»+(])']'X') (835)

g+
($]23lr] v2 I$3]2 &—

2
g+

6
gO

(y~n (
—)V(+) y

b )
gO

(y&n
l

( ) (+)
ly

b )

( 4123(r] v 2 l 4312 &

1

2
'

1

2&3 '

1

2
'

1

2&3

(833)

Grouping all the terms in (818) together with (832)
and (833) we obtain, for the different states (A25) with

F(Xb(1tj]'y')~n ) = —6,
3&3
V'2

F(Ab(]t)']'y')~n ) =—

It is instructive to compute the ratios

& n lH."I
Ab(y"X') & cb

(n(a'ClAb) c, mR

&nlrr.pvlA, (y"y )) V„„(
(n HP lA) sinHc mR

(837)

2. Xb, Ab ~X„A, transitions

a. Parity-conserving matrix elements

We can thus know these matrix elements in terms of
the measured ones in strange hyperon decays and factors
dependent on the masses, calculable in the harmonic-
oscillator model.

Io
(2~) (XlH l%b(g']'y) ) =6 —V„bFcb'

mR
(834)

From (82), we follow the same steps as in Appendix
B la.

(2~)'(S, H."lX, )
where I" changes according to the state. The spin-wave
function y can be y', y", g', and Xb can be Xb, Xb, Ab.
Since g']' is already made explicit we have to specify y
and the Savor state. Since we have ]tjI', then g must be g"
or g' for X&, and y' for A~. We obtain

—V„(X,l(1 —o].~2)r(] )v2") lzb &,
2

where gb =Xb, Ab and X, =X„A„and v2'+'b =c.
From the wave functions (A22) we write

(838)

l&b ) T(43]2X3]21(1—~] o2)rI 'v,' 1&3]&3]2&rcb, (839)
where y can be y' or y", g' according to Ab or Xb. Since (1 —o. , o 2) ly') =0, the X —,

'+ has zero matrix elements. r in
(839) is the spatial integral

1 (p', p', p')])'j'(', (p, p„p, )6(p, —p,')Q dp;dp, '5 g p 5 'g p'.
217 1 I j

)
j (840)

I,~ =Ioc,b,

Ce
8czb a

cx +cx +6Q Q

From (A16) we obtain

3/2 (841)

& 4312 l+] v2 (4312 ) & 4312l+] v 2 l 4312 )

cl ( —) ( )+ly b)

2
with ro given by (811) and a in (810). cb, ~cb when
m, ~m, andcb, =1 when mb=m, =m.

We need also the spin matrix elements, from (A19), From these expressions we find finally

(843)

&x3']2l( —
] o2)i&3']2&

= —3 3&X3]2l(1—o] o2)lX3']2& =3
and the Aavor matrix elements

(842)
(2~)'&x, (H."(xb & =6 V„Fc,„r, -

6
2

with I for each particular transition:

(844)
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F(Xb+~X,+)=F(Xb ~X, ) =3/3F(Xb+~A,+)
3/—3F(Ab —+X, ) =33/'2 .

(845)

with c,b containing all dependence on the heavy quark
masses, (841).

We have the interesting ratio

& A,+ IH."lx„+& v„
Ccb

& n IM IA & sinHc
(846)

b. Parity-violating matrix elements

From (82) and the wave functions (A22) and (A25):

(2m) &&, IHw l&b & 6 —~b 3 &&3(2lrI U2 143(2&&go(3(2)1'3)2IX+'0b+X—0, 1[tt t(3)2)X3t2jt/2& (847)

where

X+= —(at o2)—+i(o, Xo2) (848)

P&Ob=
2m

P2 P&

2m
P2

2mc
(849)

is just the operator X (827) and Ob is (828), but now we have to consider the matrix elements of 0, and X since
we have unequal masses in this final-state charmed baryon.

We apply, as in (829), the Wigner-Eckart theorem to the spin-space matrix element in (847):
1)S+1/2

4(312)X3121 X+ '0b+X 0, 1[OI(312)X312j I/2 & [&X31211X+IliY312 & & No(312) I +b I Pl(312) &

2

+&X31211X-ll&312&& Po(312)lo,
' '

Ittl(312)&)

where 5 denotes the total quark spin in the initial baryon. The spatial matrix elements are given by

(85O)

J,b
(c)

4(312)
cb

O(m)w

.],(b)m

g ( m ) e Y'1(312)
c

1
0„' '"(P,, P2)

, f~dp, dpI6 Xp) 5 XP& 6(P3 P3%0(312)(P3&pl&P2) 0(m)s ', ~ $1(312)(P3,PI, P2), (851)
(2') Oc Pl P2)

where 0' ' are the spherical components of the operator O. Note that Jb, —+Jb (821) and Kb, ~o when m, =m. From
the wave functions (A16) we obtain, if Pt is Pt',

(J,'b, K,'b ) =I() (c,'b, d,'b ), (852)
2mR

where

tl
Cbc

d II
bc

8QbQ

Q +Q +6Q Q

8QbQ

Q +Q +6Q Q

3/2
m +mb 4Qb

1+3Qb2mb

ab(1+3a, )
( ——,')

Q +Q +6Q Q

ab(1 +3a, ) 41—
3 Q +Q +6Q Q 1+3Q2b

4 m+m1—
1+3Q, 2m,

2mb
(853)

It is clear that cb,
' ~ 1, db,

' ~0 when mb, m, ~m, and
after some algebra one can check that cb", ~cb' (822), and

db,
' 0 when m, m.
The Aavor matrix elements that we need in (847) are

given by (843). We still need the reduced matrix ele-
ments of X+,X . Those of X+ =X are given by (831),
and those of X are given by

2&+12311X-ll&123& 2&+12311X+IIX123&

= &X(23IIX+ IIX'& =8

&X123IIX-II&'&= &&123IIX-II&123&

=
&&12311X+ IIX123 &

(854)
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Now, in terms of the ordering &X31211&+IIX312& in (850)
we have, from (A19),

APPENDIX C: STRONG MATRIX ELEMENTS

&x31211~+llx312& &x3»ll~-Ilx3»&-

& x31211&+llx312 & & x31211&- llx312 &

& x31211&+llx312 & & x31211~—llx312 &

& x31211&+llx312 & & x31211~- llx312 &

&x3'1211~+IIx'& = —3 3&x'31211~+IIx'&=«3
&x31211&—Ilx'& = &x31211&—Ilx'& =o .

(855)

We will now compute strong couplings of the form
%1,BN, XbBb, and XbBN, 2il„'B6 where Xb (%b ) is a b
fiavored baryon of J =

—,
'+ ( —,

'
) and B =bd or bu-.

We will use the quark-pair-creation model, extensively
exposed in Ref. 12.

1. Ground-state baryons

(F;G)(&b (QI'x")~&,+)=(3/&2;3/3/2),

(F;G )(Xb(Q'1'X" )~X, ) = (3/v'2; 3/V 2),
(F;G)(&b+(1J'j1'X')~A,+ ) =(23/3;0),

(F; G)(Xb+(P", X')~X, ) =(6;0),
(F;G)(&b($1'X')~&, )=(6;0) .

(857)

We can now regroup all these terms to give the final re-
sult

Io
(2~)'&&, IH."l&b(q", x) & =6 —&„' (Fc,",+Gd,",),

mR

(856)
where F and G change according to the transition con-
sidered and the constants cb,

' and db,
' contain all the in-

formation on the heavy-quark masses, given by (853).
F, G are given by

(F; G)(Ab(hatt", X')~X, ) =(3V3/3/2; —3/3/3/2),

(F;G )(Xb (g1'X" )~A,+ ) = (3/3/3/2; —33/3/3/2),

&BNI Tlx, & =3yg &1, 1;m, —m lo, o&
3

'

(C 1)

&@~(35)&P~(124)1&&~(123)4„„(45)&cF (NB;Xb),

where the N's are the spin-Aavor wave functions; in par-
ticular, for the created pair out of the vacuum,

1
P X1™fp Pp —(uu +dd +ss )

3
(C2)

and 4 is the spatial integral

We will first compute the couplings Xb BN, %bBA.
After color factors and all contractions are taken into ac-
count, one ends with an expression (see Fig. 10)

Pm(NB;%b ) = f Qdp;$21(p»p4)p ~(p»p2, ps)™1(P4—ps)g&~(p»P2, P3)

X@P4+Ps)~(P1+P2+Ps k1v)fi(P3+P4 k21 )fi(P1+P2+P3 (C3)

Note the important point that we are using, for Xb, the
wave functions (A22) for which the third quark is the
heavy quark.

Using the harmonic-oscillator wave functions (A16)
and (A29) for baryons and mesons, we find, after some
algebra, in the Xb rest frame,

R i3/2
(NB;Xb ) = —fi(k21 +k~)%1 (ks )

m +mbR' mPb-
mb2mb

p pb+pb(1+3ab)
Ab= Bb =2

2p pb+3(1+ab ) 2p pb+3p1, (1+ab )

p (4Pb —3) +3a„(3p +8Pb)
Cb=

24pb [2p p b3+(1+ a)]b

1/4

(C5)

X(abpb Ab) B1,exp( CbR k~), —In the equal-mass limit we find

(C4)

where R and R ' are the baryon and meson squared ra-
dii, ab is defined by (810), and

3R
b ~2 2 ~ Bb~R' +3R

5R' +12R
24(R' +3R )

R' +3R
(C6)
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H= (@»(124)@,(35)Ic~,(123)e„'„(45)) . (C7)

so that we recover the equal-mass integral given in Refs.
4 and 12 (for example, formula 2.210 of our book ).

%'e need now to compute the matrix elements from
(B1):

H(Xi, +8—5+ )=—

H(2~+ ~8 b, ++)= v—'3H(Xq+ ~8 b+ )

1/2

H(X —+8 Q )
3 0 0 0

b

; &/2
3

2 9

We obtain (remember 8 =bd, 8 = bu—)

H(Xz+ +8 p—)=&2H(X1, +8 p)—=&2H(X1,~8 n)

1

18

(Cg)

H(A1, +Bb, )—=0
To sum up, we have, for the matrix elements (Cl),

&8~1ITIX,&&= —) H~,
with 80 given by (C4) for m =0 and H by (C8), (C9).

2. Excited bsryons

(C9)

(C 10)

1/2

H(A1, -+8 p)= H(A ~—8 n)=—0

6 2

We need also the Xi, ~58 transitions

Let us now compute the couplings Xi",BI1I, %1",85
where %1*, is a b-Aavored baryon —,

' excited state.
The equivalent of formula (Cl) will now become Ithe

wave functions of Xf, are given by (A25)]

(8~II'I&~)=3yg &1, 1;m, —mlO, O&
' (1,S;m;M m'I ,'I&-

I 3

X ( 4 s (35)C ~( 124)lg~ ( 123)J~~,2ii @„„(45))W (Cl 1)

where the Savor wave functions of b baryons Pz are given by (A21), S is the total quark spin, and Iis the J, of Ni, .
The spatial integrals can be either%" or%"' according to the spatial wave function $1 or $1' (816). We find

(C12)

because of the antisymmetry (symmetry) of g', (go) in the exchange 1~2. We find, for the nonvanishing integral,
~3/2

=6(ks+kiv) —,pi, (a„A1, ) [81,D1,(kiiR )6 O5 .0+( —1) +'6 ]exp( —Ci,R k~)b b b b b 8 mO mO (C13)

where ai„P1„A1„81„C1,are given above, and &»ITI~, (q"x-)&= '
) H(~+, , +~~),

3 6

p +2P1 R' +2R
4P 4R

when mb ~m.
After some algebra, we find, for the %1*,8N couplings,

&BXITI~,(q"x")&
= — ) H (~+, ,

—~,-,),6 6

(Bwl T la, (y-~ ) )

6 3
PH (A+ 1 1+MOO)

&»I Tl A, (y"& ) & =o,

where H' is a flavor matrix element

H' = ( piv(124)p;(35) ly~„(»3)y...(45) &

and similarly for the %1*,86 couplings.
We obtain, for the X transitions,

(C16)

(C17)

3&3 YH (~+1—1 ~00)

(BXITIA, (q"y') &
= ) H (Ze", , ,

—m;;)
2 6

(C15) H'(2~+~8 p)=v'2H'(X1, ~8 p)=&2H'(X1, ~8 n)
v'2

3
(C18)

and, for the %1*,8b, couplings,
H'(Ai, ~8 p )= H'(Ai, ~B on )

=-
v'3
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and, for the 5 ones,

H'(Xb ~B b, ++)

v'2=&2H'(X+~B 2(), +)=
b

H'(X„B 6 )= —H'(X B 6+)
1 /2

2
3

(C19)

factor 3 indicates that all polarizations contribute the
same amount) corresponding to the S-wave process
%b ~BN. Also, we see the typical D wa-ve behavior -k~
in (C21), as it corresponds to Xb ~BI(..

APPENDIX D: WEAK MATRIX EI.EMENTS
AT NONZERO-MOMENTUM TRANSFER

1 R'~
ZR'+) 1 A()() =5(k2) +kiev) pb (nb Ab )~~4

X [3—BbDb(k2) R ') ]exp( CbR '—
k2) ),

(C20)

(+%I)()=5(k2) +kiev)
—

5~~ 13b (ab Ab )5/4

XBbDb(k~R )exp( —CbR k2) ) . (C21)

We observe the typical isotropic behavior in (C20) (the

It is instructive to express ZR'+1 1
—%'o'o and

A'+1 )+%0'o that enter in both types of transitions. We
have

In Appendix B we have computed the weak matrix ele-
ments assuming conservation of the spatial three-
momentum. For example, in estimating weak matrix ele-
ments such as (23, ~((H„(Xb ) we have assumed that both
X,(Ab, Xb) and X,(A, , X, ) are at rest. However, as we
have seen in the discussion of our pole model in Sec. II,
we need some extrapolation to go from these matrix ele-
ments where the momentum transfer is null, to the true
residues at the pole, where the momentum transfer is not
vanishing. Let us consider the general case of a b baryon
in the initial state and charmed baryon in the final state,
but assuming a nonzero-momentum transfer, i.e., a
spurion, as in Fig. 12, that has the function of carrying
the three-momentum k.

This calculation will amount to compute the spatial in-
tegrals (840), (851) for nonzero-momentum transfer, i.e.,

and

ffo (»P )4o P P P P» II p' p (Xp (Xp
(2m ) J J

(D 1)

J,b(k)

K,b(k)

Ob (pl, p2)', f IIdp, dp &(gp)+(gpg k)~(P3 P3)40(312)(P3pl P2) 0( )e( )
Wl(372)(P3pl P2)

(21r )' C P&~P2
(D2)

where Ob ', 0,' ' are spherical components of the operators (849).
We find, after some algebra

I„,(k) =Ib, (0)exp
2m +-m,

8u ab c

cx +Ex +6(x ct 24
(D3)

where Ib, (0) is equal to the expression (841) and o.'b, a, are defined in (810). We obtain then, in the equal-mass limit,

R kIo(k) =ID(0)exp
24

(D4)

where Io(0) is given by (811).
Let us now look at the matrix elements (D2). We obtain

J, (k)=[J,(0)6 .+L,R k' 'k' '*]

X exp
3m 8cxb cx

2 2 2

2m +m cx +o! +60! 0!

R k
24

Kb, (k)=[Kb, (0)t'3 +Mb, R k' )k™~*]
2 2 2

3m 8mb a,
X exp

2m +m, o.'„+a,+6a,u,
R 2k2

24
(D5)

where Jb, (0), Kb, (0) are given by (852), (853), for the wave functions of interest g'(', k' ' are the spherical components
of k and
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v'3 „„v'3
I-t', Ip

2 ~ eb Mb Ip fb2mR " ' 2mR

where

(D6)

IIebc

Saba,
u +a+6& A

1x —1—
6

m+m,
1+3+ 2mc

3/2
8cxb Q CXb

a +a +6a a 18&2
3/2

CXb

3&2

28a, 3m

a +0, +6a cx 2m+m
r

3m 8a,
2m +m ~2 +cx2+6A2~2

2a, (1+3ab )

2m +m, u~+a2+6a2a2

1 + 3cxb 4
1+3m'

m +mb

m+m,
2mc

4a, 3m

1+3~ 2m +m
m, —m

2mc
(D7)

%'e will emphasize two points in these formulas. The
factor [3m j(2m +m, )] in the exponential in (D3), (D5),
shows a difference between light baryons and charmed
baryons in the final state: the former will be significantly
more suppressed than the latter.

On the other hand, the coeKcients Lb, vanish when

v'3
(k) =I expPll t7l 0

R k
24

E"
~ =0 . (D8)

mb=m, and the coefficients Mb, vanish when m, =m.
%'e obtain therefore, in the equal-mass limit,
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