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In light of the fact that the presence of the Z penguin diagram suppresses strongly e2 /e in
K ~2~ decay for large values of m„we reanalyze the direct decay-amplitude CP violation in
K ~3~ decays in the Kobayashi-Maskawa model. The effects due to electroweak penguins, isospin
breaking, and higher-order weak chiral Lagrangians are studied in the large-N, approach. We find

that the Li-Wolfenstein relation between e3 and e~ is modified dramatically: the former receives
very large contributions from the higher-derivative chiral terms and sizable contributions from the
isospin-breaking correction due to ~ -g-g' mixing and g, g'~3~ transitions. When the top quark
becomes very heavy, effects of the electroweak penguin terms are enhanced. Unlike e& /e, which
decreases as m, increases, the CP-violating parameter e3„/e is of order 10 and increases with the
heavy top-quark mass.

I. INTRODUCTION

where Htt, (H~) denotes the CP even (-odd-) component
of the weak Hamiltonian, and e and e' are CP-violating
parameters to be discussed later. Using current algebra
(or the lowest-order weak chiral Lagrangians), Li and
Wolfenstein' were able to relate CP nonconservation in
K ~3~ to those in K—+2~. More precisely, they found

I
&+ —o= &ooo= (1.2)

Subsequently, there has been considerable theoretical
work on this subject.

Recently, there have been two reasons for renewed in-
terest in the study of decay-amplitude CP violation
within the K~3~ system. First, modifications on e /e,
which is a measure of direct CP noninvariance in the
K~2~ transition introduced by a heavy top quark, are
significant. It is found that e'/e is strongly suppressed
for large m, through the presence of Z penguin contri-
butions. ' Moreover, the standard model can behave
like a superweak theory for very large m, . It is thus im-
portant to see the effects of electroweak penguins on
direct CP violation in K~3~ decays. Second, it was
conjectured in Ref. 5 that contributions due to higher-
order chiral terms in the weak chiral Lagrangian are very
important since they are not subject to the AI =—,'
suppression. As a consequence, values of e'+ o could be
ar order of magnitude larger than previous anticipation

CP violation in K —+3~ decays can be tested in many
different ways. For example, two of the interesting exper-
imental quantities are
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II. OVERVIEW OF e'/e

We will give a short review on e'/e in the K —+2~ sys-
tem, since many results presented in this section will be
utilized when we discuss CP violation in the K~3~ sec-
tor.

The isospin structure of the K —+2~ transition is

0 + — 1 "oA(K ~sr sr )= —Ape + Aze
3 6

1/2
2
3

(2.1)

A(K ~sr sr )= A2e+ + 0 +3 'sz

where Ao and A2 are isospin-0 and -2 amplitudes, re-
spectively, and 5o as well as 62 are the corresponding S-

from the Li-Wolfenstein relation. However, this asser-
tion was objected to in Ref. 6 based on the argument that,
even in the presence of higher-order operators, the
K ~~+~ ~ decay amplitude remains proportional to
the K ~~ m one, and hence the Li-Wolfenstein relation
does not get modified in the isospin limit. As we shall
see, this important issue is resolved and clarified in the
present paper.

The aim of this paper is to perform a detailed analysis
of e3 /e, paying special attention to the following effects:
isospin breaking, the Z and photon penguin diagrams,
and the higher-order weak-chiral-Lagrangian terms. To
set up the calculational framework and notation, we shall
first give a brief overview on e'/e in Sec. II. The main
task of the study of decay-amplitude CP violation in the
K ~3~ system is presented in Sec. III. Results are sum-
marized in Sec. IV.

Direct CP violation in K ~3~ decays, which can
manifest itself in slope asymmetry or partial rate
differences, will be discussed elsewhere.
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wave ~m scattering phase shifts. Experimentally,

Re A o =4.69 X 10 GeV,

ReAO
=22.2+0. 1 .

co ReA~

(2.2)

Q, =(sd)v ~(uu )v

Qz = (su ) v —w (ud ) v

Q3=(sd)v —~ g (qq)v —~
q

The parameters e and e', which measure CP violation in
the kaon mixing matrix and in the K —+2vr amplitude, re-
spectively, read

Qs=(sd)v —~ X(qq)v+~
q

Q6= —8 & (sL, q~)(q~dL, ),

(2.6)

1;g 1e= e' —e +go
2 2

co
(

i(m/2+5~ —so)

2

(2.3)

r~(sd ) v —w X eq (qq ) v+ w

q

Q8 = —12 g e, (sL, q~ )(q& di, )

q

where

Im A o(q)ImM )~

&z o(z)

and O=arctan(2b, m/I s)=sr/4. It is evident from Eq.
(2.3) that e' is suppressed by a factor of 22. The smallness
of e is very special to K—+~~ decay. Basically, this is at-
tributed to the fact that e' must vanish in the absence of
AI =—', interactions due to the phase-convention-
independent argument. Therefore, decay-amplitude CP
violation in the K —+~m sector is subject to AI =—',
suppression.

Sometimes it is convenient to use the original expres-
sion for e':

ImAz
Xyy(~)&Q, &, 1 ——

l 0
(2.7)

where the summation over the quark Aavors is done only
for the light u, d, and s quarks, and ( V+A ) stand for
y„(1+ys). Physically, the four-quark oPerators Q3, Qs,
and Q6 are induced by the gluon-penguin diagrams,
whereas Q~ and Qs are electroweak-penguin operators.
The numerical results for the Wilson coeKcient functions
c;(p) are given, for example, in Refs. 3 and 4.

With the shorthand notation & Q, &0 z= &(sr~)~ 0z~Q;(p) K &, it follows from Eq. (2.3) that

GF
(Iml, , )

. Im~(xo ~+~-)
E =l

Red(E ~~+m).ImAo

ReAO

ImAO

Re AO

ImA(K rr rr )
26 =l

ReA(K +sr m' )— (2.4)

where y;(p) =Imc,.(p)/Imr, r= —
A, , /A, „,and A, = Vd V„*.

Since the QCD penguin diagram in general gives the
dominant contribution to direct CP violation, it is con-
venient to recast e'/e in terms of & Q6 &0..

This enables us to easily see the connection between e'

and e'+ 0 or @000. Note that the Presence of Imago/ReA0
is necessary in order to ensure the rephasing invariance
of the physical parameter e'.

The AS=1 effective Hamiltonian at low energies has
the form

(Imk, , )y6& Q6 &0(1 —0„,),

where

stot QgB+ AE~p+ Qo&t+ Ap7+ Ap

with

(2.8)

(2.9)

aS=& F—V„d V„*, pc;(p)Q;(p) .
2

(2.5)

To evaluate the Wilson coefficient functions c, (p, ) at the
renormalization scale p, one first computes all relevant
diagrams at the mass scale M~ and then integrates out
the heavy quarks and the 8 boson using the standard
renormalization-group analysis. The relevant diagrams
contributing to the ES=1 Hamiltonian are the gluon-
corrected four-quark-operator diagrams, the QCD
penguin diagrams with gluon exchanges, the
electroweak-penguin diagrams with Z and photon ex-
changes, and the 8'-mediated box diagrams involving the
external b quarks. The importance of the Z penguin di-
agram in the presence of a heavy top quark was em-
phasized recently. '

The relevant four-quark operators at the scale p & m,
are

1 y~&Q7&~+ys&Qs&3

y6& Q6 &o

y7 & Q. &o+ys & Qs &o

y6&Q6&o

yi & Qi &0+ye& Qz &0

y6&Q6&o

y3 & Q3 &0+y5 & Q5 &0Ap=-
y6& Q6 &o

1 yl & Ql &2+y2& Q2 &2

y6& Q6 &0

ImA~
Q(B—~ ImA, '

(2.10)

where Q,B is the contribution due to isospin-breaking
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~-g-g' mixing.
The effect of isospin breaking is" '

where U=exp(2ig/f ), Tr(A, 'k )=25', P=P'A;/&2,
and

md —m„
(2.11)

2

u(p) =
m„(p)+md(p)

2m +

m„(p)+m, (p)
with

gz=(cos9 —+2 sm8)(cos8 —V'2 ~ sing)1+5

+ (sin8+ +2 cos8) sin8+ +2 cos01+5
2 2m„—m„
2 2m„—m

(2.12)

2m

md(p)+m, (p)
(2.17)

characterizes the quark order parameter (qq), which
breaks chiral symmetry spontaneously. The parameter
L~ in Eq. (2.16) is the coupling constant of the higher-
order chiral term' Tr[B"U B„U(M U+U M)], which
contributes to the difference of the decay constants f»
and f (Ref. 17):

where 0= —20' is the g-g' mixing angle, and the parame-
ters p and 6, defined in

—1=8L5
m~ m2 2

(2.18)

& g, l~~l&'& =(&1/3)(1+&)(~'lH l&'),
(2.13)

&no Hw &'& = —2«2/3)p& ~'lH~I&'&,

measure the breakdown of nonet symmetry in the K -go
transition and of SU(3)-fiavor symmetry in K -gs, respec-
tively. The experimental measurement of direct emission
of K~ ~~ ~ y in conjunction with the data of K~ ~yy
indicates that' p =0.78+0.05, implying that nonet sym-
metry for pseudoscalar mesons holds at the level of
(20—25)%. The SU(3)-breaking parameter 5 is estimated
to be 0.17 in Ref. 14. Hence, numerically,

n„=0.23, (2.14)

l 2
(Q, )o= — ——1 f (m» —m„),

3 N
1/2

(g)=i 2
1 2

—+1 f (m» —m ),

i 1(Qp)o= — 2 ——f (m» —m ),
3 N

&g, &,=&g, &, ,

& g, ),=~ f.(m —m. ),

(2.15)

(g, ),=o,
where N is the number of colors. To evaluate the matrix
elements of the QCD penguin operators Q~, Q6 and the
electroweak penguin operators Q7, gs, we note that the
chiral representation of quark densities is (see Sec. 4.3 of
Ref. 7 for details)

2

uU, —2L&u(B„U B~U U),"+, (2.16)

for ( m d
—m „)/m, =0.022. The original estimate

0&~=0.27 given in Ref. 12 is for p= 1 and 5=0.
The hadronic matrix elements of Q„gz, Q3 can be

easily obtained in the vacuum-insertion approximation;
they are' (f =132 MeV)

Let us write

f2

L5=—
x

(2.19)

with A»=1 GeV (Ref. 18) inferred from the experimental
measurement of f» If

In the large-N limit, the chiral realization of Q6 and Qs
can be obtained by substituting (2.16) into (2.6) (Q being
the 3 X 3 quark charge matrix):

U
2

Q6= f Tr(—A, 6B„U d" U ),
A~

Qs = —
—,'f u Tr(A6U QU),

(2.20)

where only the leading terms are kept. Equation (2.20)
for the QCD penguin operator was first obtained in Ref.
19. The fact that the gluon-penguin-induced K~2~
transition vanishes in the limit of SU(3) symmetry and in
the limit of zero pion and kaon momenta, as first ob-
served by Shifman, Vainshtein, and Zakharov, is mani-
fest in the explicit chiral representation of Q6 [i.e., chiral
suppression by (1/Ar)]. As we shall see in the next sec-
tion, a next-order chiral expansion for both QCD and
electroweak penguin operators is required for the study
of K —+3m. Now it is easy to obtain the hadronic matrix
elements of penguin operators from Eq. (2.20):

2 2

(g, ),= —i4&3f.u™,, (g, &,=O,
A~

(g, ),=(g, ),/N, (g, &,=o,
(g, ),=i2&3f u', (Q, &,=i&6f u',

(Q, ) =(Q, ) /N, (Q, ),=(Q, ) IN

(2.21)

As will be explained in the next section, we shall calculate
E3 /6' in the limit of large N in order to have a reliable es-
timate on the effects of higher-order weak chiral La-
grangians. Hence we should also present the results of
ez /e in the same 1/N approach. It is evident from Eqs.
(2.15) and (2.21) that only the matrix elements
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TABLE I. Values of 0; and e'/e for K ~2~ as a function of m, . Coefficients y;, which are evaluated at @=1 GeV and

AQcD 100 MeV, are taken from Ref. 3. Hadronic matrix elements are evaluated in the large-X approach.

m,
(GeV)

75
100
125
150
200
250

0.031
0.030
0.028
0.027
0.023
0.018

y2

—0.036
—0.036
—0.036
—0.036
—0.035
—0.035

—0.054
—0.055
—0.057
—0.057
—0.058
—0.059

y7/o.

—0.080
—0.065
—0.042
—0.012

0.064
0.159

0.000
0.013
0.031
0.054
0.110
0.181

0.06
0.06
0.06
0.06
0.05
0.05

—0.09
—0.11
—0.14
—0.16
—0.21
—0.29

+EWP

—0.12
—0.04

0.08
0.22
0.57
1.00

+IB

0.27
0.27
0.27
0.27
0.27
0.27

+tot

0.11
0.18
0.26
0.39
0.68
1.03

0.81 X 10
0.76 X 10
0.71 X 10
0.59 X 10-'
0.31 X 10

—0.03 X 10-'

(Q& ), (Q2), (Q6), and (Q& ) are relevant in the lead-

ing 1/X expansion. It is straightforward to show

2
2y2 —

y& A

12y6

standard Kobayashi-Maskawa (KM) model of CP viola-
tion is rnilliweak in nature for m, —100 GeV, but it can
behave like a superweak theory for m, ~ 200 GeV.

III. DIRECT CP VIOLATION IN K ~3m

y&+y2 A&
2

Q27=—
26+2co g6 U

(2.22) A. Li-Wolfenstein relation and its modi6cations

Q
1

EWP
1 —&2' 3'7+ 33's

3y6

A~
2 2mz —m

The K —+3~ decay amplitudes are conventionally
parametrized in powers of the Dalitz variables:

Imz, = W'X'g, (2.23)

in the Wolfenstein parametrization, where A is fixed by
the measured V,b to be 1.0+0. 1. For the CP-violating
parameter g, we will take g=0.25, which is consistent
with the constraints inferred from observed e and B -B
mixing. Equation (2.8) then leads to

I = —1.69 X 10 y6(1 —Qto, ), (2.24)

where use of m, =150 MeV and Eqs. (2.2) and (2.21) has
been made. Numerical results are displayed in Table I.
It is evident that e'/e is strongly suppressed by the pres-
ence of Z penguin diagrams for large values of m, . The

It should be stressed that naively the contribution of the

Q7 operator to QEwp vanishes in the leading 1/N expan-
sion. However, since the coefficient y7 is substantially
larger than y8, its net eff'ect could be important. This re-
quires a calculation of (Q7) to subleading 1/N correc-
tions, which is not available at present. Hence we will
follow Ref. 3 to use the vacuum-insertion relation
(Q7 ) =(Qs )/3, consistent with recent lattice calcula-
tions. '

To have a numerical ana1ysis of e'/e, we first note that

X2 (E~3vr)=a+bY+cX+d Y +
3

X+e Y—
3

(3.1)

where

ImA(K sr+sr ~ )
+, p=l

p + — pRed(K ~~ m ~ )

Imdp

Redo
(3.2)

Imdp
Re Ao

ImA(K ~~~ )
ppp Red(X +sr ~ m )—

In the chiral-Lagrangian approach, the K~3~ am-
plitudes are related to K ~2~ ones by

Y=(s3 —so)/m, X=(sz —s, )/m

s, =(k —p;), so=(s, +s2+s3)/3,
with k and p; being the four-momenta of the kaon and
pion i (the subscript 3 is assigned to the "odd" pion). Us-
ing current algebra or the chiral Lagrangian, one can re-
late both CP-conserving and -violating K~3~ ampli-
tudes to those of K —+2~.

From Eq. (1.1) we have

A (K' ~+sr ~')=— 2

. Ao — 2Aq+3 Ao+
3 6 ~ m~ m

5 9—z A2
2&2 2&2

2m
Y

m~

9 m+ —(3+z) A 2X
2 2 m~

2

A(K +~ vr vr )= — — — (Ao —&222),&6 f m~ —m'

(3.3)
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where z =m /(mx. —m ). It is worth emphasizing that
the X-dependent term in K ~m+~ ~ and the propor-
tional factor i between %~3~ and %~2m amplitudes
are often missed in the literature. The former constitutes
the leading energy dependence of Kz~~+~ m in the
Dalitz plot, while the latter is required by PCAC (partial
conservation of axial-vector current). It is evident from
Eqs. (2.1) and (3.3) that the K —+3~ amplitude is propor-
tional to IC ~sr n at the origin of the Dalitz plot (i.e.,
X= Y=0) for n+ m 1r and at any Dalitz point for

Therefore, when final-state interactions are
neglected, we have

Ima NL
) . Ct) 0
NL= l

&2 ReAN'
(3.8)

«+ —0 NL( + —0 + —0 + —0)

with

(3.9)

Likewise, we can define the analog quantities forE'-- ' --',

«'+ 0= —2«' (at X= Y'=0),

«000= —2«' (at any Dalitz point),
(3.4)

which is the well-known Li-Wolfenstein relation. Two
comments are in order. First, we have ignored final-state
isospin phase shifts in deriving Eq. (3.4). Second, the re-
lation (3.4) holds as long as the weak nonleptonic Hamil-
tonian obeys the commutator relation {a

[Qi ~ES=I
j [Qi ~ES= I

] (3.5)

where Q~ and Q' are the axial-vector and vector charges,
respectively. This commutator relation is respected in
the KM model and in the Weinberg model of CP viola-
tion.

Just as «'/«discussed in the previous section for the
case of %~2~, the Li-Wolfenstein relation is expected to
be modified by the effects of electroweak-penguin dia-
grams and the isospin-violating m-g-g mixing. However,
as pointed out in Ref. 5, there is a new feature relevant
for E ~3m: the higher-order terms in the weak chiral La-
grangian. The four-derivative chiral terms, which do not
contribute to K~2~, are in principle important since
their contributions to direct CP violation in %~3~ are
not subject to the AI= —,

' suppression. In fact, as will be
shown later on, this higher-order chiral effect turns out to
be the dominant correction to the Li-Wolfenstein rela-
tion.

To have a quantitative description of the aforemen-
tioned three effects, we will write

K

{c)

A(~0 3 )= ANL+ AIB+AEwP+ AHO

0 NL IB EWPA pig)(K ~277) A pip) + A 0121 + A 0121

where 2, A, 2, and A, respectively, arise
from nonleptonic weak interactions, isospin-breaking
effects, electro weak penguin diagrams, and higher-
derivative chiral terms. Since the nonleptonic com-
ponents of K —+3~ and K ~2~ amplitudes are related by
current algebra or chiral Lagrangian, Eq. (2.8) can be
written in the form

«NL( l +EWP IB) ~

with (final-state interactions being ignored)

(3.7) FIG. 1. Diagrams contributing to K ~m+m. ~ decay am-

plitudes via the electroweak-penguin interaction denoted by a
black dot.
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~EWP 1
+ —0

IB 10+ o= 2'

1m a 'w'(K'~~+~-~')
ReA(K ~rr+rr vr )

ImA' (K ~+~ 7r }

Reh(K ~vr+vr ~ )

A EWP
0

ReA0

ImA0

ReAo

Re

ImA N"

ReA N"

ImA
(3.10)

WHO
Im~" (K' ~+~ ~') Re~o'

'i/2' Red(K ~rr+7r ~ ) Imago

and similar definitions for K +sr —vr m Th.e expression for II+ o (or Oooo) needs some elaboration, as we will discuss
in Sec. III D.

From Eq. (3.10) it becomes clear that contributions not related by current algebra or PCAC can be potentially impor-
tant owing to the lack of EI=—,

' suppression. Moreover, one may argue that higher-order terms in the weak chiral La-
grangian provide the dominant corrections. This is attributed to the fact that effects of isospin breaking and elec-
troweak penguins are subject to the suppression of the smallness of isospin violation characterized by (md —m„)/I,
and of the fine-structure constant a, respectively. On the other hand, the chiral effects at higher order are suppressed
only by factors of mz/A&. This conjecture is indeed confirmed in the subsequent calculations. In the following sections
we will discuss each effect in detail.

In the present paper hadronic matrix elements are evaluated in the 1/X approach (except for the operator Q7). This
is because not only this approach is superior to other methods (see, e.g. , Ref. 3) at present, but also it is the only method
available today which allows us to estimate the higher-order chiral effects of four-quark weak operators. Since meson
loops are suppressed in the leading 1/X expansion, we shall therefore neglect final-state interactions for reason of con-
sistency.

B. Eft'ect of electroweak penguins

From Eqs. (2.10), (2.21), and (3.10), we find that

~EWP 1
+ —0

(Ko + — o) Reao"
+~EWP

Reg(Ko~m+m m ) Imago"
(3.1 1)

to a good approximation. Hence, even if the electroweak penguins do not contribute, 0+ 0 is no»ero.
the direct K ~3~ transition induced by the electroweak-penguin operators, there are also pole diagrams as depicted in
Fig. 1.

It turns out that the contributions of electroweak penguins at the center of the Dalitz plot are also chirally
suppressed, just as the case for the @CD penguin. This can be seen as follows. First, it is easily seen from Eq. (2.20)
that the electroweak-penguin operator Q8 does not lead to a direct K ~~+~ vr transition

& ~+~-~'IQ, IK') „„„,=0 . (3.12)

Second, because

&~'IQslK'&=0, &~+IQ, IK+) = 3f'.U', —

the only relevant pole diagram is Fig. 1(d) with the result

V
2

&~+~-~'IQ, IK')=, , I'. I ——x
2 2 m~ m 3

(3.13)

(3.14)

Hence there is no electroweak-penguin contribution to X —+~+~ ~ at the origin of the Dalitz plot. For K ~~ ~ ~,
the reason for chiral suppression is quite clear: The hadronic matrix elements of Q8 and Q6 are the same in the
vacuum-insertion method except for the overall constants. In order to see the electroweak-penguin effect, we thus have
to go beyond the leading-order chiral expansion. From Eqs. (2.16) and (2.6), we obtain

Q8
————f4U~ Tr(16U QU}+ Tr(A6U QUB„UB"U +A6B~U8"U U QU)

x

(3.15)

Since the same eifect in K~2m is not chirally suppressed, the first term on the right-hand side (RHS) of Eq. (3.11) is ex-
pected to be smaller than Qz„. It is then straightforward, though somewhat involved, to apply the higher-derivative
chiral realization of Qs to calculate the Qs-induced K~3m amplitude via Fig. 1. The pole contributions are calculated
using the lowest-order chiral Lagrangian for strong interactions,
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2 2

Tr(B U 8"Ut)+ Tr(MUt+ UMt),s 8 P,

where M is a meson mass matrix with the nonvanishing matrix elements

M11 =M22 =m, M33 2m+ —m2 2 2

(3.16)

(3.17)

+ — o o +» 2(~+~-~' Q, ~K'& =, , m', (3.18)

at the center of the Dalitz plot.
It is well known that the prediction of the constant term a in the Dalitz amplitude [Eq. (3.1)] by current algebra is too

small by 18% when compared with experiment. In Ref. 24 (see also Ref. 26) we have shown that the inclusion of large-
N higher-order Lagrangians can account for this discrepancy. At the origin of the Dalitz plot, the amplitude is given
by [see Eq. (3.3)]

Red(K +vr+rr —7r )—=— i 1 m~ m m
(Reg NL

)
3&6 f m2 —m2 3 A m

(3.19)

Hence the first term of Q+ 0 becomes

1 ImA (K ~a+a 7r ) Re~o
&2' Red(K vr+rr rr ) Imd

1 mz 2 m~ m y7+ 3ys2 2
—1

1+— 1 —3
2V'2& mK2 —m'. 3 Ax mK 3y6

(3.20)

y7+ 3ys

3y6

where the &2' term in the numerator has been dropped. Hence

where ImA o has been approximated by y6( Q6 )o and use of (2.21), (3.18), and (3.19) has been made. [As explained in
Sec. II, the contribution of the Q7 operator should be included because of the large coefficient y7 relative to ys. ] When
compared with Qz given by Eq. (2.22), it is evident that this contribution is suppressed by a factor of mx /A&, as ex-
pected.

Equations (2.22), (3.11), and (3.20) lead to the final result for II+

A m m m
1+ 1 3 (3.21)

2+2co

y7+ 3ys~EWP+ —0
y6

(3.22)

As for K —+3w, we note that the calculation can be simplified in view of the fact that the K 3m matrix elements of
Q6 and Qs are related in the vacuum-insertion method via

(~'~'~'~Q, ~K') = ,'(~'~'~'~Q, —~K—') .

Using the chiral realization of Q6 given by (2.20), we obtain

(3.23)

(3.24)

Since, at the center of the Dalitz plot,

ReA(K ~3')=—— m~ m m
(Redo") 1+— 1 —3 (3.25)

we find

ooo
1 y7+ 3ys

2v'Z 3y,

A 2

, +2&v
m~ m m& —m

2
—1

m
1 —3

2m~
(3.26)

or

y7+ 3ys~EWP
3y6

(3.27)

Evidently, the effect of electroweak penguins in K ~3~ is 2 times as large as that in E ~~+~
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C. Isospin-breaking eft'ect

When up- and down-quark masses are not equal, it is clear from Eq. (2.16) that the quark mass term

= —m„uu —mddd —m, ss

can induce ~ -g-g' mixing

B=B(vr abls+ +2~ rjo)

and g8, go~3~ transitions

2 B
(q +&2r) )(~+~ ~ +3~ vP~ ),

(3.28)

(3.29)

(3.30)

with

md —m„
B = U(md —m„)= —(mx. —m )

3 3 m
(3.31)

There are five diagrams (see Fig. 2) contributing to the decay K +3' via v—r rI ri' mi-xi-ng and g, g' +3vr t—ransitions.
However, as will be seen shortly, only two of them are relevant for our purposes.

To compute the amplitudes of Fig. 2, we shall use the lowest-order effective chiral Lagrangian for octet AS =1 weak
interactions,

X~=gsTr(X6B„UB~U ),
to describe the K-g8 and K-go transitions

1/2

(~,(k)~X ~K'(k)) = —2—
3

(3.32)

(3.33)

For simplicity in the ensuing discussion, we will not consider SU(3)- and nonet-symmetry breaking as parametrized in

Eq. (2.13). Moreover, we will assume m =0 in order to simplify our calculation. It is easily seen that under this ap-
proximation Fig. 2(b) does not contribute to K ~3' Figure 2.(c) also vanishes because of the vanishing strong scatter-
ing rl~~rlm in the limit of m =0. Figure 2(e) contributes to K 3' only at regions off the origin of the Dalitz plot.
Consequently, when working at the center of the Dalitz plot, we have to consider only Figs. 2(a) and 2(d). The resulting
amplitude is A (K +n+n n —)= A(a)+ 3 (d), with

A (a)=— 5

6

A (d)=4 2
3

2&2 . 2&2
cosO — sinH (cosH —+2 sinH)+ sinH+ cosO (sinH+V2 cosH)

5 5

1/2

4
B (cosO+2&2 sinO)(cosO —&2 sinO)+ —(sinO —2&2 cosO)(sinO+V2 cosO)

4

2
m~

2
m~

2m

2 2m„. —mz

. (3.34)

where use of the relation 3m „=4m+ has been made. Recasting the isospin-breaking effect in terms of the isospin-zero
K ~2~ amplitude

Ao=i4&3, (mx —m ), (3.35)

the full isospin-breaking corrections to the K ~~+a. ~ amplitude are

~ "(Ko ~+~ ~o) =i " y~+-om, —m„
6v'3 f. (3.36)

where

5 2&x .= (cosO —&2 sinO) 2(cosH+ 2&2 sinO) ——cosO — sinO3 4 5

2
1 m~+ (sinO+ +2 cosO) —

( sin H —2+2 cosO)
2 m ~ m~

Our result is in agreement with Ref. 6.

5 . 2&v
4

sin L9+ cosO
5

2m

2m ~~

(3.37)
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In order to compute 0+ 0, we still need to know the K"—+2m amplitude induced by ~ -g-g' mixing

3 ' (K ~2') = —— y2A (K ~2~),
2 m~

(3.38)

with yz being given by Eq. (2.12). Using the fact that the isospin-breaking effect does not modify the K +a+—mam. pli-
tude, we find

IB 1

3

and, hence,

Ima 0IB

imW N"
md —m„

6 m,
X2

(3.39)

(3.40)

2
2 m 2

1+— 1 —3
A~ mK

md muIB 1++—0
2co

Note that the isospin-breaking effect is independent of the top-quark mass. Numerically,

Q+ 0=0.71,
for (md —m„)/I, =0.022. This is to be compared with 0 =0.25 in the case of K 2'.

Repeating the same calculation for E ~3~, we find

From Eqs. (3.40), (3.36), (3.19), and (3.10), we are ready to write down the final result for 0'+
—1

(3.41)

(3.42)

IB 1
+000 2'

with

md m~ m1+2 K

A~

m 2

1 —3
2

mK
(3.43)

= (cos8 —+2 sin6)) 2(cos0+ 2+2 sin8) — cos0 — sin6)000 5 2&2 .
12 5

2
1 m„+ (sing+ V2 cosg) —(sinO —2+2 cosg)
2 m ~

—m K

5 . 2&v
12

sinO+ cosO
5

2m„
2m„.

(3.44)

Consequently,

0, =0.56 .

The main uncertainty for 0+ 0 and 0000 is due to the assumption of nonet symmetry and vanishing m

(3.45)

D. EKect of higher-order chiral terms

It was conjectured in Ref. 5 that the Li-Wolfenstein relation (1.2) receives a large modification from the higher-order
components of weak chiral Lagrangians, i.e., e+ 0 10'' ~ On the contrary, the authors of Ref. 6 claimed that in the
large-N approach it is not modified by the inclusion of next-to-leading chiral terms. To resolve this issue, let us first re-
view the argument presented in the latter reference. We will confine ourselves in this section to the nonleptonic part of
the b,S= 1 effective Hamiltonian given by Eq. (2.5).

As mentioned in Sec. II [cf. Eq. (2.21)], only the hadronic matrix elements of Q&, Q2, and Q6 survive in the leading
1/N expansion. Therefore, Eq. (2.5) reduces to

GFjef '( 1/N)= —V d V„*,[b, (Q~ —Q, )+b2(Q2+2Q, )+b6Q6]
2

(3.46)

where b&=(2c2 —c&)/3, bz=(c& c+)/23, and b6=c6. The combination (Q2 —Q&) is a bI= —,
' four-quark operator

which transforms as (8L, lz) under chiral rotation, while (Qz+2Q&) is a 27-piet b,I=—,
' operator. The lowest-order

chiral representation of (Qz —
Q& ) in the large-N limit reads

Q2
—Qi =— 4

4
Tr(16L„L"), (3.47)

where L„=(B„U)U is an SU+ (3) singlet. It follows from Eq. (2.20) that
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(3.48)

to the first order in the chiral expansion. Since nonleptonic decay-amplitude CP violation is governed by the penguin
operator Q6, we have

ImA(K ~3~)
ReA(K ~3~)

LO

Imb, ( g, );o
Reb, (Q2 —Q, )3 +Reb2(Q2+2Q, )3 +Reb6(Q6)3

ImA(K ~2~ )

ReA(K ~2~ )
(3.49)

where the last identity comes from current algebra or lowest-order weak chiral Lagrangian, and (Q; ) 3—:(3~ Q, lK ).
In the large-N approach, the higher-derivative chiral representation of (Q2+2Qi ) is derivable. First, in the absence of
gluonic corrections to all planar graphs, the nonanomalous higher-order strong chiral Lagrangians arise from the in-
tegration of nontopological chiral anomalies. Hence bosonization of the quark currents can be done to the next-to-
leading order in chiral expansion. This in conjunction with the validity of factorization in the limit of large X enables
us to derive the higher-derivative chiral realization of (Q2+2gi ), as given by Eq. (3.9) of Ref. 29. We find

( g +2g )Ho

(g, +2g, &;

(g g )Ho

(g g )Lo (3.50)

at the center of the Dalitz plot [see Eqs. (13) and (14) of Ref. 24; the higher-order representation of (Q2 —Q, ) is given
by Eq. (3.55)j. Now it becomes clear from Eqs. (3.46) and (3.48)—(3.50) that the K ~3m amplitude will still remain pro-
portional to the K ~2~ one, even in the presence of higher-order chiral corrections if the chiral realization of the
penguin operator at higher order is the same as that of (Q2 —Qi ), as originally assumed in Ref. 6. Consequently, the
Li-Wolfenstein relation does not get modified.

Crucial to the above argument is the assumption that the penguin operator Q6 and the b,I=—,
' operator (Q2 —Q, )

have the same higher-derivative chiral realization. However, this is not the case; we are going to show that the ratio of

(g )Ho

(g g )HO ~2 (3.51)

has a parameter P different from four [cf. Eq. (3.48)]. That is, these two operators behave differently at higher order.
Consequently, we have

ImA(K ~3~) ImA(K +2' )—
Re A (K ~3'�) Re A (K —+2m )

(4/P —1)(g, ),"
(g &; +(4/p)(g )",

(3.52)

where the term

(g )Ho/(b (g g )Lo+Ho+b (g +2g )Lo+Ho+b (g )Lo+b (g )Ho)

(3.53)

has been neglected. ' It follows from Eq. (3.9) that

HO i ImA(K ~277 ) 4 (3'rlg6
2eNL ReA(K ~2~ ) 13 (3~IQ6 +(4/p)Q6

4, (3~lg6
3/2' P (3~ Q6 +(4/P)Q6 K )

is nonzero when I3&4 and can be very large since it is not subject to the AI =—', suppression.
Qne can employ either (3.53) or (3.10) to compute the higher-order effect Il . To determine the parameter p defined

in Fq (3.51), we need to know the higher-derivative chiral representation of Q6, which can be obtained from Eqs. (2.6)
and (2.16):

o 1 4 U
QH6o = — f Tr(A&L„L"L,L ')— (3.54)

Moreover, from Ref. 32 we have
2

(g g )HO ~ @HO
4 (3.55)
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with

6 o=h, Tr(A6L„L "L L")+h2Tr(&.6L„L,L "L )+h3Tr(A6L„L,L'L")

+h4Tr(g6L L )Tr(L "L )+h&Tr(X6YY)+h6Tr([A6, Y]L„L")+h7Tr([X6,Y„,]L"L ),
where

3A] = 62=64=366= 367=
2 h3 =65 =0N

8~

(3.56)

(3.57)

and Y =(g g U)Ut Y = Y —Yt, and Y=gi' Y„,. From Eqs. (3.54) and (3.55), it is obvious at this point that the
structure of Q6 and (Q2 —Qi )Ho is not of the same form. After some manipulation, we find~ for l3~) = l~+'ir
or ~'~'~' ,

(3~lg, lK')"
(3 lg g KO)Ho

&3 IQ, IK'&"

&3~lg, lK')'
1 mK

2

A~

m~2
1 —3

2mz
(3.58)

and hence P= l. Substituting (3.58) into (3.53) yields

2

0 1 mr&

3/2' A x

2m
1 —3

2m~

mK
2

1 ——
Ax

2m
1 —3

2m~
(3.59)

[Note that the pole contribution due to the four-derivative strong chiral Lagrangian should be taken into account in the
denominator of (3.53).]

Care must be taken when Eq. (3.10) is employed to evaluate A . Let us write Q6= —4(U /Ar)(Q2 —Q, )+Q6. It
follows from (3.54) and (3.55) that

2 4

g =U 8 —— Tr(k L Li'L L )
A4 6 P

x x
(3.60)

As discussed before, the higher-order chiral terms of the first piece of Q6 do not contribute to 0 . Hence one should

apply the higher-derivative operator Q6 to compute the imaginary part of A (K ~3~). The Q6-induced K~3rr
transition is found to be

&3~'l06lK') =3&~ ~-~' g, lK'& = mx- m

A~ m~

It is easy to check that this leads to the same result as (3.59).
Since, numerically,

~HO ~HO

(3.61)

(3.62)

it is evident that the Li-Wolfenstein relation between e& and ez„gets a very large modification from the higher-
derivative chiral terms. Furthermore, the higher-derivative chiral correction dominates over the effect of electroweak
penguins and isospin breaking, as expected.

E. Numerical results for ez„/e

We are now in position to present the numerical results for 63 /e. From Eqs. (3.9) and (2.8), we have

GF
l

~™t36(Q6 0 oct 27 P 3 3 3Redo ~e

=4.82X10 y6(1 —03") . (3.63)

Hadronic matrix elements have been evaluated in the
large-X approach in the previous sections (note that in
this framework Q =0). Analytic expressions forQ, II, and A are given by (3.22), (3.41), and
(3.59), respectively, for K ~m vr ~, and (3.26), (3.43),
and (3.59), respectively, for K ~3m . It is worth em-
phasizing that effects of isospin breaking and higher-
order chiral terms are independent of the top-quark mass.

From Table II or Fig. 3 we see that direct CP violation
in the K ~3~ system behaves in a way drastically
different from that in the K~2m sector: e3„/e is in gen-
eral of order 10 and increases with the heavy-top-
quark mass, contrary to the decreasing ez le with m, .
As stressed in passing, the lowest-order relation between
63 and ez can be significantly modified by the inclusion
of the higher-order chiral effect because of the absence of
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AI =
—,
' suppression for the latter. Effects of isospin

breaking and Z penguin diagrams, though not as
dramatic as the higher-derivative chiral terms, are by no
means less important than the counterparts in K —+2m

0 015 ~ ~

I
~

0.010—

I ~ 0

I
& ~ I ~

I
~ ~ j

0.005—

0.000—
I

100
~ s a I s ~

150
~ s I s t i I

300 P50

m, (Gev)

FIG. 3. Values of e2 /e (solid curve), e'+ p/e (dotted curve)
and 6ppp/E' (dashed curve) vs the top-quark mass.

transition. The combined result of all those three effects
leads to a large e3 signal, which is an order of magnitude
larger than previously estimated. Unlike a possible su-
perweak behavior of ez /e in the standard model for very
large m„a strong signal of e3 /e is always expected, ir-
respective of the top-quark mass.

{e}

FIG. 2. Diagrams contributing to K ~~+~ ~ decay am-
plitudes via ~ -q-q' mixing and g, g'~3m transitions. The
black box represents the isospin-breaking interaction, and the
black dot denotes a weak transition.

It was realized recently that decay-amplitude CP viola-
tion in the K ~2~ sector characterized by the parameter
e'/e is strongly suppressed by the presence of Z penguin
diagrams for very large I, . The standard KM model of
CP noninvariance is milliweak in nature for m, —100
GeV, but it can behave like a superweak theory for
I, +200 GeV.

As for K —+3m decay, direct CP violation { 3„ is related
to that in K —+2~ via the current-algebra Li-Wolfenstein
relation e3 = —2ez (final-state interactions being
neglected). There are three important corrections to this
relation: isospin breaking, electroweak penguins mediat-
ed by Z and photon exchanges, and higher-order
effective weak chiral Lagrangians. Corrections due to
those three effects are potentially large because of the
lack of AI =

—,
' suppression. However, owing to the small-

ness of the isospin-breaking effect and of the fine-
structure constant, it is expected that the higher-
derivative chiral effect dominates the modification to the
Li-Wolfenstein relation as the chiral suppression is of or-
der mz/A+. The aforementioned three effects are studied
in the 1/N, approach. Especially, this method enables us

to estimate the effects of higher-derivative chiral terms in
the weak chiral Lagrangian. Since we work in the lead-
ing 1/N, expansion, final-state interactions are con-
sistently neglected.

Just as the QCD penguin, we find that, at the center of
the Dalitz plot, contributions due to electroweak
penguins are also chE'raOy suppressed. This means that a
chiral expansion of the electroweak-penguin operator to
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TABLE II. Same as Table I except for %~~~++ ~ and ~ ~ ~ . The values of e,' /e are obtained at the center of the Dalitz plot.

m,
(GeV)

75
100
125
150
200
250

—0.054
—0.055
—0.057
—0.057
—0.058
—0.059

027+ n.„
—0.03
—0.05
—0.09
—0.10
—0.16
—0.24

~HO

3.66
3.66
3.66
3.66
3.66
3.66

—0.10
—0.03

0.06
0.17
0.45
0.78

~EWP
000

—0.20
—0.06

0.12
0.36
0.92
1.62

Q+ ()
IB

0.71
0.71
0.71
0.71
0.71
0.71

IB
&000

0.56
0.56
0.56
0.56
0.56
0.56

4.24
4.29
4.34
4.44
4.66
4.91

&oo'0

3.99
4.10
4.26
4.47
4.98
5 ~ 59

e+ —0/e

0.84 X 10
0.87 X 10
0.92X10 '
0.95 X 10-'
1.02 X 10-'
1.11 X 10-'

&ooo/&

0.78 X 10
0.82 X 10
0.89 X 10-'
0.95 X 10-'
1.11X10 '
1.31 X 10-'

higher order is necessary in order to evaluate the effect of
the Z penguin diagram. The isospin-breaking effect is
manifest in K —+3m via ~ -g-g' mixing and via g, g' —+3~
transitions.

Since nonleptonic direct CP violation is governed by
the QCD penguin operator Q6, a higher chiral effect on
e3 can occur if Q6 and the AI =

—,
' operator ( Q2

—Q &
)

behave difFerently at higher order. It is the assumption
that the operators (Qz —Q, ) and Q6 have the same
higher-derivative chiral realization that leads to the pre-
vious claim that the inclusion of the next-to-leading
operators does not modify the Li-Wolfenstein relation in
the isospin limit. We have shown in the present paper
that this is not the case, especially for the CP-violating
part. The different behavior of the above two operators
at higher order actually accounts for the main bulk of the
corrections to e3 .

We find a substantial enhancement of e3„due to the

higher-order chiral terms in the weak chiral Lagrangian
and sizable corrections due to isospin-breaking effect and
electroweak penguins. The overall effect is that e3 /e ap-
pears to be of order 10 and increases (though not very
sensitive) with m, . Unlike ez /e in the case of K~2~,
there is no "superweak" region for e~ /e for any allowed
region of I,. Therefore, if the top-quark mass turns out
to be larger than 200 GeV, a large signal of decay-
amplitude CP violation is expected to be seen in the de-
cay K —+3~ rather than in K —+2~.
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