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Tagging the two sources of CP violations in the decays Its - yy and X& - yy
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The author describes how the parameters representing the two sources of CP violations, the CP
impurity in the state functions of the neutral kaons Kz and KL and the CP violation in the transition
matrix, can be obtained from the measurements of the form factors in the decays Kz —+yy and

xr.

I. INTRODUCTION

The manifestation of CP violation in the decay of the
neutral long-lived kaon into two pions has remained an
enigma for more than a quarter of a century. ' In the de-
cay mode KL —+2~, the CP-violating amplitudes are par-
titioned into a component emanating from the CP impur-
ity of the Kl state (tagged by the parameter e) and a
component originating from the transition matrix ele-
ment (tagged by the parameter e'). Although experi-
ments lead to a conclusion that the main source of CP
violation comes from e, there is experimental evidence
that e'%0. There is, however, a certain disagreement be-
tween the two most recent determinations of the real part
of the ratio e'/e'.

mesons' contributions to the photon propagator. '" This
means that the momentum dependence of the form fac-
tors H„G„H2,and Gz (or h „g„hz,and g2) and hence
of the amplitudes As(+) and AL (+) (discussed later in
the paper) will likely show up in the measurements of the
angular decay distributions X,(P), Xz(P), h, (P), and

hz(P). However, as will be seen later in the paper, since
the relationships between the set of amplitudes
[AL(+), A&(+)] and the set of form factors
(H„G„Hz,Gz) or (h„g&,hz, g2) are purely algebraic,
the technique discussed will remain applicable. What is
germane is to keep in mind that the parameters being dis-
cussed can all be momentum dependent, reAecting dy-
namics of origins other than QED.

(3.3+1.1)X 10
—(0.5+ l. 5 ) X 10

The first number is the result from the NA31 Collabora-
tion at CERN, and the second one is from the Chicago-
Fermilab Collaboration. The possible existence of CP
violations in the other decay modes of the long-lived KL
and the short-lived Kz has become an intellectual
stimulus for both the theorists and experimentalists. ' '

In an earlier paper, " we have discussed the
decay modes K&~yy~e e+p p+ and
KL ~yy —+e e+p p+. We delineated how the mea-
surements of the angular decay distributions with respect
to the angle between the decay planes of the lepton pairs
produced by the double internal conversions of the two
photons can be used to determine the CP-violating and
CP-conserving form factors in the decays K& —+yy and

KL —+yy. The object of this paper is to disentangle from
the measurable form factors the two different sources of
CP violation: the CP impurity, measured by the parame-
ter e, in the wave functions of K& and KL, and the CP
violation occurring via the transition matrix. We explain
in the next section how this is done and analyze some
special cases. Before we proceed, we would like to point
out that two recent papers' ' have reported the mea-
surements of the single Dalitz decay Kl ~e+e y and
the observations of an enhancement in the distribution of
the invariant electron-positron pair mass. This enhance-
ment has been interpreted as an evidence for a
KL —+ e +e y form factor arising from virtual vector
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(4)

where

We assume the phenomenological Lagrangian

iH iGL = 4c„pF„Fp+ 4F„F„4M

for the Kyy vertex. ' ' The meson field is N and its
mass is M. The tensor F„is B„A —0 2„,where 3

„

is
the photon field. H and G are dimensionless form factors
that parametrize the dynamics of the Kyy vertex. In
general, these form factors depend on the momenta of the
two photons, but in our discussion their momentum
dependence is neglected within the range of energy in-
volved.

From the above Lagrangian, the decay rates of Kz and
Kl into two photons are

1 (Ks y'y)= Ms(iH, i +2iG, i )
1

16m
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H, =h, exp(ig, ), H, =h, exp(ig, ),

G, =g, exp(iP ), G2=g2exp(if' ),

AL(+)= A [KL~2y(+)],
Al ( —) =—A [KL ~2y( —)], (13b)

(7)

and Mz and MI are the masses of Ez and EI, respective-
ly. It was the measurements of h, /g„g2/h2, 5„and 52
that were discussed in Ref. 11.

We assume CPT invariance and adopt the convention
CP ~K ) = ~K ). Therefore, the short-lived K& and
long-lived EI states are expressed, in terms of the CP-
violating parameter e, as mixtures of the two strangeness
eigenstates, ~K ), with strangeness S =1 and ~K ),
with strangeness S = —1:

[K, )=

, „,[(1+e) K') + (1—e) ~K ') ],
& 2) ]1/2

[(1+hei )]'
[(1+e)~K'&—(1—E)~K')] .

The parameter e characterizes the CP impurity in the E&
and El states and has been measured in the decay
E ~2~ to have a modulus'

i e i

= (2.27+0.02) X 10 (10)

From CPT invariance and unitarity it can be shown that
the phase or argument of e has a value'

Arg(e) =(43.67+0. 14)

A( —)ir e xp(iP)=
A(+)

When there is CP invariance via direct transition,
A (+ ) = A (+ ) and A (

—
) = —A ( —) and, thus, r~, r2,

P„and P2 have the special values r, =1, $, =0, r2=1,
and Pz=0. The occurrence of CP violation via direct
transition can therefore be indicated by the deviation of
any of the parameters r„P„r2,and Pz from these values.
We also note that, since both E& yy and EL yy do
occur, the parameter r cannot be zero.

The following ratios of amplitudes can be expressed in
terms of the above parameters:

As( —)

Al ( —)

re —Ee~i/i i
1

ip)
r$e '+Ee"

AL (+ ) r2e ' Ee'r-
As(+ ) i/2

r2e '+Ee'
(17)

where 2y(+ ) and 2y( —
) are the CP =+ 1 and CP = —1

two-photon states, respectively. Let us define the param-
et«s ri 4i r2 4z r and P as

A( —
) A(+)—r, exp(iP, )=, r2exp(i/2) =, (14)

A( —
) A(+)

We shall consider now the direct CP violation via the
transition of the E and E components of Ez and EL
into two photons. For convenience, we shall use the fol-
lowing notation to indicate the amplitudes of de-

.16,20 —23

AL( —) = —ire'~
As(+)

where

r
&
e '+Ee'~itI5 )

i/2r, e '+Ee'~
(18)

A(+)= A [K ~2y(+)],
A(+ )—:A [K 2y(+ )],
A ( —)—:A [K ~2y( —)],
A( —)—:A [K ~2y( —)],
As(+ )

—= A [Ks —+2y(+ )],
As( —)—:A [Ks~2y( —)],

(12a)

(12b)

(13a)

~ 1 —eEe r=
1+6 (19)

The values of E and y can be deduced from Eqs. (10) and
(11):

E =0.9967, y = —0. 1796' . (20)

The decay rates of 1 (Ks +yy) and 1 (K—l ~yy) in
terms of these amplitudes are

r(K, yy) = '
[~ A, (+ )~'+

~ A, (
—) ~']

32~Ms

As( —) Al. ( —)

32~Ms AL( —) As(+ )
~A, (+)~' 1+ (21)

1

32mML
/ A, (+)/' Al (+ ) AL( —)

As(+) As(+)+ (22)

Comparing Eqs. (21) and (22) with Eqs. (3) and (4) rewritten as
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2 '

I. 2 1 2Ms
r(I~s yy) = ~2MsG, ~

1+— (23)

2 2'

2MLH& 2MLG2
1 (KI ~yy) = ~2MsGi I

+ (24)

2MLH2

2MsGi

Al. (
—

)

As(+)

2ML G2 Al (+ )

2MsGi As(+ )

2M~H )

2MsGi

AL( —) As( —
)

As(+ ) Al (
—)

from which we obtain

we make the identifications

2MsG& = As(+) ~ (25)

(26)

(27)

(28)

D =r, +E 2Er—, cos(P, —y ),
C =r, +E +2Er, cos(P, —y ),

B =r2+E 2E—r2cos(P~ y—),
A =rq+E +2Er2cos((5q —y),

r, sin(P, —y)
tan6=

r, c os(P, —y) E'—
r, sin(P, —y)

tano. =
r, cos(P, —y)+E '

(34)

(35)

(36)

H)
v'2G,

Al (
—

) As( —)

As(+) AL( —)
(29)

r, sin(P~ —y )
tanP=

rzcos($2 —y )
—E (37)

Al (+)
As(+ )

Al (
—)

As(+) (30)

raisin(P~
—y )

tano. =
r2cos($2 —y ) +E (38)

h,
e

1

v'2 g,

i(Pi —y)
r)e ' —E'= —ire'~

i(p —y)
rze

(31)

Substituting Eqs. (5)—(7) into the left-hand sides and Eqs.
(16)—(18) into the right-hand sides of the above two equa-
tions, we get h)

v'2 g,
rD

exp( —i5 )=—exp i ——+/+5 —a
2

Using Eq. (33) in Eqs. (31) and (32), we obtain

g2

h2

i(0,—r)
ie '~ rre ' —E

e
&(4) —r)+Er&e

(32)

gz

h2

B
e p(x+i 5~) = exp i ——P+P —o

rC 2

(40)

These two equations relate the set of parameters
(h„g„h2,g2, 5„5z) to the set of parameters
(r, , g„rz,g2, r, g). We would like to equate the moduli
and phases of the left-hand sides to those of the right-
hand sides in Eqs. (31) and (32). To do this, we will
reduce the right-hand sides of Eqs. (31) and (32) into the
exponential form Ae' . First, we write down the numera-
tors and denominators in exponential forms separately
and then recombine. Let

and, therefore,

1

v'2 g,

gz B

5& =m/2 —/+a —5,

(41)

(42)

(43)

De'=r, e ' —E,
io ' ~1Ce' =r&e ' +E,

Be'I'= r, e ' —E,i i (p2
—y')

Ae' =r2e ' +E,'(~z

from which it follows that

5~=m/2 —P+P —cr .

(33) From Eqs. (43) and (44), we further get

5, —5~ = (a —13)+ (o —5) .

(44)

(45)

After multiplying Eqs. (41) and (42), rearranging terms,
squaring, and using Eqs. (34), we obtain
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h, g2

g1 h2
2

2

(46)

1 —2rzcos(gz —
y )

I+2rzcos(gz —y )

=
t I 4r—zcos(gz y)—] tan

1 —cos( —y )

1+cos( —y)
2

retaining terms of order r2, we get

(49)
r z +E —2Er zcos( Pz

—y )

rz +E +2E rzcos(0 z

r, +E —2Er, cos(P, —y)
r, +E +2Er, cos(P, —y)

(47)

Solving for rzcos(Pz —y) yields

1 EC cot—( —y/2)
rzcos(Pz —y ) = =Ez . (50)

where we have denoted the product (h, /g, ) (gz/hz) by
E. Note that the multiplication of Eqs. (41) and (42) has
canceled out r and P so that they do not appear in Eqs.
(46) and (47).

The quantities (h, /g, ), (gz/hz ), 5„and 5z can be ex-
perimentally determined from measuring the angular dis-
tributions dI (IC&~yy —+e e+p p+)/dP and dI (EL
~yy~e e p+p+)/dP as described in Ref. 11; hence,
K:—(h&/g, ) (gz/hz) of Eq. (46) and (5,—5z) of Eq. (45)
can be known experimentally. The values of r, , P„rz,
and Pz have to adjust to yield those empirical values of E
and (5, —5z). Conversely, one can also explore what are
the expected values of IC and (5,—5z) for certain assumed
values of r „rz,P„and Pz. In the following, we will ana-
lyze several cases using Eqs. (35)—(38) and (41)—(47). In
all of these analyses, we will assume that the value of E is
1.

Case 1: r, =1 and P, =y; rz and Pz are arbitrary.
From Eqs. (31) and (46), this case implies that h

&

=0 and,
therefore, K=O. Conversely, if h, =0, then r, =l and

P& =y, which means if there is any direct CP violation, it
is monitored by rz or Pz or by both.

Case 2: rz = 1 and P, =y; r, and P, are arbitrary.
From Eqs. (32) and (46), this case implies that hz =0 and,
therefore, K=O. Conversely, if hz=0, then r2=1 and

Pz =y, which means if there is any direct CP violation, it
is monitored by r& or P& or by both.

Note that when both the indirect mass-mixing CP
violation and the direct transition CP violation are turned
off, that is, when y=O, r, =rz=l, and P, =gz=O, K is
also zero.

Case 3: r, =rz= 1; P, =gz=O. This obtains when CP
violation occurs via mass mixing only as tagged by the
parameter e or, equivalently, by y. Equations (35)—(38),
(45), and (47) yield

4

tan5= —cot( —y/2), tano =tan( —y/2),

rz sin(Pz —y )
tan/3=

rzcos(Pz —
y )

—1

rz sin(Pz —y )
tana =

rzcos(Pz —y )+ 1

(51)

(52)

which imply

(53)

Using the above result in Eq. (45), we get

7Ta —/3=5 —5 +—
1 2

tan(a —P) =tan 5, —5z+—
(54)

Employing the trigonometric identities

tan(x )
—tan(y )tan(x —y) =

1+tan(x)tan(y)
(55)

cot(u —v) = —tan u —v +—
2

(56)

in Eq. (53), we obtain

tan(a) —tan(P) = —cot 5, —5z1+tan(a )tan(P)
(57)

Substituting Eq. (52) in Eq. (57), expanding and retaining
terms of order r2 only, we get

We have denoted by ICz the term [I—K cot (
—y/2)]/4

because, as will be seen later, it will reoccur in other
cases. Since Kz depends on K and y, Kz is also empiri-
cally determinable.

Equations (35)—(38) yield

E = tan =6.076X10 ".
A possibility for this to happen is when

h =1.57X 10
h2

2rzsin(gz —y)= —cot(5, —5z) .

Dividing Eq. (58) by Eq. (50), one obtains

cot(5, —5z)
tan(Pz —y) =—

2

(58)

(59)

which has the same order of magnitude as the mass-
mixlng parameter E.

Case 4: r, =1, P&=0, rz « l. Expanding Eq. (47) and

Equations (50) and (59) constitute two equations in two
unknowns rz and Pz. For convenience, we rewrite the
two equations together:
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cot(5, —5z)
tan($2 —y) =—

2

E2
cos($2 —y)

(60)

K2

cos($2 —y)

(61)

Case 6: r2 = 1, $2=0, r, « 1. Following the steps in
case 4, but retaining terms of order r „onegets

Case 5: rl = 1, $1=0, r2 &)1. Following the steps in
case 4, but this time retaining terms of order 1/r~ only,
we get

cot(5, —5l)
tan(P —y) =+

2

1 —K
r, = sin(Pz —y)

——tan(5, —5z)cos($2 —y) [sin($2 —PI)]
(68)

1 —K
sin(QI y )

+—tan(5, —52)cos(PI —y ) [sin($2 —PI ) ]

Case 9: r, « 1, r2 « 1, $1=$2=p&y. We have
denoted the common value of pl and pz by p.

Applying the trigonometric identity of Eq. (55) to
tan(a —P) and tan(o —5) and then using Eqs. (33)—(38)
while retaining terms of order r, and r2, we get

cot(5, —52)
tan(PI —y) =— tan(lx —p) =2rz sin(pz —y ),

tan(cr —5 ) =2r, sin( p I
—y ) .

(69)

K2

cos(PI —y )

(62)
One can now take the tangent of Eq. (45), use the identity
in Eq. (55), and then substitute Eq. (69) in it to get

cot(5, —5l)
tan(P —y)=+

2K2

E2
cos(PI —y )

(63)

Case 8: r, « 1, r2 « 1, QIWItlz+Ir. When expanded up
to first powers of r, and r2, Eq. (47) yields

1 —2rzcos(gz —y )

1+2r2cos($2 —y )

1 —
2r Icos(pl —y )

1+2r I cos(PI —y )

Case 7: r2=1, $2=0, rl &)1. Following the steps in
case 4, but retaining terms of order 1/r, , one obtains

tan(5, —5l) =2(r, +rl )sin(p —y) .

Meanwhile, Eq. (47) becomes

1 2r2cos(—$2 y)—
1+2rzcos($2 —y)

1 —2rlcos(PI —y)
1+2r, cos(gz —

y )

1 —2rzcos(p —y )

1+2rzcos(p —y )

2 A '+ 2r leos(p —y )

28' —2rzcos(p —y )

One can solve for r I from Eq. (70) to get

tan(5, —52)
T2+

2 sill(p y )

and substitute it in Eq. (71), which is transformed into

(70)

(71)

(73)

=1—4rlcos(pl —y) —4r2cos($2 —y) .
where64

Taking the tangents of both sides of Eq. (45) and using
the trigonometric identities in Eqs. (55) and (56), one gets

tan(5, —52) = tan(a —P)+tan(o —5)
1 —tan( a —Il )tan( o —5 )

tan(5, —5l)
tan(p —y )

tan(5, —5~)2B'= 1+
tan(p —y )

(74)

tan(a —P) =2r2sin($2 —y ),
tan(o. —5)=2r, sin(Q I

—y ) .
(66)

Substituting Eq. (66) into the right-hand side of Eq. (65),
we get

tan(5l —5&) =2r2sin(pz —y)+2rlsin(QI —y) . (67)

Reusing the identities in Eqs. (55) and (56) in both
tan( a —Ii) and tan( cr —5 ) and then substituting Eqs.
(35)—(38), one obtains

Expanding the right-hand side of Eq. (73) and retaining
only terms linear in r2, we can solve for r2 to get

2A ' —2B'K
2 cos(p —y )[(2A ' —1)+K(28'—1) ]

(75)

—(K —1)tan(p —y ) —(K + 1)tan(5, —52)

2 cos(p —y )(K —1)tan(5, —5z)
(76)

Substituting Eq. (74) into Eq. (75) and juxtaposing the re-
sult to Eq. (72) for clarity, we have

One can now solve for rl and rz from Eqs. (64) and (67)
to get

tan(5, —52)
r& = —r2+

2 sin(p —y)
(76')
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Case 10: r, ))1, r2 ))1, P, =$2+sr F. ollowing the steps in case 8, one obtains

sin($2 —y)+ —tan(5& —52)cos($2 —y) [sin($2 —P&)]

sin(P, —y)+ —tan(5, —52)cos(P, —y) [sin($2 —P&)]

(77)

Case 11: r, ))1, r2 ))1, P, =$2=p&y. Following the steps in case 9, one gets

(1—IC)tan(p —y )+(1+K)tan(5, —52)

2(1 —K)cos(p —y )tan(5, —52)

tan(5, —52)

2 sin(p —y )

Case 12: r, « 1, r2 ))1, P, +$2&2y+rr. Following the steps in case 9, we get

(78)

r, = sin($2 —y )+—tan(5, 52)—cos(gz y)—[sin(P, +$2
—2y )]

sin(P, —y) ——tan(5, —52)cos(P, —y ) [sin(P, +$2—2y ) ]
"2

Case 13: r, ))1, r2 « 1, P, +$2&2y+m. Following the steps in case 9, we get

(79)

sin(Pz —y )
——tan(5, —5z)cos(gz —

y ) [sin(P, +$2
—2y ) ]

r&

r2 = sin(P& —y )+—tan(5, —52)cos(P& —y ) [sin(P, +Pz —2y ) ]

(80)

Case 14: r, =rz=1, P, and $2 arbitrary. From Eq.
(47), we get

From Eq. (83),
tano. tan6 = —1,

1 —cos($2 —y )

1+cos($2+ y )

tan
2

and if we let

2

1 —cos(P, —y)
1+cos(P, —y )

2

2

tano = —cot(5) =tan(5 —m. /2),

(81)
Similarly, from Eq. (84), we deduce that

—a=—.
2

(85)

(86)

02=0i+~4
Eq. (81) becomes

tan[(p, —y)/2]+tan(bp/2)
cot[(p, —y )/2] —tan(hp/2)

From Eqs. (35)—(38), we get

sin(P, —y)tan5= = —cot
cos(P, —y) —1

sin(P, —y)
tano. = =+tan

cos(P, —y)+ 1

2

2

(82)

(83)

6) —52 = —m. . (87)

This result means that if 5&
—5@& vr, then on—e of r& and

r2 is not equal to one and there is CP violation via the
transition matrix even if P, =$2=0.

There are other interesting subcases which we can con-
sider.

(a) $,=0 and Pz=O, which is equivalent to bP=O.
From Eq. (45),

4

Using Eqs. (85) and (86) in Eq. (45) produces the interest-
ing result that

sin($2 —y )
tanP=

cos($2 —y )
—1

= —cot
2

K = tan
2

=6.037X10-" .

sin($2 —y )
tana = = +tan

cos(Pz —y ) + 1

This is identical to case 3 where CP violation occurs
purely through mass mixing.

(b) P&=0 and b,P=+m. From Eq. (45),
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'2
tan( —y/2)+ tan(+~/2) =1.
cot( —y /2) —tan(+tr/2)

(c) $, =0 and hP=+tr/2. From Fq. (45),
2

tan( —y/2)+ 1 =2.472 X 10
cot( —y /2) —1

(d) P& =0 and AP = —m/2. From Eq. (45),
2

K = =2.442X10
cot( —y/2)+ 1

(89)

(90)

(91)

3 [K —+2@(—)] iy,

A [K o~2y( —)]
A [E ~2@(+)] + f'2e
A [K ~2@(+)]

(93)

photons the parameters describing the two possible
sources of CP violation: the CI' impurity in the state
functions of Kz and KL, and the CP violations in the
transition matrix. The first source is tagged by e or by y,
the phase of (1—e)/(1+e), and the second source is
traced by r, , r2, P, , and Pz in the ratios of amplitudes

We note that for all these cases, once r„rz,P„and Pz
are known, then r and P can be computed from either Eq.
(31) or (32). For example, in case 3, Eq. (31) gives

We have described in Ref. 11 how the magnitudes and
relative phases of the form factors G„H„62,and H2
can be obtained by measuring the angular distributions in
the decay modes Kg ~p p ~e e p p and
~e e p+p+.

v'2 g,
cot

2
(92)
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