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First we extract phenomenological values for the reduced matrix elements (B'~H ~B) and

(B~H "D ) connected with octet-baryon B~B'vr, B'y weak decays and decuplet decays D~Bm. .

Then we show at the quark level that the combination of b,I=
~ quark 8'-exchange and self-energy

graphs explains (B'~H ~B) transitions better than either separately. However, only the self-

energy graph can contribute to (:-~H ~A). This overall picture gives an excellent fit to over ten

nonleptonic weak baryon decays.

I. INTRODUCTION

There is much data for b S= 1 nonleptonic weak
baryon decays 8~B'~ (14 amplitudes), 8~B'y (4 am-
plitudes), D +Bm (—3 amplitudes), where B,B' are octet
baryons and D are decuplet baryons. All of these weak
transitions empirically are dominated by a weak Hamil-
tonian density H„ transforming as hI =

—,'. Although the
current-algebra —partially-conserved-axial-vector-current
(PCAC) program gives an approximate hadron picture, ' a
detailed quark interpretation of the EI=—,

' rule for all 21
of the above B~B'm, B'y and D ~B~ weak transitions
has yet to be understood.

In this paper we propose such a AI= —,
' quark picture

based on the standard weak first-order perturbation
theory for (~8'~H ~B,D ). First, in Sec. II, we study p
wave B—+B'~ decays and apply the pole model to con-
vert the measured (vrB'~H„~B ) parity-conserving (PC)
weak transitions to reduced (8'~H ~8 ) matrix ele-
ments. The latter are then reconfirmed in Sec. III from
observed B~B'y decays. In Sec. IV, we attempt to ex-
plain these reduced PC matrix elements in terms of the
AI =

—,
' 8 -exchange quark-model Hamiltonian H~„,

but find that this model can only recover about one-half
of the (p~H ~X+), (n~H„X ), (n~H ~A), and
(A~H ~:- ) transitions, while completely failing to pre-
dict the nonvanishing (X~H ~:-) reduced matrix ele-
ments. Next in Sec. V we review D~B~ weak decays,
applying current algebra and PCAC to extract the
parity-violating (PV) transitions (8 ~H ~D ) and demon-
strating that the latter empirical (:-~H

~
0 ) transition is

dominated by a kaon PV tadpole. Then in Sec. VI we
suggest that this EI=

—,
' PV reduced matrix element has a

quark (tadpole) interpretation as an s-d self-energy transi-
tion X,d, which cannot be "transformed away. " In Sec.
VII, we extend this quark self-energy Hamiltonian to X,d
and show that the empirical octet-baryon PC transitions
(p~H ~X+), (n~H ~A), and (A~H ~:- ) can acquire
about one-half their values from this X,d Hamiltonian.
Finally, in Sec. VIII, we summarize our results and show
that the combined AI= —,', AS=1 quark Hamiltonian

H~~+X,d can explain all measured B~B'~, B~B'y,
D ~Be nonleptonic weak decays.

II. OCTET-BARYON B~8'm DECAYS

First we separate B~B'~ weak transition amplitudes
into their s-wave parity-violating (PV) and p-wave parity
conserving (PC) parts: M= —(8'vr~H ~B ) =u~ (i A

+8y ~)uz, with spinors normalized covariantly
uu =2m~. The decay rates and asymmetry parameters
are then used to determine the (real) amplitudes A and 8
(neglecting final-state interactions):

I (B~B' )=(p/8~m~)(a +b ), (la)

a(B~B' )= 2ab

a +b
(lb)

where a = r(m~+m~ )
—m j' A and b = [(m~ —m~ )

—m )'~ B. Taking the most recent Particle Data Group
Compilation, Eqs. (1) then lead to the seven PV and
seven PC amplitudes tabulated in Table I. Since the PV
pole terms are suppressed by the SU(3) null theorem
(8'~H ~B ) =0, here we focus instead on the dominant
PC pole terms as in Ref. 7. To extract the most model-
independent results, we shall avoid SU(3) assumptions for
(8'~H„~B ), using instead only the SU(2) b,I=—,

' rela-
tions. However, we will assume the strong vertex in p-
wave pole terms obeys the usual SU(3) pattern

Hg pg
=2gB (dpdyp + t'fpffjj )P~y 58 '

—g ~~.~B 'y 5BP, (2)

where g =g»=13.4 and (d If )„=1.74 is the semilep-
tonic d lf ratio, equivalent to (d /f )p via PCAC. These
strong couplings are tabulated in Table II for Cartesian
phases of baryon states in (2) as used in Table I.

The simplest p-wave decay for X+—+p~ is depicted by
the pole graphs in Fig. 1. Its PC amplitude B listed in
Table I is
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TABLE I. Observed hyperon decay amplitudes.

(A )

(Ao)
(&p )
(&+ )

(&:)
(:- )

(-"0)

A —+pm
A~n~o
r+ ~pro
r+ ~n~+
X ~n~

s wave 10 3
0.323+0.002

—0.237+0.003
—0.326+0.011

0.014+0.003
0.427+0.002

—0.450+0.002
0.344+0.006

p wave 10B

2.20+0.05
—1.59+0.14

2.67+0.15
4.22+0.01

—0.14+0.02
1.75+0.06

—1.22+0.07

g+ / g+ p

(b)

FIG. 1. Octet-pole graphs for X+—+pm decay.

g.—... &nla IX') g ., & n ~H.PC~A&B(X:)= +

&p la."IX+
&

B(Xo )=—

=(2.67+0. 15)X 10

g ox+ad+ )

(3) mz —m„ mz —m„

(7b)

g.+,o,+ &nla' IX'& g.+„+&nlaPCIA)
B(X+)= +

where Xo refers to X+—+pm . Then (3) requires, from (2)
and Table II, (7c)

my mp
&pla.PCIX+ &= —1S0+10 eV . (4)

By inserting (4) and (6) into the above equations, and us-
ing the measured numbers for these B from Table I, the
following self-consistent values for ( n ~H X ) are
found:

Given (4) we study A~pnwith assoc. iated p-wave pole
amplitude

g + &p~H„~X+) g &n~a ~A&
B(A )= 130+S eV (Ao),

(n ~HPc~Xo) = 123+5 eV (X ),
124+20 eV (X++) .

m& —m
(Sa)

(5)

Since we know (p~a ~X+) from Eq. (4) and B(A )

from Table I we can find a value for ( n ~H ~
A ) from (5): This consistency implies that indeed these B amplitudes

are KI =
—,
' dominated with

(n ~a„")A)= —S7+4 eV . (6)
(n~a ~X )= —(p~a ~X )Iv2=127 eV . (Sb)

Now self-consistency comes into play. %'e have three
decays remaining (Ao, X:,X+ ) in which to determine one

amplitude (n~a ~X ). If our approach is valid, the
three decays must give the same numerical answer for
( n ~H

~

X ) . By examining the pole graphs for Ao, X+,
and X: transitions one finds the PC amplitudes

g, &n~a' ~A)

mg —m„

g....,&

B(Ao)=
m& —m„

(7a)

TABLE II. Strong coupling constants. We use the Cartesian
phase convention for baryon and meson states: +

X——+(1+i2)/&2; m, X ~3; K —,p, = —+(4+i5)/&2; K, K
n, =0~(6+i7)/v'2; q8, A~8 for (dlf)~=1. 74, (d+ f)z=1,
dp =0.635, fp =0.365.

= 19.0
= 13.4

m pn m. np

Fo ~ g o„„

g.-&+A g.ozone ~.-~r- = 2=
~—dpg

=2f~g
=g (f d)~—
=' 2g(d f)p—

=9.8
g~+ Ar+ ' g ~oAr. o

=9.8
= —3.6
=5. 1

III. QCTET RADIATIVK B~B'y DECAYS~or+r, +'g~ nor ' ~~+&or, +

g o-o-o
An independent way to test the scale of (p ~H„~ X+ ) is

through the radiative decay X+~py. If we again apply
g„—-o-—

Then the values (4), (6), and (S) for the three transitions
are all compatible. Furthermore, the close agreement of
the three pole model values of (n ~H„X ) in (Sa), with
the expected AI= ,' value in (Sb—) (also found from the
pole model), tells us that the pole model for p waves is ex-
tremely reliable.

The decays = —+An. (:-o) and:- ~Am. (:-:)pose a
more diScult problem since their pole graphs involve
three reduced matrix elements ( A

~
H ~:- ),

(X JH~ [:- ), and (X )H f:- ), but we can (again)
use the AI= —,

' rule to eliminate the latter transition via
&X ~H ~:- &

= —v'2(X ~H ~:- ). This then gives
two equations for two unknowns. However, this linear
system has a determinant that is close to zero, making
the uncertainties in the transitions so large that the
values obtained are virtually useless. Another approach
is to find an estimate for one of these reduced matrix ele-
ments and then solve for the other two transitions. As we
will see later, the radiative decay = ~X y wi11 give a
crude estimate for ( X ~H„~:- &. Once we have this re-
duced matrix element we will then calculate ( A~a„~:- )
and & X'la."I:-'&
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octet-pole dominance as in Fig. 2, and define the ampli-
tude as M (B~B'y)=e(C+iysDy5D)cr„k", we can
write the PC amplitude C as

C(X+~py ) = (p lapel y+ )

m& —m

Kp

2m' 2m'
(9)

where ~,~ + are anomalous magnetic moments. Al-

though (B' H lB ) =0, so that the D octet pole ampli-
tude is zero here, decuplet intermediate states suggest
D &0. The C amplitude can be determined from the de-
cay rate and asymmetry parameter where

2 2 — 2 3

I (B~B'y)= (C +D ),
87T mB

(loa)

a(B~B'y ) = 2CD
(2+D2 (lob)

&pla'cia+ &
= 193+16 eV . (12)

This agrees quite well with the value obtained in (4) for
X+~pm decay and suggests again that the pole model is
very reliable for PC p waves.

The next radiative decay of interest is = ~X y. The
graphs analogous to Fig. 2 and (9) now give

C(:- ~X y) =
pc

m- —m& 2m' 2m-

(13)

The experimental decay rate is I (:- ~2 y )
=(9.2+4.0)X10 ' GeV, with no measured value for
the asymmetry parameter. However, the latter can be
circumvented since in the SU(3) limit there are no decup-
let pole contributions, suggesting D (:- ~X y ) =0.
Therefore from (loa) we find

C(:- ~X y)=(1.4+0.3) X 10 GeV (14)

Using the experimentally determined values for the
anomalous magnetic moments ~ =0.03 and ~ =0.48

X
in Eq. (13), it follows that

we again take C and D real. The experimental values
I (X ~py ) =(1.02+0.07) X 10 ' GeV and
a( X+ ~p y ) = —0.83+0. 12 give, from (10),

C(X+~py) =(1.55+0. 13)X 10 GeV

Then by assuming the SU(3) values for the anomalous
magnetic moments Ir +=v =1.79, we obtain from (9)
and (11),

l&r-la."l=--) l=go+2o ev . (15)

g „&r-la."l:--
&

m- —m&
(16a)

B(:-0)=
g. . .&Ala."l=-')

m- mA

g.o„o& &'lapel:-' &

m- —mz

(16b)

Using the values of 8 from Table I, the couplings from
Table II, and the magnitude for (X lH l:- ) found in
(15), then Eqs. (16) give

(AlH l:- ) = —180+60 eV,

(r'la„"l:-') =ss+15 ev .

(17a)

(17b)

The magnitude and sign of the above transitions come
from assuming (X H:- ) (0. As can be seen from
(15) and (17b), (X H:- ) = —&2(X lH„l:- ) as re-
quired by SU(2) and the b,I=

—,
' rule.

IV. W-EXCHANGE QUARK MODEL

It was first appreciated in Refs. 3 and 10 that the W-
exchange quark model for qqq baryons when combined
with the color symmetry of the three quarks in fact gen-
erates a AI= —,

' weak Hamiltonian density H~„. As a
first estimate of this W-exchange quark graph of Fig. 3
for the (B'lH lB ) transitions, we follow the nonrela-
tivistic W-exchange approach of Riazuddin and Fayya-
zuddin. Then the parity-conserving Hamiltonian densi-
ty has the form

H~ =(GF/~2)s, c, g (a, PJ++P,+. a. )(1 cr; o . )5 (r), —

(18)

where a, and P~+ transform a u into a d quark and as s
into a u quark, respectively. This gives, for example

(p lag;„lX+ ) =(G, /&2)( —6)s, c, ( gol5'(r) l@o)

As promised in the preceding section, once
(X lH„ l:- ) was known we could find the reduced
matrix elements (AlH l:- ) and (X lH l:- ). The
pole graphs analogous to Fig. 1 lead to the following
equations for B(:-~Am. ):

g.— . —&Ala."l=-'&
B(:-:)=

m- —mz

= —90 eV (19)

for s, c, =0.221. Here the factor of ( —6) comes from us-

(b)

FICr. 2. Octet-pole graphs for X+—+py decay. FICT. 3. 8'-exchange quark graph for qqq baryons.
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TABLE III. Pole-model vs 8'-exchange plus self-energy PC transitions.

&pla" Ir+ &

& nlapclro &

&x la' I=
(golapcl 0&

&Ala."I:-'&

Expt. (eV)

—180+10
125+10

—87+4
—80+20

55+15
—180+60

W-x (ev)

—90
65

—35
0
0

—70

Self-energy (eV)

—60
40

—70
—70

50
—80

g -x+SE (eV)

—150
105

—105
—70

50
—150

ing SU(6) wave functions for the qqq baryons" and the
contact matrix element in (19) is estimated from the
strong-interaction 6-N mass splitting to be'

&g I5 (r)lg &= m„=8X10 GeV
3(h —iV)

8~+,
(20)

for a, (1 GeV) =0.5 and m„=0.34 GeV.
The other (B'IHii, IB & values are listed in Table III.

The form of the equations for these transitions is the
same as Eq. (19) save for the Clebsch-Gordan coefficients.
The latter are —6, —i/6, 3i/2, —2i/6 for the 8'-
exchange graphs of (p IK~„X+&, (n IH~ A&,
(n IH~„IX &, and (AIHg„l:- &, respectively. In Table
III the ratio (pfHii, IX &/(n IH~ IX & is numerically
close to —v'2 as expected from SU(2) symmetry and the
hI= —,

' rule. However, the transitions (XIH I:-& can-
not have a 8'exchanged between an ssd or ssu = baryon
and an sdd or suu X baryon: hence,

dominated by the PC amplitude

3

I = [(E-+m )IE—pcl +(E= m )—II'pv -I ]1277m ~
3

, (mn+m=)'IEpcl'.
24m. m ~

(22)

The kinematic dominance of Epc over Fpv will simplify
the analysis considerably, and henceforth we shall neglect
the small PV amplitude Fpv. Accordingly we write the
reduced 0 ~:- weak PV transition as

(:- K„ IQ &
= —ih~u(:-)p„u "(n) . (23)

Since the isospin of 0 is zero, the amplitude h2 is a pure
AI =

—,
' weak transition.

To proceed we invoke the usual chiral (left-handed)
current algebra [Q5,H ]= —[Q,H ]. Applying the
latter and PCAC to evaluate 0 —+= m decay one finds

&xlH .I=-&=o. (21)

Table III clearly shows that the 8'-exchange model is
lacking; not only are the nonvanishing 8'-exchange tran-
sitions about one half the pol-e-model empirical values,
but (X H„ I:- & is definitely not zero in contrast with the
vanishing 8'-exchange transition (21).

&=(i/f. )&=- l[Q', H."]In
= —( /2f„)(=- IH."In-&,

Epc(- vr ) =h2/2f

(24a)

(24b)

V. DECUPLET BARYON D ~Be.DECAYS

As we have seen in the preceding section, the 8'-
exchange quark model does not predict accurately the
observed (B'IH„ IB & transitions. In particular there
are no W-exchange graphs for the two (XIH I:- & tran-
sitions, which are clearly nonzero. Similarly, there is no
8'-exchange graph for the decuplet-baryon transition
(:-IH n&, which as we will show in this section is
empirically nonzero. This gives added incentive to find a
quark supplement to the 8 -exchange quark model,
which we will present in the next section. First we will
demonstrate that (:-IH IQ& is nonzero and obtain an
approximate phenomenological value for this PV reduced
matrix element.

We extract the dominant 4I= —,
' component of H

from Q~:-~ weak decays with PC and PV amplitudes
defined by

(m=fH ln&= —u(:-)(Epc+iy5Fpv)P„u "(n),
where u (n) is the Rarita-Schwinger spin- —, bispinor
satisfying p u (n) =0 and our choice of metric and y ma-
trices agrees with Ref. 1. The decay rate for 0—+=~ is

Likewise for 0 ~:- m decay this current-
algebra —PCAC procedure gives Epc(:- ir ) = —h 2/
i/2f . For f =93 MeV, the observed branch ratios
8.6% and 23.6% along with lifetime m=0. 822X10
sec, respectively, give the amplitudes from (22),
IE(:- ir )f=0.80X10 GeV ' and IE(:- m )I=1.33
X 10 GeV '. Then the AI =

—,
' weak transition, respec-

tively, has dimensionless magnitude

Ih, l=o. lsxlo ', 0. 18xlo ' (25)

The discrepancy between these two values for h2 is the
measure of the small AI =

—,
' component in 0—+ =m..

An independent way to determine this AI= —,
' weak

transition h 2 is to begin with (:-
I
H

I
n & and (kaon)

pole dominating it as depicted by the kaon tadpole graph
of Fig. 4. This corresponds to the tadpole transition

(=-- IK.' fn- & =(0IK."IE'&m~ 'g«-u(:-)p„u "(n),
(26)

where g«= = i/2/fz --12 GeV ' is the Goldberger-
Treiman relation for spin —', +~

—,
'+ transitions (consistent

with g z& ). Also current algebra and PCAC link
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U&C U, C
S

(b)

FIG. 4. Hadronic kaon PV tadpole dominance of
&

=-- iH.'"in- &.

FIG. 5. Quark s-d tadpole self-energy {a), and contribution
to (:-

i H,',; i
II ) in (b).

K ~2m to E —+0 as'

(rrrriH iK ) =( —1/2f „)(OiH iK )(1—m /mz) .

Using the measured E 2„decay rate requires
i(mm. iHPviK ')

i
=26X10 GeV or i(0iH iK

=4.9X10 GeV . Then (23), (26), and (27) predict

ihzi =i(OiH iK )mx go+=i =0.24X10, (28)

reasonably close to the phenomenological values (25)
found from 0—+=a. decays.

Also h2 can be found from s-wave PV B~B'm decay
amplitudes A, which are listed in Table I. If we assume
that only the current algebra contributes to s waves, then,
e.g., the PV X+~pm amplitude is predicted to be

A(XO )=i(n. piH iX+) =(1/2f )(piH iX+)

= —0.97X10 ', (29)

where we have used (p iH„ iX+ ) = —180 eV from our
pole model fits (4) and (12). We note that (29) is over
twice the observed A (Xo ) amplitude in Table I. To ex-
plain this long-appreciated s-wave mismatch, one should
add PV decuplet pole contributions that in fact are pro-
portional to h2. Then the above s-wave mismatch is
resolved if h2 assumes the value'

h2= —0.2X10

again compatible with (25) and (28).

(30)

VI. QUARK TADPOLE MODEL FOR Q~:-m DECAYS

First we note that there can be no 8' exchanged be-
tween sss and ssd or ssu hadrons, so that (:-iH~„ i 0 ) =0,
inconsistent with the nonvanishing h2 in the preceding
section. This null result is analogous to (XiH~„i:-)=0
from (21) and convinces us that there must be another
EI=—,

' quark graph mechanism in addition to 8' ex-
changes, because (:-iH iQ) and (XiH i:-) certainly
exist. Second we recall from Fig. 4 and (28) that a tad
pole description of (:-iH~ iQ) exists with a K pole
[linked to the observed K2 decays via the current-
algebra —PCAC relation (27)] generating a PV scale hz
compatible with Q —+=+ data in Sec. V.

The above two clues naturally suggest that a tadpole-
like AI= —,', ES=1 PV component of H should also ex-
ist at the quark level, which we denote as H„d. Express-
ing this PV and PC Hermitian H as H„d =X,d+Xd»
the quark tadpole s-d self energy graph X-,d is shown in
Fig. 5(a). It is most convenient to evaluate X,d in the 't

Hooft —Feynman gauge g„ for the 8' propagator, be-
cause then the left hand-ed (LH) structure of the W-quark
vertices translates to a LH structure for the self-energy
X,d, since g"'y„(p +m)y = —4P . Only then does
the usual LH current-algebra [Q5+Q,H" ]=0 structure
of the quark current' become manifest. In Feynman
gauge the Glashow-Iliopoulos-Maiani SU(4) structure of
the quark current requires X,d to take the low-
momentum form'

X,d =b(p )dP(1 iy—5)s,
(31)

b(p'=0) =b = — s, c, (m, —m„') = —5.6 X 10
8~'&Z ' '

for s&c&=0.221,m, =1.6 GeV, m„=0.34 GeV. Away
from Feynman gauge a =1, Eq. (31) remains approxi-
mately valid in other (non-Landau) covariant gauges with
small corrections proportional to (a —1)(m, —md ) /M~,
due to additional unphysical-Higgs-boson y contribu-
tions. '

In spite of our knowledge of (31) as early' as 1979,
some physicists have discarded (31) on the grounds that it
can be "transformed or diagonalized" away. While a
direct s-d transition can be removed through semistrong
or e electroweak order, Weinberg' demonstrated that a
"truly weak" interaction (such as X,d ) cannot be removed
through O(e m, /M~), which is the scale of (31).
Another way to see that the transforming away issue has
been implicitly accounted for above is to express the
overall d and s self-energy operators in matrix form

Xd X„
with quark and hadron Aavor diagonalized only through
strong and semistrong order, where X,&WO, (miH iK)
%0. If one instead diagonalizes fiavor through strong
and weak interactions, then the self-energy matrix can be
transformed to

Xdd 0

0 X„

with the transformation (mixing) angle P satisfying
—,'sin2$=X, d(X» Xdd)

' and X„,X—
dd corresponding to

constituent quark masses m, d. Thus, either one works
with (31) and the matrix A with X,d&0 or instead trans-
forms away X,d =0 in B. In the latter case X,d is
recovered via the small mixing angle $-10, which is
now buried into the new definition of Aavor states.

Returning to (31), the K2 matrix elements are'
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IK & =(fx. /f )&2b(mg —m )

= —24 X 10 GeV, (32a)

& =(b/2)(m —+mz) = —70 eV,

(X ~X,P:- ) = (—b/2&2)( m=+ mz)= 50eV,

(36d)

(36e)

i —(O~HP ~K ) =2&2bfrmg-, (32b) (A~X,d ~:- ) =(&3b/2v'2)(m-+m~)= —80 eV, (36f)

consistent with the current-algebra —PCAC relation (27)
and compatible with K2 data. In the Appendix we shall
derive (32) from the tadpole form of H in (31). Here we

apply this s-d AI =
—,
' weak tadpole to the 0 —+= tran-

sition of Fig. 5(b), giving'

ih u(=)p„u "(0) . (33)

Then the Goldgerger-Treiman-type identity g 0 =&2/
fr, combined with the tadpole relations (28) and (32) pre-
dict

h 2
=2v'2bf Jc m~ m~ V'2/f ~ =4b = —0.22 X 10

(34)

We believe it is significant that this quark-tadpole predic-
tion is compatible with the previous estimates of h 2 in
(25), (28) and (30).

VII. QUARK SELF-ENERGY COMPONENT
OF B~8'm. DECAYS

(8 ~X ~8') = —(iff ')b(m +m ) y (35)

where from (31) X,d converts an s to a d quark with weak
scale b and transforms as the SU(3) b,I=—,

' operator A, 6.
Covariant normalization (uu =2m ) suggests the factor
(mf+m, ) in (35). The Clebsch-Gordan coefficient f ' in
(35) is Gell-Mann's SU(3)-antisymmetric structure con-
stant. In quark-spectator language this f-type coupling
follows from the SU(3) characteristics of a single quark
line.

Applying (35) to the six transitions of interest yields

(p~X,QX ) =(b/2)( zm+ &m)= —60 eV, (36a)

(n ~X,d ~X ) = —(b/2+2)(mx+m~)=40 eV, (36b)

( n
~ X,P A ) = ( &3b /2V2)( m z +m& ) = —70 eV, (36c)

We showed in the previous section that the quark self-
energy X,d produces a nonzero PV weak transition
(:-~X,d ~Q) which is close to experiment. Here we will

apply the same procedure to the hyperon PC transitions
(8'~X,PB ), where the latter will supplement the four
nonzero W-exchange elements and also the two transi-
tions (21) that are predicted zero by W exchange. In con-
trast with the preceding section, while the A tadpole de-
cays requires the PV part of the self-energy Hamiltonian
(31), the PC hyperon B~B' transition will use the PC
part X,d =hdqrs. Such a PC self-energy component of
H, although being of the X,d form, is not a tadpole for
8~8'~ decays [the analog ~ tadpole graph similar to
Fig. 4 for (8'~H ~8 ) transitions is SU(3) suppressed].
Furthermore one knows' that possible PC baryon tad-
pole graphs would vanish (if H~„were zero). However,
we can express the qqq baryon matrix elements of X,d in
the following factorized non-SU(3)-suppressed form:

where we have used b = —56 X 10 as found in (31).
There is an additional sign in the = transitions due to the
SU(6) qqq form of the Thirring wave functions. " The
self-energy amplitudes (36) are a clear improvement when
added to the 8'-exchange predictions of Table III. Of
primary importance are the ( X ~H ~:- ) matrix elements,
which the 8'-exchange quark model predicted to be zero
and are now close to the experiment.

VIII. CONCLUSION

~~ —~~&+ &sd (37)

can predict all the experimental data for hyperon
B~B'm, B~B'y, and decuplet Q~:-~ weak nonlep-
tonic AI =

—,
' decays. The two W-exchange and self-

energy Hamiltonians in (37) in effect resolve the s-wave
B~B'vr mismatch problem of (29), because then the
H~„and X,d contributions subtract in s wave [due to the
minus sign in (31)]. Furthermore, the p-wave B~B'vr
problem stated after (21) is also resolved, because then
the H~ and X,d contributions add in p wave.

The striking consistency of our overall weak first-order
perturbation-theory (FOPT) PC pole models in Secs. II
and III and the PV tadpole picture in Sec. V means that
the resulting six (8'~H 8 ) transitions in Table III and
(8 ~H ~D ) -h2 are real physical quantities which can-
not be "transformed away. " Although FOPT has never
been directly questioned for baryon decays, recently ana-
log FOPT extractions for meson decays, i.e., (m ~H ~K )
and (O~H ~K), have been dismissed and "transformed
away. " But the latter dismissal is not valid in FOPT be-
cause the L,~ and vacuum states must then be taken as
eigenstates of the strong and semistrong Hamiltonian H,
with the weak H„sandwiched between these strong
eigenstates. This FOPT picture is compatible with our
tadpole approach to (O~H ~K) in Sec. VI and in the
Appendix, which is nonzero and cannot be transformed
away in "old-fashioned" perturbation theory.

First we gave a systematic procedure for extracting
(8'~H ~B) from the B~B'n, B~B'y pole models as
listed in Table III. The 8'-exchange quark-model Hamil-
tonian density H~„generated reduced PC matrix ele-
ments in Table III, which only partly explained the data.
Next we turned to decuplet Q~:-~ PC transitions that
after using current-algebra and PCAC techniques result-
ed in a PV scale hz = —0.2 X 10, which could not be ex-
plained by H~„since the latter vanishes. However, the
observed h2 could be understood from the tadpole X,d
realization of H as h 2 =4b The PC. (chiral) component
of X,d also supplied the needed matrix elements of
(8'~H ~8 ) in Table III.

Thus we deduce that the complete quark model form
of the EI=—,

' weak Hamiltonian density
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APPENDIX

0K
b

KO s~d
t7 7P

d

(b)

To convert the KI =
—,
' quark tadpole form of H in (31)

to hadron transitions, we start with the Lehmann-
Symanzik-Zimmermann form of the weak axial-vector
amplitude

M = —i f d x e'~'&O~T(W„'(x)H. )~It '& . (A 1)

Then the divergence of (Al) integrated by parts in the
soft limit combined with the usual LH charge algebra

[g +Qs, H ]=0 leads to the low-energy theorem

q~M„& o( [g,',H. ] (r7 '& = —(o( [g',H„][r7'&

(A2)

Here we assume H„=H~„+X,&, but only the tadpole
part of H can contribute to the last vacuum (tadpole)
K transition in (A2).

However, by analogy with the strong axial-vector s-d
transition of Fig. 6(a),

FIR. 6. Quark representation of the strong AS =1 axial-
vector current (a), and of the weak AS = 1 axial-vector current
(b) ~

(o~ w'+"E'') =if~q„&2, (A3)

M„=b(if~q„&2) . (A4)

Then computing q"M„on the kaon mass shell q =I&
and comparing with (A2) we find

( o~rg~z'') =2&2bi fzmz, (A5)

which is as stated in (32b). The factor of —,
' in the

current-algebra —PCAC relation (27) converting (32b) to
(32a) is due to a (rapidly varying) kaon tadpole. '

we can approximate the weak axial-vector s-d tadpole
transition of Fig. 6(b) (treated as an s-d "dot") as
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