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Derivation of the two-component model for multiplicity distributions
from a stochastic branching mechanism

M. Biyajima
Department ofPhysics, University ofMarburg, D 3550-Marburg, Federal Republic of Germany
and Department of Physics, Faculty ofLiberal Arts, Shinshu Uniuersity, Matsumoto 390, Japan

G. N. Fowler
Department of Physics, Uniuersity of Exeter, Great Britain

E. M. Friedlander
Nuclear Science Diuision, Lawrence Berkeley Laboratory, Uniuersity of California, Berkeley, California 94720

C. C. Shih
Department ofPhysics, Uniuersity ofMarburg, D 3550 Marb-urg, Federal Republic of Germany

and Department of Physics, University of Tennessee, Knoxville, Tennessee 37996

N. Suzuki
Matsusho Gakuen Junior College, Matsumoto 390-12, Japan

R. M. Weiner
Department of Physics, University of Marburg, D 3550 Marburg-, Federal Republic of Germany

G. Wilk
Soltan Institute for Nuclear Studies, Warsaw, Poland

{Received 27 November 1989; revised manuscript received 15 October 1990)

Multiplicity distributions in high-energy hadronic reactions are broader in the central rapidity re-
gion than in the fragmentation region. An explanation of this phenomenon in terms of a stochastic
branching equation is given supporting the picture of two sources, one mainly chaotic and one
essentially coherent.

I. INTRODUCTION

Multiplicity distributions in high-energy reactions are
a subject of high current interest because of their poten-
tial role in elucidating the mechanism of particle produc-
tion in "soft" strong interactions. In the last years the in-
teresting observation has been made that the probability
P(n ) to produce n particles depends, among other things,
on the rapidity region. ' This dependence is twofold.

(I) P(n ) broadens with the width Y of the rapidity re-
gion.

(II) P(n ) narrows with the shift of the position y of the
rapidity interval considered from the central towards the
fragmentation region.

For the plateau part of the rapidity region, where the
hadronic fields may be assumed to be "stationary" in y,
the Y dependence of P(n ) can be understood within a
quantum-statistical (QS) formalism in terms of a source
which generates a superposition of coherent and chaotic
fields, with a finite rapidity coherence length. Outside
the plateau region, the applicability of the QS formalism
used in Ref. 3 is not granted anymore.

To cope with this "nonstationary" region by using the
same QS concepts of coherence and chaos two possibili-

ties emerge. One could try to generalize the stationary
QS formalism to include also nonstationary fields. Such
an enterprise is at present in the process of completion
and is useful as long as the derivation from stationarity is
small. Near the fragmentation region, however, where
the hadronic fields change rapidly with y, another ap-
proach is necessary. Such an approach was suggested in
Ref. 5 and led to a semiquantitative explanation of eft'ect
(II). In this approach there are two sources: one contrib-
uting mainly to the central rapidity region and character-
ized by a negative-binomial distribution PNB and the oth-
er contributing to the whole rapidity region and charac-
terized by a Poisson distribution PI, . The overall multi-
plicity distribution is then written as a convolution:

P(n ): y Pp(n )PNa(nt )5(n n nb )

When applying Eq. (I) to the experimentally observed
multiplicity distributions in shifted rapidity regions at
different energies &s, in order to interpret effect (II), the
following surprising result was found.

The mean multiplicity (n, ) of Pt, increased with v's
quite slowly, consistent with a logarithmic dependence,
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while the mean multiplicity ( nb ) of PNB increased faster,
consistent with a dependence of the form s' . This re-
sult suggested the possibility of the existence of two
sources: one source which is thermally equilibrated and
which is acting in the central region and another one
displaying characteristics of bremsstrahlung emission and
contributing to the whole rapidity region. The possible
candidates for these two sources were a gluon plasma and
radiating quarks, respectively. Given the important pos-
sible implications of this finding, a more microscopic
derivation of the two-component (sources) model appears
desirable. The purpose of this paper is to provide such a
derivation in terms of a stochastic branching equation.
Another result reported here is the improvement of the
agreement between Eq. (1) and data for the whole rapidi-
ty region since the publication of results in Ref. 5. This
improvement results from using in the branching equa-
tion initial conditions different from those initial condi-
tions corresponding to Ref. 5.

II. STOCHASTIC BRANCHING EQUATION
FOR RELATION (I)

We assume that a hadron participating in a collision
shakes off or breaks up into two types of partons: Type
(a) ("break-up coupling" po) cannot cascade while type (b)
("break-up coupling A.o) can (with "branching coupling"
A,). An example for such a classification could be partons
near mass shell (which do not cascade) and partons far off'

mass shell (which do cascade). Species (a) could also be
associated with quarks and species (b) with gluons. The
coupling between (a) and (b) is neglected mainly for sim-
plicity reasons. The initial hadron may survive the col-
lision process in the form of a leading particle. As in Ref.
6 we assume the the multiplicity distribution of hadrons
is similar to that of the partons which generated them.
One may further conjecture that, because of the degrada-
tion of momenta, hadrons which originate from cascades
prefer to populate the central region.

Such a picture can be represented by the following sto-
chastic branching equation:

C} P(n, , nI„'t)=po[P(n, —i, nz,'t) —P(n, , nb, t)]'Bt

+Ao[P(n„nb —1; t) P(n, , n&', t)]-
+A, [(nb —1)P(n„nb —1; t )

nbP(n nb, t)],
where p0, ko, and A, are production rates in the interval
dt. Using the techniques of generating functions, ' we
find that Eq. (1) is one of its possible solutions. Equation
(2) represents two independent emission processes, (a) and
(b), followed by a cascade process (cf. Fig. 1). Given an
infinitimal interval dt, the probability of producing a par-
ticle of type a from a virtual source is given by podt.
Similarly the probability of producing a particle of type
(b) from a virtual source is given by A, odt. Finally the
probability that particles of type (b) reproduce them-
selves (as in Fig. 1) is given by A, dt. The variable t is the
evolution variable, which could be related to the rapidity

p.o

S
X,

FIG. 1. Typical evolution processes where two types of parti-
cles (partons) a and b are produced by virtual source (s). The
production vertices are characterized by couplings po and Xo re-
spectively. The bottom process corresponds to the evolution
(branching) of a single particle (parton) b. The corresponding
production vertex is characterized by a coupling A, .

or to the incident-energy variable. " Let us define the fol-
lowing generating function

II(u, v;t)= g g P(n„nb, t)u 'v ' .
n =On =0

a b

(3)

F(u, u ) =II(u, u;t =0)

P(n„nb', t=0)u 'v ' .
n =0 nb=0

Then, Eq. (4) has the solution [10]
pot( u —1)II(u, u;t)=F(u, w)e ' (u/w)

where w =u [1—(e ' —1)(u —1)], and k =Ao/A, . Notice
that whereas in the QCD-like cascades it is expected that
k= —,

' (at least in the limit of large number of colors,
K,~ oo, cf. Refs. 7, 9, and 10), in our case A,o should be
interpreted as an effective coupling constant equal to Ap

(QCD) times the number of quarklike jets originating
from the colliding hadrons. Therefore, in pp and pp col-
lisions which we are dealing with (where we have
p+p~2[(q)+(qq)]), k= —,

' X4=2. This value will be
then used throughout the paper. It is amusing to notice
that it coincides with the value of the parameter k in the
NB distribution PNs(nb ) of Eq. (1) found in Ref. 5.

In the following we shall consider two types of initial
conditions.

From Eq. (3) and Eq. (2) we obtain the following partial
differential equation:

err =[p (u —I)+k (u —1)]II+Au(v —1) . (4)
an

at 0 0
Bv

The boundary condition for Eq. (4) follows from the ini-
tial condition P ( n„nb; t = 0) as
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Initial condition (I). Poisson distribution times
Kronecker's 5 function: 10—

n

P(n„nb, t =0)= e '5„
n, !

(7)

The physical picture for (I) is given in Fig. 2(a). Comb-
inging Eqs. (3) and (7), we have

II~ '(u, v;t = T)=e ' [I—(v —1)(e —1)]

where k =A,o/A, and T is the maximum value of t. On the
other hand, the generating function of Eq. (1) is given by
a similar formula:

II(z)= g P(n )z"
n=0

10

30—

20—

(b)

I I

50 100
vs (GeV)

I I I I

500 1000

—k(., )( —&) (nb )=e ' 1 —(z —1)
k

(9) 10—

Equation (9) coincides with Eq. (8) when u =v =z, pro-
vided that

(n. ) =p, T+n.o

(nb) =k(e —1) .

By writing T =y Inv's n, o, o—ne obtains

(10)

2
10 50 100

vs (GeV)
500 1000

(n, ) =a+& 1n&s

(nb ) =c+ds
(12)

(13)

where V s in GeV and a =n, o( 1 —Po), b =Pol',
c = —k, d =kexp( An, o—) and f =Ay are suitable con-
stants to be determined from data (cf. Fig. 3 for details).
Notice that these equations coincide with the remarkable
empirical relationships found in Ref. 5. Notice also that
for any given T, the mean multiplicities ( n, ) and (nb )
have to satisfy the following relation obtained by elim-

FIG. 3. Analyses of data (Ref. 23) by means of Eqs. (10)—(14)
and (17) I'initial condition (I)] with k =2. The solid line in (a):
(n, )=2.491+0.9661n&s, v's in CxeV) is determined by the
method of linear regression with a correlation coefticient (cc}of
0.982. The solid line in (b): ln((nb)+k)=0. 344+0.4461nv's,
is similarly determined with cc = 0.997. They correspond to

p= 3.25 I =0. 1 1 p =4. 15 and pp=0. 23. Notice that
A,0=2k=@0. It is straightforward to check that with these
values of parameters Eq. (14) is indeed satisfied.

nao

inating T from Eqs. (10) and (11):

n. ) —n. o po
ln(1+ (n ) /k)

(14)

~ao

b)

FIG. 2. Various initial conditions. n, p and n» become zero
whenever the Kronecker's 5 functions are used. (a} corresponds
to n, p=2 nbp=0 while (b} coiresponds to n p=2 nbp=2.

Had we used two Kronecker's 5 functions (5„o,5„o) in

Eq. (7), we would have obtained (n, ) =poT in Eq. (10)
and no further changes. The solution of Eq. (2) can now
be written as P(n„nb)=PJ, (n, )PNB(nr, ). Thus we have
shown that Eq. (1) is equivalent to the solution of Eq. (2)
with the initial condition (I) establishing therefore a link
between the purely phenomenological approach of Ref. 5
and the parton model as represented by the stochastic
equation (2).

The factorial moments of the total P(n ) are now given
b 12

P =(n(n —1) . (n —l+1)),
q l(k+j) p q 1( )q

, , i. r(k) k
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F& =(n ) =(n, )+(nb) =(1—p)(n )+p(n ), (16) ty in the system and was then determined through the re-
lation

1/2

F,= (n )'+p &n &'
(17) p= k C2 —1— 1

(n)

where p = ( nb ) /( n ). Notice that in Ref. 5 the quantity

p was interpreted as a measure of the amount of chaotici-

where C2=Fz/(n ) +1/(n ). By making use of the in-
verse Poisson transform, we can also calculate the corre-
sponding Koba-Nielsen-Olesen (KNO) scaling function:

n 1 c+i~ rI'" u=1-
(n ) 2~i

k 1 k—t'z=(1 —p)]
p l(k) p

S S
&,

U= 1 —
& &

exp(sz)ds

k —1

e' " P'" forz (1 —p)

(19)

(20)

=0 for z ((I—p) . (21)

P(n, , nb', t =0)=
n nb
ao —n nbo —na e bO

na 1 nI, .t
(22)

The vanishing of the KXO scaling function below a cer-
tain z suggests the existence of a "threshold" in the multi-
plicity distribution which may be observable at high en-
ergies.

Initial condition (II). Two Poisson distributions: Let
us now consider another, more general, initial condition
which, as we shall see, provides better agreement with
data for higher C moments. We take

F =(n(n —1)) ((n —q+1)), (25)

III+ ANALYSES OF Cq MOMENTS

We shall first give our results with the initial condition
(I) for the experimentally measured C =(n )/(n ) mo-
ments in the full rapidity range' using Eqs. (10)—(14)
and (17). The &s dependence of (n, ) and ( nb ) is given
in Fig. 3 and is of course, in agreement with Eqs. (12) and
(13). A similar analysis is performed for the initial condi-
tion (II). For example, for the lower-order factorial mo-
ments

P(n )= y Pp(n )PpM(nt )6(n n n/ )

n , nb

(23)

where PpM is the generalized Glauber-Lachs' or the
Perina-McGill distribution

The physical picture for (II) is shown in Fig. 2(b). These
Poisson distributions correspond to fluctuations in n,
and nb at t =0. It can be shown (cf. Appendix) that the
solution of Eq. (2) with the initial condition (22) is F, =(n, )+(n, ),

F,= ( n ) '+p'(2 —p ') ( n, ) '/k,

(26)

with

& n. & =lJ,,T+ n., & n, &
= A + ~g~',

(28)

the general solution of Eqs. (23 and 24) gives us (cf. Ap-
pendix)

1+
k

—n —kb A =k(e —1), ~g~ =nboe, p'=
nb

+ g /k 71b

A(1+ A /k)
(24)

Notice that whereas in (I) all partons of type (b) were sup-
posed to be purely chaotic, now they can also be partially
coherent. In Eq. (24) A and ~g~ denote their chaotic and
coherent average multiplicities, respectively. Further de-
tails of this second case are discussed in the Appendix.

where nbo and the "chaoticity content" p of ( nb ) are ad-
ditional parameters as compared to the case of initial
condition (I). A typical nbo value yielding a reasonable
description of the higher C moments is nbo = 1.5. The
corresponding functional relationship between ( n, ) and
the energy +s is given in the caption of Fig. 4. The gen-
eral agreement with the data for initial condition (II) is
now better than with initial condition (I). awhile Fig. 4
provides the details of the parametrization, Fig. 5 gives
the overall comparison with the C moments. As an ex-
ample, summing overall all energies, the total chi-square
d value is gz = 1.05 for C3, and g =3.95 for C4.
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IV. CONCLUDING REMARKS

We have demonstrated that Eq. (2) is a possible sto-
chastic branching equation representing the two-
component model, Eq. (1) of Ref. 5. Initial condition (I)
provides a natural setting for the average multiplicities
( n, ) and ( nb ) to evolve with energy, as found in Ref. 5

when T is identified with &s. When the initial condition
(II) is used, the agreement with experiment (especially for

FIG. 4. Analyses of data (Ref. 23) by means of Eqs. (26) and
(28) [initial condition (II)] for 0 =2 and nba=1. 5. The solid line
in (a) is obtained from (n, ) =3.460+0.378 InV's (&s in CxeV,
cc = 0.893, cf. Fig. 3). The corresponding average multiplicity
( n~ ) is given in (b) and its associated "chaoticity content" p' is
given in (c).

FIG. 5. Comparison (via ratios of experimental to theoretical
values) of C~ moments (q=3 to 5) for various beam energies;
the data are from Refs. 15—24.

higher C moments) is even better, cf. Figs. 4 and 5. This
indicates then the need for the presence of initial Auctua-
tions in both types of emitting sources.

The stochastic branching equations discussed here pro-
vide a natural framework for incorporation of many oth-
er types of fluctuations and initial conditions not ad-
dressed here. But it is the relative simplicity of the
present approach that permitted us to penetrate into the
formidable complexity of the hadronization. Other ini-
tial conditions, applications of our formulas to data of ra-
pidity window, KNO scaling problems, and the forward-
backward correlation, and other types stochastic branch-
ing equations of two-component models will be discussed
elsewhere.

The derivation of the two-component model presented
here, if taken literally, suggests that in the central region
two processes take place.

(1) An independent-emission process consistent with
bremsstrahlung, and which exists also in the fragmenta-
tion region.

(2) A cascade process.
Whether these two processes can lead to thermal equi-

librium, as conjectured in Ref. 5, remains to be proved.
It should be also clear that the two-component model
presented here and in Ref. 5 does not yet contain a corre-
lation length. This again is a task for the future.
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APPENDIX

By use of the same procedure as before for Eq. (7), we obtain the generating function

II("'(u, v t=T)=e ' " [I—(v —1)(e —1)] "exp nbo
(&OT+n o)(& —() ZT k e (U 1)

1 —(e —1)(U —1)
(A 1)

From Eq. (Al), we can calculate P(n„nb, t ) and its moments. To study further Eq. (Al), let us replace in Eq. (1) the
NB distribution by a more general distribution PpM:

P(n ) = g Pt (n, )Pr M(nb )6(n —n, —
nb ),

"a "

where for PpM we shall choose the generalized Glauber-Lachs, ' or the Perina-McGill distribution

PvM(nb)
]

"b

j +
k k

—n —kb

~(k —()
1+3/k "b A(1+3/k) (A3)

In Eq. (A3) A and ~g~ denote the chaotic and coherent average multiplicities, respectively. An explicit expression of
Eq. (A2) is given by

(n„)
P(n )= 1+p'

k

—k
(1 —p')(n„& ~ (n. )" &

exp 1—, —(n, ) 1+1+p'( nb ) /k '
. o (n —I )! p'( nb )

L (k —1)
J

k(1 —p')
p'(1+p'( nb ) /k )

(A4)

where ( n ) = ( n, ) + ( nb ), ( nb ) = A +
~ g~, and p' = A /( nb ). Equation (A4) coincides with the Perina-Horak formula

in quantum optics. It was also used by Blazek in hadronic distributions. The generating function of the Poisson dis-
tribution with the mean multiplicity ( n, ) and that of Eq. (A3) lead to the expression

(n )(u —1) (v —1) E
II '"'(u, U ) =e '

[ I —
( v —1)2 /k ] exp

1 —(U —1)2 /k

Equation (A5) with u =U =z becomes the generating function of Eq. (A4). The generating functions II'"'(u, u; T) and
II '"'(u, U ) are equivalent to each other, provided that the following relations hold:

(n, ) =p, T+n.,
A =k(e —1),
~g~2

hT

(A6)

(A8)

(A9)

A second solution of Eq. (2) can now be written as P(n„nb ) =Pt, (n, )Pt M(nb ), showing that it is equivalent to Eq. (A4)
with the initial condition (II). From Eq. (Al), we can obtain the factorial moments

F =(n(n —1) (n —q+1))= g . I(j+I)(n, )&
p ("b & ',„„k(1—p')

.J .

F, =(n. &+ W+ ~g~'=(n &,

(n, )'
F2=(n) +p'(1 —p')

(A 10)

(A 1 1)

where p'= 3 /(nb ). Given p' and nbo, which represent additional parameters as compared to the case of initial condi-
tion (I), we have

(k+nbo)+Qnbo+(k+2nbo)(n ) (Cz —1 —1/(n ) )
e

k +2nqo

where C2 =F~/(n ) +1/(n ). Notice that the experimental values of C2 and ( n ) are used here as input.

(A12)
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