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Pion-nucleon scattering in the Skyrme model and the P-wave Born amplitudes
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We treat fIuctuating pion fields around a rotating Skyrmion by means of Dirac's quantization
method. The rotational collective motion of the Skyrmion is described by collective coordinates,
and conventional gauge-fixing conditions are imposed. Taking into account all the relevant terms at
the tree level appearing in the Hamiltonian, we show that pion-nucleon scattering amplitudes exhib-
it the P-wave Born amplitudes attributed to the Yukawa coupling of order QN„which is consistent
with the prediction of chiral symmetry such as the Adler-Weisberger relation. This resolves the
difficulty that the Skyrme model predicts a wrong N, dependence for the coupling of order N,

I. INTRODUCTION

Recently, much attention has been attracted to the
Skyrme model' of the nucleon since Witten conjectured
that baryons may appear as topological solitons in the
large-X, limit of QCD. The Skyrme model is essentially
a nonlinear o. model of pions supplemented by the
Skyrme term to stabilize solitons (Skyrmions), which is
considered to be an e6'ective Lagrangian of QCD at low
energies. Static properties of the nucleon have been
shown to be reproduced within about 30% in the model.
It has been further shown ' that the pion-nucleon
scattering at higher partial waves is also well described in
the model. The description, however, failed at lower par-
tial waves such as S, P, and D waves. It was particularly
disappointing to see that there appear no Born ampli-
tudes in the P wave necessary to reproduce the 6-isobar
resonance, but a zero-energy pole term appears instead.
These seem serious because the model is based on chiral
symmetry and possesses the 6 isobar as the rotational ex-
citation, and thus is expected to yield a good description
of low-energy phenomena in the pion-nucleon system.

One of the main defects is known to be no appearance
of linear pion coupling to the Skyrmion, because the ex-
istence of stable soliton solutions means no linear cou-
pling of fluctuating fields. However, zero modes appear,
as is well known, because of the breaking of symmetries
such as rotational and translational degrees of freedom.
In a quantized case, linear coupling may not disappear
completely, because there is mismatching of the rotating
Skyrmion field with the equation of motion. Following a
quantization procedure to eliminate zero modes properly,
we can obtain a linear coupling term, but such a surviv-
ing coupling term ' could not be of leading order in the
1/X, expansion, where %, is the number of colors. It is
actually of order X, (Ref. 6) or N, ' (Ref. 7) de-

pending on gauge-fixing conditions. This 1V, scaling is

higher by 1/N, or 1/X, than that of the ~XX pseu-
dovector coupling constant expected from the quark
model and current algebra. This discrepancy is serious
and is called the Yukawa-coupling problem.

Recently, the amplitudes for a meson scattering off' a
soliton have been investigated by Uehara in the case of
(1+1)-dimensional scalar-meson theory. There, it was
found that the 1/N, amplitudes calculated from a two-
meson vertex, the zero-mode pole terms of order N, , and
the Born amplitudes calculated from the above surviving
Yukawa-coupling term add up to the correct Born ampli-
tudes with the Yukawa-coupling term of order QX, .
This work was limited to the static case, but was recently
relaxed to the moving soliton case by including the am-
plitudes of order X, ' by the present authors. ' This
finding is remarkable, because this shows that, although
the linear meson coupling term is of order X, under
conventional gauge-fixing conditions, the correct Born
amplitudes are obtained by including all the relevant
terms at the tree level.

In this paper we discuss the quantization of the Auc-
tuating fields around the Skyrmion: The rotational in-
variance is properly taken into account by introducing
the collective coordinates, and the Dirac quantization
method" is utilized to remove the zero modes. The
translational motion of the Skyrmion is not treated in this
paper. In a way parallel to the case of (1+1)-dimensional
scalar-meson field theory, ' we make use of the reduction
formula to calculate the pion-nucleon scattering ampli-
tudes. In Sec. II we show how to introduce the Auctuat-
ing fields around the Skyrmion and the constraint condi-
tions imposed on the fluctuating fields to eliminate the
zero modes. Further, the Hamiltonian and Dirac com-
mutation relations are presented. Here the canonical mo-
menta are properly symmetrized by following the
prescription of Tomboulis. ' In this way we obtain linear
and quadratic coupling terms of pions. In Sec. III we
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derive the reduction formula to calculate the pion-
nucleon scattering amplitudes. We retain the equal-
time-commutator term, which remains only when the
source functions depend on the canonical momenta.
There appear such source functions in nonlinear field
theories with solitons when collective quantization
methods are applied. In Sec. IV we calculate the various
source functions relevant in the tree approximation. In
Sec. V we calculate the elastic-scattering amplitudes of
the pion-nucleon system and show that the amplitudes
agree with those resulting from the classical pion-nucleon
form factor of order X,' . Conclusions and discussions
are given in Sec. VI.

4 b(x) =K„(x)@b(x),
where Nb is the zero-mode solution given by

4'b =(iLbg, )',
with

(2.5)

(2.6a)

fields, and A, b involves second-order differential opera-
tors for the spatial variables. Further, + b denotes the
coupling between the fluctuation and rotation. Here we
have used the fact that in the 1/N, expansion the
lowest-order term of the coupling is described by the time
component of the axial-vector current AO=2f 4 bcob
with

II. QUANTIZATION OF FLUCTUATION FIELDS
AROUND THE SKYRMIQN

The Skyrme Lagrangian is given by

,'f Tr(d—UB"U)+ Tr[[(B„U)U,(B,U)U )]'J1

32e

+ ~ f m Tr(U+U —2), (2.1)

where U is an SU(2) matrix of the chiral field, f the pion
decay constant, e the coupling constant of the Skyrme
term which is necessary to stabilize the soliton solution,
and m the pion mass. The static soliton solution is
given by the hedgehog ansatz Uo =exp[iF(r)~. x], where
F(r) is the chiral angle. To remove the invariance under
the global rotation U —+ AUA, we consider 2 as time-
dependent collective coordinates, where A is an SU(2)
matrix. By quantizing these degrees of freedom, we de-
scribe the nucleon and the 6 isobar as the rotational exci-
tations of the Skyrmion.

We now represent the Auctuation around the nucleon
as chiral perturbation' with U = U„A Uo 3 U, where
U is given by exp(ir. y/2f ) with the Auctuating fields

cp, (x, t). Substituting this form into the Lagrangian in
Eq. (2.1), we obtain

P;(x) =f R„x,tanF, (2.6b)

and (tL, ) '=e.b,
The canonical momenta conjugate to the Euler angles

and to the Auctuating fields are given by

I, = =Ace, + f d x yb(x, t)4",(x),
COa

BL
~a +aha b++ b~b

(2.7a)

(2.7b)

We can see that the above constraints are first-class ones.
Then we impose the gauge-fixing conditions

d xN," xyb x, t =0. (2.9)

The Poisson brackets between the g and y conditions are

Note that the I, 's are the angular momenta in the body-
fixed frame, which are identified with the isospin opera-
tors with the negative sign. The operators in the labora-
tory frame defined as J;=R„I, are the spin of the Skyr-
mion. However, the momenta in Eqs. (2.7) are not in-
dependent and are constrained by the relations

Q, =I, —f d x 4&,"(x)~b(x, t)=0 . (2.8)

L =—co, + f d x[—,
' j),(x, t)K,b(x) j&b(x, t)

2

+ j&, ( tx)C& b(x)cob]

~O p 0'a ~ ab 0'b (2.2)

[ Pa ~+b ] P ~~ah -ab

where =,b is given by

d'x '.b x y, x, t

with

(2.10)

(2.11)

R„=—,
' Tr( A r, A r, ), (2.3)

we obtain the time derivative of the matrix as follows:

where Mo is the static mass of the Skyrmion, A, the mo-
ment of inertia, and the co, 's the angular velocities. We
used the summation convention for repeated indices.
Here we have neglected the terms higher than the second
powers of the Auctuating fields. Denoting the adjoint ma-
trix by

Cab [Ia~@b]P (2.12)

It can be easily seen that the antisymmetric part of:",&
vanishes because of the constraint conditions in Eq. (2.9):
namely,

:-,b —:-b,= —f d x 4&,"( )&px( dtx) =0, (2.13)

where a, b, and c are cyclic. We can therefore write
:-,b = "[,b~ with the definition

Ra,. =Gabc&cRb (2.4)
(ab) g( ab ba ) (2.14)

Here we used the convention that a, b, c, . . . denote the
isospin indices, and i,j,k, . . . those of the spin in the lab-
oratory frame or the isospin in the soliton-fixed frame. In
Eq. (2.2) K,b is a metric, not involving the fluctuating

1- ~
m, =5.,+—N bIb (2.15)

We now decompose the momentum ~, in the form
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where the first term 5, is transverse to and the second is
longitudinal to the rotational collective motions. With
this decomposition the P conditions turns out to be

H=I, co + m, jp, —I.

~0+ 2 ~a + ahab +V a +ahab (2.18)

g, = Jd x C&, (x)~.b(x, t)=0 . (2.16) Following Tomboulis, ' we symmetrize a, as follows:

In this procedure the canonical momentum I, is modified
as

Ib. (2.17)
~5, + [4 b(A ')b, I, +I,(A ')b, 4 b ], (2.19)

The Hamiltonian is written as
where A=1 —:-jk. Substituting this into the Hamiltoni-
an [Eq. (2.18)], we find

H =MD+ [(A '),b, Ib I+[(A ')„,I, ]++II „,„+FIq, ,
8A,

where

(2.20)

Hmeson 2 ~a + ab ~b +0 a +ab 'Pb (2.21)

Hqc ~a + ab7 Id7 + cd+ c +
2

+ bc + b7Ic + ad+ e7 + ef7If +

8A,
ad If7+ e + ef (2.22)

H„, involve double commutators or the second multiple of single commutators. Hence these are of 0 (A' ) and are thus
at the two-loop level. We shall ignore these in the following, because we want to calculate everything in the tree ap-
proximation. Noting A to involve the Auctuating fields, we may expand the collective part of the Hamiltonian in Eq.
(2.20) in powers of:- as follows:

8k
[(A-').„,I., ] [(A-').„I,] = I.'+, [I.„[:-.„I I,bj,2X 4g

+ ( [:-,b, Ib j+ [:-„,I, I++2[I„[(:"),b, Ib I ]+)+
8A,

Hlot +HJ+H2+ 7 (2.23)

where the first term denotes the rotational energy of the Skyrmion, the second one gives rise to the Yukawa coupling
which is linear in the fluctuating fields, and the third one gives seagull terms. Note that H„, is of order N, , H& order

, Hz order N, , because the moment of inertia k is of order N„and:- order N,' . These N, dependences are ob-
tained by noting that f and the inverse of the coupling constant of the Skyrme term, 1/e, are of order ItI,' . The X,
dependence of the meson part H „,„ is of order N, . It should be noted that we have obtained the Yukawa-coupling
term by the quantization procedure, but it is only of order N, in contrast with the expected term of order N,'

Having obtained the Hamiltonian, we proceed now to quantize the system. It is well known that the constraint con-
ditions in Eqs. (2.9) and (2.16) modify the Poisson brackets as the Dirac brackets" defined by

[»gIP=[»gIP+ g([f + IP[4 gIP [»0.JP[+ gIP) (2.24)

where the brackets without the asterisks denote the naive ones. We assume that the naive Poisson brackets are given by

[y, (x, t), 5b(y, t) I p =6,b5(x —y),
[I. Ib]P= &.b.I. —

[ Ia ~ +bk ] P ~abc +ck

others=0 .

(2.25)

These lead to the Dirac brackets
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I y, (x, t), ~.b(y, t) I p =5,b 5(x—y) ——tIi;(x)4&,"(y),

{y,(x, t), tpb(y, t) ) p= {~., (x, t), 7rb(y, t) I P =0,

(2.26a)

(2.26b)

{Ib,ti2, (x, t) ) p
=—@;(x):-b, , (2.26c)

{Ib m (x t)Ip= 4 (x)eb (2.26d)

(2.26e)

{Ia & R bk I P Eaba R'ck (2.26f)

a(x, t), Rbk Ip= {7ra(x,t), Rbk )p= {Rak,Rb&I p 0 (2.26g)

where we have defined

with

= —
{I„C'b I

(2.27)

(2.28)

P;(x)= t/f P;(x)—
2

e2f 2 r2

1//'2

(2.34)

In quantum theory commutators are given by Dirac
brackets as follows:

(2.29)

In the following we calculate pion-nucleon scattering
amplitudes using reduction formulas within the plane-
wave approximation. In this approximation we may
neglect the tensor part of the metric K,b in H „,„: The
explicit form of K,b is given by

K,b =K,b+K, b =R„(fo;& +gx, xj )Rbj, . (2.30)

where f and g are functions of the radial coordinate. We
then write the meson part of the Hamiltonian as follows:

(0) (&)
Hmeson H meson +H meson

~a +D ahab +V aabV b

and g;b =pb. Furthermore, we see that the commuta-
tion relations in Eqs. (2.26) are not altered. Finally,
defining

—0 —= —V' +m +V,1 1
(2.35)f f

we find that the Hamiltonian does not depend on E b ex-
plicitly.

III. REDUCTION FORMULA

We want to write the S matrix for scattering of pions
off the nucleon through the reduction formula for the
fiuctuating fields alone in the same way as in the (1+1)
scalar-meson theory. '

We first define the in and out fields for the pions:

y',"(x,t)= f d'k (a'„",e'k" " +H. c. )

+2cok "t/ (2~)
+ 77a K ab KD ab &b o (2.31) —= f d k(ak", fi, (x, t)+H. c.), (3.1)

We consider that it is necessary to improve on the plane-
wave approximation if we take into account H",'„„.
Such an attempt will be considered in a future work.

In the approximation to neglect H( „,„, it is convenient
to redefine the Auctuating fields by

[a in/out a in/out)'] Q(Q Q' )Q (3.2)

and similarly for the out fields. a k",'"' (a k"/'"' ) is the an-
nihilation (creation) operator, which satisfies

't/f y, (x, t)~y, (x, t),
1—~., (x, t)~m. , (x, t) .

In this definition we can write

(2.32a)

(2.32b) ~B,ka in) =ak", ~B )

= —i f d x fk(x, t)BO@,'"(x, t)~B ) . (3 3)

We write the initial state for the pion with the momen-
tum k onto the baryon state B as

with

a —Ca —(L y )a (2.33) A similar formula is applied to the final state.
Prepared with the above, we now write the S matrix as

follows:
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(3.4)

where J, is the source function defined by

a'
J, =

2
—V™

(3.6)
I

SI;= (N', k'b out IN, ka in)

=5j;+if d x dt fk(x, t)(N', k'b outIJ, (x, t)IN),
(3.&)

lim tp, (x, t)=tI(),'"(x,t),

lim rp, (x, t) =(p', "'(x, t) .
g —++ oo

(3.7)

The same procedure can be applied to the out state to
obtain the double-reduction formula

In deriving the above single-reduction formula, we have
assumed that the fluctuating fields are the interpolating
fields

SI, =5I +i fd'x'dt' fd'x dt f~(x, t)f)*, (x', t')(N'I2)'T[q)b(x', t')J, (x, t)]IN), (3.8)

where the prime on 2) means the variables are x', t', and T is the time-ordered product. Carrying out the time deriva-
tives on the time-ordered product, we finally obtain

S~, =5~, +i' fd'x'dt' fd'x dt f„(x,t)fk (x', t')(N'I {
—ice„5(t' —t)[pb(x', t')J. (x, t)]+5(t' —t)[jb(x', t'), J.(x, t)]

+ T [Jb(x', t')J, (x, t)] I IN ) . (3.9)

Here, to obtain the first term of the equal-time commutators, integration by parts was used. This term vanishes usually,
but not in such a nonlinear field theory as the present one. The scattering amplitude is defined as

1
Sj 5f +2rri 5(ej —e', )

j=i,f Q(27T) 2'. (3.10)

where c.; & denotes the sum of the energies of the baryon
and meson in the initial or final states.

IV. SOURCE FUNCTIONS

y, =i [H, y, ], (4.1)

where H is given by Eqs. (2.20) and (2.23).
Noting that the Hamiltonian was expanded in powers

of N, ', we can also expand the source function in the
same way:

J(0)+J(1)+J(3/2)+ J(2)+I (2)+~(2)+
a a a a a a a (4.2)

where J,'"'s mean that they are of order N, ". Note that
I

We will calculate scattering amplitudes by means of
the reduction formula derived in the previous section.
For this purpose we need time derivatives of the Auctuat-
ing fields in obtaining the source functions J, s. These
are calculated by means of the commutators with the
Hamiltonian; for example,

(4.3)

where V,b is defined in Eq. (2.35).
The term of order X, ' is written as

Ja [Hmeson » I Hrotr 0 a ] ] I Hrotr I Hmeson » 0 a ] ]

1

X2 {Ib,@c8(bc)j + (4.4)

Here the parentheses in the subscript of 6 mean sym-
metrization in the same way as in Eq. (2.14).

The Yukawa-coupling term H& in the Hamiltonian
gives the next-order term

I

the terms higher than X, contribute only to loop
corrections in the scattering amplitudes, because they in-
volve more than the second power of the fiuctuating
fields. We therefore ignore them in the following.

The zeroth-order term J,' ' is given as

where

4A, 4A,
{I„{Id,gd )+)++ 4;[{Id,{X('d,),I, )+)+

—2{6(dc)r { (d )»I j+ej+e2{Id» { (de)re(ec) j+ j+

{Id {'&(d. ) =(-) ) + ) + {=(d.) {e(d. ) I. j + j + ] (4.5)

X;b = {:-,b, P, jj =f d x g,"b(x)@,(x), (4.6)
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with the naive Poisson brackets. It can be seen that the symmetrized X(,b) vanishes, because X,b is antisymmetric in the
subscripts as e,b, . The other terms within the square brackets are of the second power of the fluctuating fields and give
rise to only loop corrections to the reduction formula in Eq. (3.9).

Finally, we calculate the source functions of order N, , denoted by J,' ', L,' ', and K,( ' in Eq. (4.2). Each term is
written as follows. First, J,' ' is defined by

J.(2) = —[H„[H(o,),.„,~. ]]

8A,
3 ( [ [kbcI»C ]+» [ bd» d ]+]++ [Ib» [Ick»dc bd+ dckbd ]+]+)+ (4.7)

where the ellipsis represents terms of higher power of the Auctuating fields and gives loop corrections. Second, L,' ' is
defined as

L,' '= —[H „,„,[H~, y, ]]
=o(y ~. ) .

One finds that this contributes to loop corrections only in the S matrix. Third, K,' ' is given by

K,' '= —[H„„,[H„„y,] ]

(4.8)

4A,
(eebf [Ie» [If»c c (bc)] + ]++ [Ie» [Ib»(gec-"(bc)+@c=e (b, ))]+ ] +)+

where =,',b was defined as the naive Poisson brackets

e, bc [Ie» bc JP

The ellipsis in Eq. (4.9) represents, again, terms of higher power giving loop corrections.
Now the time derivative of y, is written as

(o)+~ (&)+. . .

1
&

[Ib»c c (bc)]++
2k

(4.9)

(4.10)

(4.11)

Here the first term, which is the conjugate momenta to the Auctuating fields, is of order IV, , and the second term is of
order 1V, and is linear in the fluctuating fields. The dots represent terms higher than or equal to the second power in
the fiuctuating fields. Therefore, these will contribute to the equal-time commutators in Eq. (3.9) as only loop correc-
tions.

V. SCATTERING AMPLITUDES OF PIONS OFF THE SKYRMION

We have prepared all the machinery needed to calculate the scattering amplitudes of pions oA the nucleon in terms of
the reduction formula in Sec. III.

A. Yukawa-coupling term

First, we calculate the contribution of the Yukawa-coupling term, which yields J,' ' in the source function, to the
scattering amplitudes. Using the single-reduction formula similar to Eq. (3.5), the 5 matrix of a one-meson state to a
zero-meson state is written as

(B;0 outlX;ka in) =i f d x dt fi, (x, t)(BIZ,' '(x, t)IX)
2

2' l
Q(2ir) 2a)„

5(E~ E~ a)„) f d'«— '" "—(BI [I„[Id,pd, (x)J+]+I&~B N k (5.1)

where ~ and B denote the initial and final baryon states, respectively, and use has been made of Eq. (4.5)™akinguse
of (A2b) in the Appendix, one can rewrite the above as

2

(B;0 outlX;ka in) =2tti
+(2m) 2')),

f(E, E~, ) f—d'«'""&BI[I',[I',y;(x)]]IX&,B N k

=2&l
+(27r) 2'„

o(Eti E~ —co„)(Eti Etv )—'(Bl(t;(k;B)I&), — (5.2)
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where EIi denotes the energy of the baryon state B described as EJi =Mo+Iii(Ii, +1)/2A, , with IIi its magnitude of the
isospin, and we have defined

P;(k;9)= f d x e'"'"P;(x) . (5.3)

Here 0 indicates the Euler-angle dependence of the function explicitly.
We now see that the time ordering of J' ' in the reduction formula of Eq. (3.9) yields

[(&s —E~)'&N'Iy,"*(k',0)IB &][(&~—&~)'&Bly;(k;~)IN &]

B EB Ex ~k

[(&ii —&„)'&N'I @;(k;+) IB & ][(&,—E~)'& BI@,"*(k';+) IN & ]+
EB—EX+~k

(5.4)

where k and k' denote the momenta of the incident and outgoing pions, respectively, and Ã and X' the initial and final
nucleon states, respectively. Here we consider the elastic scattering so that E~.=E~. Note that the scattering ampli-
tude B3 is of order X,

B. Equal-time-commutator term of yb with the source function J,
Second, let us consider the equal-time-commutator term of the fluctuating field with the source function, the first

term within the curly brackets in Eq. (3.9). We find, after some straightforward manipulation,

[yb(y, t),J, (x, t)]=[yb(y, t),J, (x, t)]+higher-power terms, (5.5)

where higher-power terms mean that they are of the second or higher power of the fluctuating fields and therefore give
only loop corrections in the scattering matrix. From now on we use "higher-power terms" in this meaning. Note that
this equal-time commutator yields the term of order 1/N, . We find, for the right-hand side of Eq. (5.5),

[yb(y, t),J,'"(x, t)]= — II d4;( )xgt d~(y) ] ++higher-power terms,
k2

(5.6)

where use has been made of the vanishing property of the symmetrized Xi',bi in Eq. (4.6).
Substituting Eq. (5.6) into the first term in the curly brackets in Eq. (3.9), we find the scattering amplitude of order

N, ', denoted as B„to be

B,= i f d x f d y—e'""e '"'"&B'I II @d;( )xg", i(dyi)] I+B & . (5.7)

Using (A3b), one can show that

[Id, &;(x)gi,@(y)I+ = —.[P;(x),[I,[I,P, (y)]]]+higher-power terms .
4i

(5.8)

Here the commutators in the right-hand side are given by the naive ones, since the difFerences with the Dirac brackets
yield terms of higher power of the fluctuating fields. We found in this case that the terms calculated from the constraint
conditions in the definition of the Dirac brackets give rise to no contributions at the tree levels. Considering this and
inserting the intermediate baryon states 8, we find that B, in the tree approximation is

B, = —~„y(~,—E~)'[&N y,'*(k', e)IB &&Big;(k;e)IN &
—&N Iy;(k;e)IB &&Big,'*(k', e)IN &] .

B
(5.9)

C. Equal-time-commutator term of jb with the source function J,
Third, we calculate the equal-time-commutator term of the time derivative of the field with the source function in Eq.

(3.9). In the tree approximation, we find

[jab(y, r), J, (x, r)]= [@b '(y, r),J,' '(x, r)]+[j&b '(y, r), J,' '(x, r)]+[&j'b '(y, r), K,' '(x, t)]

+ [y 6"(y, t),J,"'(x, t) ]+higher-power terms, (5.10)

where y,' ' and jp,'" denote the first and second terms in Eq. (4.11), respectively, and the superscripts mean they are of
order %, and X, ', respectively. J,' ', etc., on the right-hand side have been defined in Sec. IV. Note that the equal-
time commutators in Eq. (5.10) yield terms of order N, and N, in the tree approximation.

The term of order %, is calculated to be
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[j&'b (y, t),J,' '(x, t)]=iV„(x) lib, 5(x—y) ——@d(x)@d(y)
1 (5.1 1)

Substituting this into the reduction formula for the equal-time-commutator term, we find, for the scattering amplitude,

f d3 —i( k' —k) xV( )0

1——f d x f d y e'" "e ''"'"&N'l@, (y)( —V' +m )4&,'(x)IN&, (5.12)

where we have used the fact that N; is the zero-mode solution. Now using (A3a), we finally find

B() —v——(k' —k) —~k $ (E~ E)v—)[&N'14, *(k';8)IB & &BI);(k;8)IN &+ &N' @;(k;8)IB&&BI@*(k',H)IN &], (5.13)

where V denotes the Fourier transform. Note that we have also ignored loop corrections. We can see that the first
term of Eq. (5.13) is the amplitude from the background scattering, and the second denotes the zero-mode pole terms as
can be seen later on.

Let us consider the second term in Eq. (5.10), which yields the amplitude of order N, : The equal-time commutator
is given by

[j&(b '(y, t),J,' '(x, t)]=
8A,

( [ [p„(x),I, ]+, [gd, (y), Id I+ I ++2[I, II„P(,d)(x)gd, (y)+g(",d)(y)Fd, (x)]+]+) . (5.14)

Using (A5), we find that the terms inside the small parentheses on the right-hand side are written as

) = —
—,'(I 0,'(y), II ', I I ', [I ', 0;(x)]l]]+3I:II ', 0,'(y) l, [I ', [I ', 0;(x)]1) ) (5.15)

where the square brackets are again taken as the naive ones in the tree approximation. Substituting Eqs. (5.14) and
(5.15) into the reduction formula in Eq. (3.9), and using the definition of the scattering amplitude in Eq. (3.10), we read
the amplitude of order X, to be

B2= —y (E, —E~)3[&N'ly,'*(k';6))IB &&Big;(k;())IN &+ &N'ly;(k;(l) B & &Big,b*(k', ())IN &] . (5.16)

Let us now consider the third term in Eq. (5.10). Note that 4, and:-, b are rewritten as

N,"=i [I„P,],
ab a~ b~ s qI c

provided that the brackets are taken as naive ones. We now derive

K,' = — f d y [I,I I„[Id,p;(x ) ][I(„[Id),p;( y ) ] ] I + ]&p, ( y, t ) +0 ( y ) .
4A, 3

(5.17)

(5.18)

Then the amplitude calculated from the third term in Eq. (5.10) is proportional to the matrix element between the ini-

tial and final nucleon states of

[I' II, I:Id 0;1[I(„[Id)0,']]I+]=—,'I:I' [0; I:I' [I' 4,'ill] . (5.19)

This is apparently zero in elastic scattering. Ignored terms by taking naive commutators in the above yield loop correc-
tions. We can therefore discard the contributions from the third term in Eq. (5.10) in the elastic-scattering amplitudes
within the tree approximation.

Now let us consider the fourth term in Eq. (5.10). The relevant commutator is written, after some algebra, in lowest
order, as

[y' b(y, ,t),"J'( , x)]t-i (II„I[Id, &f;(x)],II, [Id, p,"(y)]] ] I + [I,[[I„@'(x)],II„,[Id, p,"(y)]]+] I ),
16K,

(5.20)

where Eqs. (5.17) were used, and the commutator of:" and 6 was calculated as

[ ab ~ ecd ] l (5a 5bd c+ 5ob 5cd )a ~ c 2 ac (5.21)

We find that the term in Eq. (5.20) is of higher order by A' than the other amplitudes. This is easily seen, for example,
by means of dimensional counting: The left-hand side of Eq. (5.20) has a dimension (mass)(length ) in the c =1 unit,
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while the right-hand side has a dimension (mass )(length ), so that the right-hand side has A' ' dependence. Let us
now consider the case of the amplitude in B2. The left-hand side of Eq. (5.14) has the same dimension as that of Eq.
(5.20), while the right-hand side of Eq. (5.14), obtained by substituting Eq. (5.15) into Eq. (5.14), has a dimension
(mass )(length '). It means that we must multiply A' onto the right-hand side. We similarly find that the amplitudes
B3, B&, and the second term of Eq. (5.13) have the same A' dependence as B2. This confirms the above statement that
Eq. (5.20) is higher order by A' . Hence the contribution can be neglected as that at the two-loop level. This situation is
the same as that in (1+1) scalar-meson theory, ' where the isospin operators are replaced with the canonical momen-
turn conjugate to the coordinate of the center of the soliton.

D. Pion-nucleon scattering amplitudes

Summing up all the amplitudes calculated so far, we find

B=Bo+B&+B2+B3

&N'IJ,'*(k';e)~B &&BIJ;(k;0)~X& &N'IJ;(k;()) B &&BIJ,'*(k', 0) ~&= —V(k' —k)+ g +
8 EB EN ~k E~ —E~+cok

In Eq. (5.22) we have defined the classical source function

(5.22)

( —V' +m )P;(x)=J;(x;9) .

Then P;(k;8) is written as

P;(k;0)=J;(k;0)/cok .

(5.23)

(5.24)

where J;(k;0) is the Fourier transform of J;(x). Note that the amplitudes in Eq. (5.22) are just the desired Born ampli-
tudes of order QN, . If we note that &B'~R„.~B & is given by Az z(T, )z z(S; )z z with A&Jv

= —
—,', A&&=1/&2, and

Azz = —
—,', , J;(k;6) is written as

G~~ (k )J;(k)8)=i S~~ k(T, )~.~,
N

where M& is the nucleon mass and the B'B~ coupling form factor is given by

m +k
Gz z (k )= —8rrM&f Az.z f r dr j&(kr)sinF(r)E(r),

(5.25)

(5.26)

with E(r)=[1+(ef ) (F' +sin F/r )]'~ . This ex-
pression of the ~BB' coupling agrees with its classical
definition used by many authors' except for the factor
E(r) in the integrand on the right-hand side. It should
be noted that this expression is not altered even if the
fluctuations around the Skyrmion are introduced as
U =exp[i', [R„x;F(r)+y,/f„]].

Note that F(r)~(1+m r)e /r at large distance.
From this we note that Gz.~ is finite at k = —m . The
pseudoscalar coupling constant g && is given by
G~ ~ (k = —m ) and does not depend on the explicit
form of E(r) so far as E(r)~1 as r goes to infinity.
Therefore, the coupling constant agrees with that of Ad-
kins, Nappi, and Witten. ' In the case of massless pions,
it satisfies the Goldberger-Treiman relation. Here we
mention that the second term of Eq. (5.13) denotes the
zero-mode pole terms; this can be seen using Eq. (5.24)
and noting that the source function J,' is finite at
k2 2

VI. CONCLUSION AND DISCUSSION

We have calculated the P-wave pion-nucleon scattering
amplitudes in the Skyrme model. To describe the rota-
tional invariance of the system, we have used the collec-

I

tive coordinate method and applied the Dirac quantiza-
tion method to the Auctuating pion fields around the
Skyrmion, the rotational zero modes being eliminated.
To obtain the Hamiltonian we symmetrized the canonical
momenta of the fluctuating fields following the prescrip-
tion of Tomboulis. ' The elimination of the zero modes
induces a linear-coupling term of pions to the Skyrmion
of order X,

In describing the elastic pion-nucleon scattering, the
reduction formula was used. The equal-time-commutator
terms in the reduction formula give the amplitudes of or-
der X, ' and X, in the tree approximation. Here the
term of order N, ' is obtained from the commutator of
the fields with source functions. Such a term usually van-
ishes because source functions do not involve canonical
momenta, but it does not for the present case because of
the nonlinear field theory with solitons. Note that Tom-
boulis' symmetrization prescription of the momenta in
deriving the Hamiltonian is essential in obtaining the par-
ticular form of the amplitudes of order X) in Eq. (5.16).
The amplitudes of order N, are obtained from the back-
ground scattering potential, in which the zero-mode pole
terms are involved and are calculated from the equal-
time-commutator terms. Now, calculating the time-
ordering terms from the linear-coupling term of order
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N, and adding the above equal-time-commutator
terms, we finally obtain the same amplitudes as the Born
amplitudes calculated from the mNN coupling of
order QX, . It should be noted that the terms of order
N, do not appear because of the cancellation between the
direct and crossed amplitudes. Consequently, we find
that the soliton model is able to describe accurately the
P-wave Born terms in pion-nucleon scattering.

We have calculated the amplitudes within the tree ap-
proximation and also disregarded the A' terms which are
considered as those at two loop levels. It is noted that
the situation completely corresponds to the case of the
(1+1)-dimensional meson field theory developed in Ref.
10. Therefore, our result is not special to the Skyrme
model.

In deriving the expressions of pion-nucleon scattering
amplitudes, we have not taken into account H",'„„.We
consider that this is appropriate in the plane-wave ap-
proximation for the scattered pion wave functions. If we
transform the fiuctuating fields p, to i/K, blab, then we
find that Bo in Eq. (5.13) is not altered within the plane-
wave approximation. However, the other amplitudes
change their expressions. The nondiagonal terms of K,b

in H",'„„yield the effect of scattering to Aip the isospin.
Therefore, we must take into account the effect of the dis-
tortions of the incident and outgoing waves. This is not
within the purpose of this paper.

We have not considered the translational invariance,
which is important in the complete description of the P-
wave pion-nucleon scattering. Because the zero modes
for the translation are written as the sum of the S- and
D-wave functions, the inclusion of the translational
modes gives a large effect on the S and D waves. Further-
more, the translational modes couple to the rotational
ones. The resulting Born amplitudes in the P wave are
expected to be written in the center-of-mass system as

& &'l~,'*(k', ~)l& & &&IJ;(k;())I& &

E~(p+k) —E~(p) —~k

&&'I&;(k;&)I& &&&IJ,""(k';())I&&

Es(p+k) Etv(p)+cok—

(6.1)

where p is the momentum of the nucleon and
Eti( p) =p2/2M&+I&(Is+ 1)/2k.

We would like to emphasize that our treatment is
based on conventional gauge fixing, and that all the
relevant terms are included to give the Born amplitudes.
Other formalisms are considered to be possible such as
the nonrigid gauge theory and the nonconstraint ap-
proach. ' Here we make a brief comment on these ap-
proaches within the context of the (1+1)-dimensional
meson theory discussed in our previous papers ' in or-
der to avoid complications owing to the internal degrees
of freedom.

Holzwarth' has recently given the argument that the
desired P-wave Born amplitudes are obtained easily by ig-
noring the constraints to eliminate the redundant degrees
of freedom coming from the introduction of the collective

+y (x, t)], (6.2)

where we have expanded the original field P(x, t) into the
sum of the soliton configuration P, (x —R ) centered at
R (t) and the fiuctuating field y(x, t) around it. If we put
simply

P, (x —R)= —RP,'(x —R) with R =
S

(6.3)

where M, is the soliton mass and P,'(x) =dP, (x)/dx, we
have, for Eq. (6.2),

p2

2M, f dx P,'(x —R)y(x, t) —,
' f dx j'

S

(6.4)

where P is the canonical momentum of R. The interac-
tion Hamiltonian then becomes

Ht= — f dx P,'(x —R)j(x, t),P
S

(6.5)

which corresponds to the interaction Hamiltonian
Ht = Jd x A of, /2f in the Skyrme model with Ao be-

ing the time component of the axial-vector current hav-
ing isospin index a. In Eq. (6.5), j' is replaced by the lab-
oratory momentum field ~& conjugate to y at leading or-
der in the expansion by 1/M„where M, plays the same
role as N, in the Skyrme model. If we transform ~& into
the soliton intrinsic field n as ~z(x, t)=w(x —R, t), then
Hz is written as

Ht= — P, f dx P', ( ) xr( itx) .1

2M,
(6.6)

where we put x —R by x after the symmetrization of P
and P,'(x —R ) is taken. This Hamiltonian of order
M, ' vanishes, if we put the constraint conditions

f irP,'=0 to eliminate the redundant degree of freedom
and the resultant interaction of order N, at most.
Nevertheless, if we take the plane-wave approximation
for y(x, t), we have fortunately the correct Born terms by
combining them with the zero-mode pole terms.

We think that the nonconstr aint approach may
succeed or fail in obtaining a correct result depending on
each case, because the quantization algorithm is not con-
cretely formulated in this nonconstraint approach: If the
commutation relations between the fluctuation fields and
their canonical conjugate momenta are put equal to the
canonical ones, the existence of zero-mode states would
break the perturbation theory, and if one wants to elimi-
nate the zero-mode states, one is required to put ap-
propriate constraints on the collective coordinates and
fluctuation fields.

In the nonrigid gauge condition theory, as well as in
the nonconstraint approach, the Yukawa interaction
Hamiltonian of order M, ' is written by g field as Eq.
(6.5), but not by y. Therefore, the source function of
M, ' relevant to the Yukawa interaction, defined as

coordinates. His argument is as follows: The time
derivative part of the original Lagrangian is written as

—,
' f dx P (x, t)= —,

' f IP, (x —R)+2/(x —R)j(x, t)
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i [[H „,„,[H,y(x, t)]]+[H,[H „,„,y(x, t)]]},
is written by terms such as g and g~ in the lowest power
of the fluctuating fields, in contrast to our corresponding
source function of order M, , where there appears a
term not involving the fluctuating fields, as seen in the
first term in Eq. (4.5). This means that we have to deal
with the loop corrections from the first, when we want to
construct the scattering amplitudes with them. This
would be related to the fact that we need the loop correc-
tion even for the calculation of a singe soliton energy. If
this is the case, we might have no reason why we could
discard other loop corrections.

APPENDIX

Here we derive several expressions used in Sec. V. For
simplicity, we use the notations D—:R„and D =Rb .
Further, we write the commutators of these with the iso-
spin operators as follows:

D, =[I„D],
D,b,d. . . ——[I„Dbcd. ]

We then find

[I,D] = [I„D,}+,
[I,[I,D]]=[I„[Ib,Dt }+}+

[I,[I,[I,D]]]= [I„[Ib,[I„D,ba }+} + }/ .

We also find

(A la)

(A jb)

(A2a)

(A2b)

(A2c)

[ ~, [a,c}+}+——[a, [ w, c}+}++[[a,a],c] .

We now want to show that

(A4)

[D,[I,D]]= 2D, D—, ,

[D,[I,[I,D]]= 2[I„—Db(D, b+Db, ) }+, (A3b)

where we used the following identity to derive (A3):

—
—,'([D, [I', [I' [I',D]]]]+3[[I'D] [I' [I' D]]])

= [I„[Ib,Db, D„+D,bD„+D„Db, +D„D,b }+}++[ [I„D„}+,[Ib,Db, }+}+ .

We first find that

[D,[I,[I,[I,D]]]]= —2[I„[I,D, (D „+D„„+D,„,) } }
—2D, ,D,„, .

Then, using relations such as

Dbca Dcba + ~ ~bed Dda

DCDbca cDcba + (Ddb Dbd )Dda

we find

[D,[I,[I,[I,D]]]]= —6[I„[Ib,D,D,b, }+} +
—4[I„[Ib,(D,b Db, )D„}+}+-

—2 [I,, [Ib, (D„D„)Db,}+ }
—+ 2D,b, D,b, . —

Similarly, we find

[[I,D],[I,[I,D]]]= —
[ [I,, D„}+,[Ib,Db, }+}+—2[I„[Ib,Db, D„}+}++2[Ia,[Ib&DcDcba }+}+ .

Using (AS) and (A9), we finally obtain (A5).

(A5)

(A6)

(A7)

(AS)

(A9)
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