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Final-state interactions and CI' violation in weak decays
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The CP-violating difference between the partial decay rates of a particle and antiparticle depends
on final-state interactions. A general formalism is presented for calculating this difference based on
CPT invariance and unitarity. Applications are given to 8 decays and the formalism is compared to
the standard method using penguin graphs.

I. INTRODUCTION

Final-state interactions play an important role in tests
for CP and T violation in weak decays. Triple correla-
tions such as those of the form o -k, X k2 can occur ei-
ther as a result of T violation or final-state interactions.
In order to use such correlations as a test of T violation
the final-state-interaction effect must be negligible or cal-
culable. A test for CP violation is a comparison of the
partial decay rates of a particle and its antiparticle. In
this case final-state interactions are necessary since in
their absence the partial decay rates are equal from CPT
invariance even if CP is violated. In this paper we will be
interested in the evaluation of the final-state-interaction
effects for this case.

Early examples of the calculation of final-state interac-
tions involved semileptonic decays. For nuclear P decay
the electromagnetic interaction between the electron and
the residual nucleus may be included by a second-order
perturbation calculation (weak plus electromagnetic)
which contains an absorptive cut. ' Alternatively one can
do a partial-wave analysis of the final state and adjoin
final-state scattering phase shifts to the weak decay am-
plitudes. Similar considerations have been applied to the
semileptonic K„3 decay. ' In these cases the results are
relatively unambiguous.

In this paper we will be concerned with nonleptonic
decays and final-state strong interactions. In a simple ex-
ample such as K ~2~ it is possible to take account of the
final-state scattering using phase shifts deduced from ex-
periments. In the case of B decay there are many final
states and the language of phase shifts is not useful. The
general formalism for dealing with such cases is described
in Sec. II. The application to the simple case of K decays
is given in Sec. III.

The major part of this paper is concerned with B de-
cays. The examples of greatest interest are those involv-
ing one-loop or penguin graphs. In this case the final-
state interaction enters into the standard calculation as
the absorptive part of the penguin graph. If one follows
this method without special care it is easily possible to
violate the constraints of CPT invariance and unitarity.
This point has been emphasized by Gerard and Hou. In
Sec. IV we use the formalism of Sec. II to analyze the ex-
ample of semi-inclusive B decays considered in Ref. 6. In
Sec. V we use our formalism to critically analyze the

standard use of penguin graphs. In Sec. VI we make
some comments on the more difficult problem of ex-
clusive B decays.

II. GENERAL FORMALISM

The requirements of CPT invariance and unitarity pro-
vide a relationship between the weak decay amplitudes
of a meson P and its antiparticle P:

&FITIP &'= & &FIS' F'&&F'ITI», (l)
F'

where T is the transition amplitude calculated to lowest
order in the weak interaction and S is the strong plus
electromagnetic interaction scattering matrix connecting
different final states F. Note the C invariance of strong
interactions means that

&FISIF'&=(F SIF'& .

Our main interest is in the rate difference

S,=r(P F)—r(P
In order for such a rate difference to be nonzero it is

necessary that CP be violated and to have significant
final-state interactions. If we consider ~F & and ~F &,

which are eigenstates ~I & and ~I & of S, then Eq. (l) yields

(I~TP &=a,e ',

where 51 are the strong-interaction phase shifts. Even
though a nonreal A I indicates CP violation, the rate
difference 61 is seen to vanish when I is an eigenstate. To
get a nonzero b,F it is necessary to consider a final state
(or set of states) that is not an eigenstate and the impor-
tant S-matrix elements are the off-diagonal elements con-
necting this state to other possible final states.

For our applications the S matrix may be considered as
block diagonal with a block defined by the flavor of its
states. For any one such block we divide the states into
two sets A and B. Then it follows from CPT invariance
that

We write the S matrix as
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S=S0+S),
where S0 connects A states to A states and B to B,
whereas S& connects A to B. We choose as a basis the
eigenstates A, Bp of S0. If we treat S, perturbatively
then to first order in S& unitarity and time reversal re-
quire

III. K DECAYS

The decay K —+2m can be analyzed in terms of final
states of definite isospin if electromagnetic interactions
(and other isospin violations) are neglected; the results
are given by Eq. (2) with I=0 or 2. Translating this into
the m+~ and m m states we have

So =e ' ~ (p=a or P),
i(5 +5p)

ap= 2ltap

tpa = tap

(4a)

(4b)

(,m+1T ITIK') =(-')' 'A e' '+(—')' 'A e' '

(17+fr ITIK')=(-')'"Ao'e' '+(-')'"A,'e' '.
3 0

There is then a rate difference

with t p real.
To first order in S, the solution to Eq. (1) for the weak

transition is given by

a =r(F'' ~+~ ) r-(x-'
= r(sc' ~'~0) —r(E '
= (4&2/3)sin(50 —52)Im A 2 A 0 . (9)

( A. ITI» =e' 'T.+ g ~t.pTp ',
p

&&pl TIP) =e' Tp+ y it.pT. ',
a

(6)

For the set of states A and B we have

b, „=—h~ =4 g Im( T*Tp)t p .
ap

An important point to note is that the "diagonal"
phase shifts 5,5p do not enter the answer for the rate
difference. Our result is limited by the approximation
that only the first order in S, is considered. In the case
when there are only two states (such as the K system
considered in the next section) Eq. (4b) holds in general
and the second order in S& simply results in multiplying
the right-hand side (RHS) of Eq. (4a) by a factor less than
unity. The results Eqs. (6)—(8) are unchanged. In the
case of B decays discussed in Sec. IV it is usually assumed
that the relevant final-state scattering occurs at high
enough energy that it can be treated perturbatively.

It is easy to generalize the result to more than two sets
of states, A and B. Let us label the sets I,J,K, . . . .
Again we define the matrix S& to interconnect members
of different sets and treat S

&
perturbatively. Then

defining the eigenstates of S0 as I, Jp, K&, etc., we find

btJ= g Q Im(T*Tp)t p,
a p

where the replacement of P by P corresponds to changing
T, Tp to T*,Tp. Then

5 =4+ Im(T*Tp)t p,
p

bp=4+ Im(TpT )t p .

The CP-violating asymmetry is

a=A, x/I r(I7 ~m. +m )+I (IC ~m+m)j= —2. Ree',

where the last equality follows from standard equations
for the usual parameter e' with the approximation that
Ie'I «1. As expected the result requires CP violation
( A2 and Ao are not both real) and final-state interactions
which interconnect the observed final states ~+a and

It may be worth noting that one does not measure
e' in practice by measuring the asymmetry a, but rather
Re(e'/e) is measured taking advantage of K -K mixing.

The result of Eq. (9) can be derived from Eq. (7) where
a corresponds to n+rr and P to vr rr and there is no
summation, if one writes

T =(—')' A +(—')' Aa 3 0 3 2

T —
(

1 )1/2A (
2 )I/2A

P 3 0 3 2 ~

Im(T*Tp)=ImA2 Ao,

t p
= (V2/3 )sin(52 —50) .

The last equation follows from writing the strong S ma-
trix in the ~+a —m ~ representation.

IV. SEMI-INCLUSIVE B DECAYS

For B decays, we first consider an example that has
been discussed a great deal in the literature because of the
role of penguin graphs. We consider two classes of final
states with strangeness S=—1, C and U. The states C
contain two charmed particles plus a strange particle
while the states U contain a strange particle but no
charm. The CP-violating rate difference is

a, = r(E7 c)—r(a c)
~I X~IJ &

JWI =r(a U) —r(F7 —U) = —a, . (10)

~JI ~IJ

The CPT requirement is automatically satisfied; that is,

t=o
I

We can now use the formalism of Sec. II where ( A, B )
are replaced by ( C, U ) and the part of the S matrix called
S„which is treated perturbatively, is that connecting U
states to C states.

In the first approximation the weak transition ampli-
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(1 la)

while the states C come from

tudes result. from tree-level diagrams. For the U states
these arise from the quark transition

b~u+u+s,
~I
~5I g
O

O
Wt g
Ol(

b~c+c+s . (1 lb)

At this point we neglect the one-loop graphs called
penguin graphs. Neglecting S

&
and considering the

eigenstates U and C& of So we have

( U. l
Z lB ) =e' u„A. , (12a)

&C, lTlB &=.'"., A, , (12b)

where v,. = U&;U,*; are products of Kobayashi-Maskawa
elements and 5,5& are final-state phase shifts. The am-
plitudes A, A& are real since we have factored out the
CP-violating part of the weak interaction in terms of v;.
We now include the effect of S& perturbatively as in Eq.
(6) yielding

(U lTlB) =e u„A +iv, g At3t &
P

(CplTlB ) =e u, Ati+iv„g A t &

'

(13a)

(13b)

The corresponding equations for B to U and B to C& are
given by changing (u„v„) to (v,*,u„).

The CP-violating rate difference is then given as in Eq.
(8):

b, c= b, U=41m(v„*v, ) g g—A Atit tI .
a P

(14)

The standard method of calculation for our example is to
consider that U and C are given by the final quark
configurations of Eqs. (1 la) and (1 lb) plus the spectator
quark. The matrix t is then evaluated using the one-
gluon-exchange process

u+u~~c+c . (15)

Adjoining this on-shell one-gluon-exchange graph to the
tree graph of Eq. (5) corresponds to the calculation of an
absorptive part of a one-loop (penguin) graph (Fig. 1).
We return to this point later. On the other hand the ab-
sorptive parts associated with the "diagonal" process

D can arise from the transitions

b~s+s+s,
b~d+d+s,

(17a)

(17b)

respectively. To be clear we now label the set
( U+ D +S ) as N, namely all states with S= —1 and no
charm, so that

~C ~N

The somewhat surprising conclusion in the Appendix is
that, except for corrections of order a„4& and thus
(
—b,z) is still given by Eq. (14). Thus in calculating hz

we can simply ignore penguin graphs except insofar as we
represent t p by the absorptive parts of the graphs of Fig.
1. In calculating the total rate for the decay to states X,
on the other hand, we expect penguin graphs to dominate
because they are proportional to v„which is about 40
times larger than v„, the coefFicient of the tree amplitude.
However, 5 must be proportional to v„v,* in order to
have CP violation, so that the large value of v, does not
contribute to A.

As noted at the end of Sec. II it is easy to extend our
results to considering separately the four sets U, C, S, and
D provided we include in S„all the S-matrix elements
connecting members of different sets. The quantity previ-
ously labeled 4c should now be called

~CU = —~UC

and is still given by Eq. (14). Labeling the eigenstates of
So as U, Ct3, S, and Ds we have in addition to Eqs. (12)
the amplitudes

(a)

FIG. 1. Absorptive part of penguin graphs that contribute to
~c and ~U

u+u~u+u,
C+C ~C+C

(16a)

(16b)

&S, lTlB&=e' 'U, P, ,

(DslTlB)=e' 'U, Ps .

(18a)

(18b)
enter our calculation as the phases (6,5tI) and do not
affect the final result Eq. (14).

So far we have only considered the tree-level ampli-
tudes 3,2&. Much of the interest in the B—+ U transi-
tion lies in the probability that this process is dominated
by one-loop penguin graphs. In the Appendix we carry
out our calculation including penguin graphs. Following
our general formalism we first add the dispersive part of
the penguin graphs to the RHS of Eqs. (12). Then as in
Eqs. (13) we add the final-state-interaction effect of t per-
turbatively.

Once we consider penguins two more final states S and

These are the leading penguin amplitudes (dispersive part
only) responsible for the transitions (17a) and (17b). We
then find as before

~sU= ~Us 4Im(u„*u, ) g A P t
ay

kDU =
AUD =4 III1(U„U ) g A Pst p

a6

(19a)

(19b)

If we consider t as of order a, these terms are of order
a, in contrast with b, cU of Eq. (14) which is of order a, .
However, the calculations of Hou and Gerard indicate



154 LINCOLN WOLFENSTEIN 43

that AsU and 6&U have similar magnitudes because t &
of

Eq. (14) is suppressed by the threshold behavior of the re-
action (15).

If we ignore pcs, ACD, and AsD, all of which are
suppressed relative to the terms we include

~ U ~CU ~SU ~DU

~S =~SU

~D ~DU ~

~C=~CU .

(20)

All of the above can be repeated replacing the final s
quark by a d quark. All of the rate differences A~. . . are
now found by replacing the U; by E; = Ub, Ud, . Since

all the rate differences are equal but opposite when s is re-
placed by d. The calculation of the total rates is very
different for these two cases. For b —+u+u+d one ex-
pects penguin diagrams are relatively unimportant
whereas one expects them to dominate b —+u+u+s.
Nevertheless there is a complete correspondence when
one calculates the rate differences A. This can be verified
from the numerical results given by Gerard and Hou. '

V. ON THE USE OF PENGUIN GRAPHS

The standard analysis of the problem we have con-
sidered is simply to add penguin graphs to tree graphs.
Final-state interactions are automatically included via the
absorptive part of the penguin graphs. There are several
possible problems with this approach. One, which has
been emphasized by Hou and Gerard, is that if one is
not careful one may violate the constraints of CPT and
unitarity. We believe that the formalism we have
presented serves to elucidate this problem as discussed
below. In addition our formalism identifies those final-
state interactions which are relevant to the calculation of
the CP-violating asymmetry A. One then can address the
question whether it is a good approximation to treat
these particular final-state interactions using the absorp-
tive part of penguin graphs.

The standard attack on the semi-inclusive asymmetry
AUc discussed in Sec. IV is to consider U and C as the
three-quark states of Eq. (11). Then

(13b) inside the large parentheses arising from Fig. 1.
The final-state-interaction effects proportional to sina, ,
and sinaz on the other hand, correspond to the phases 6
and 5&, respectively, in Eqs. (13a) and (13b).

From Eqs. (21) one derives the rate difference for the U
(U) final states as

b, Uc =4 Im(v„*v, )[ —T„P2sina2+P]Pepsin(a, —a2)],
(22a)

while for the C (C) final states it is

~cU =4 lm(u„*u, ) [ T,P i»n~i+ i z»n(~2 ~1)j

(22b)

The first terms in the square brackets of Eqs. (22) corre-
spond to the result given in Eq. (14) and indeed can be
shown to be equal and opposite. However, the second
terms in the square brackets depend on o, „and az, which
arise from the absorptive parts of the "diagonal" scatter-
ing (So in our notation). We have argued in general in
Sec. II that the answer should be independent of these.
Thus we conclude that Eqs. (22) are wrong and that Eqs.
(21) are inadequate. Gerard and Hou have reached the
same conclusion by noting that if m, were greater than
(mb l2) then ( C

~
T~B ) and b CU vanish obviously, az

vanishes, but Eq. (18a) still gives a nonzero b, zc because
of ai. Thus the unitarity relation of Eq. (10) is violated.

To analyze this problem from our perspective let us as-
sume m, )mb l2 and ignore the states D and S and reex-
amine Eq. (21a). The first two terms can be combined; to
first order in a& we can write

VUP~ + VcP2
b W s

(V„P, + V~ P2) iS~

u„T„+u„P,e '+v, P2=(v„T„)e +u„P, +v, P2 .

The phase 6 is equivalent to that in Eq. (13a). The prob-
lem is that the rescattering phase 5 does not occur in the
last two terms. To get this Gerard and Hou find it is
necessary to add the absorptive part of two-loop dia-
grams as shown in Fig. 2. This has the effect of multiply-

i6
ing the dispersive parts of the penguins by e' . Thus e
can be factored out as in the analysis of Sec. IV and the
asymmetry vanishes. From the point of view of Gerard
and Hou the asymmetry vanishes because of a "cancella-

(U~T~B)=v„T„+u„P,e' '+v, P, e' ',
~ 1 I

(C~T~B)=u, T, +v„P e '+u, P2e

(21a)

(21b)

Here T„, T, come from the tree graphs and the P's come
from the penguin graphs. The phases in the penguin
terms arise from the absorptive parts. The quantity U,

has been eliminated using the unitarity of the
Kobayashi-Maskawa (KM) matrix

u, = —(v„+u, ) .

The final-state-interaction effects proportional to sin+2
and sinai correspond to those included in Eqs. (13a) and

FIG. 2. Illustration of the combination of the dispersive part
of the penguin diagram with the absorptive part of a two-loop
diagram to give the rescattering phase shift.
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tion" between two terms:

(absorptive part of penguin v„P&a&)X(penguin v, Pz),
(absorptive part of two-loop proportional to u, )

X(tree v„T„) .

V„(A~ t„~)
W

Qx Vc Py

W

(S T B ) =v„Psie +ucPs2 .

Then

b.sU =4 Im(u„*v, )Ps,Pszsinas . (23)

To obtain b Us [which must equal (
—b, sU )] we must now

add to Eq. (2la) the absorptive part of a two-loop graph
(Fig. 3) involving an ss loop. Thus b,sz appears as

(absorptive part of penguin v„Ps,a5) X(penguin v, Ps2),

whereas AU+ appears as

(tree v„T„)X(absorptive part of two-loop graph) .

Both of these are described by the one Eq. (19a) provided
t z is calculated from the one-gluon-exchange process
u +u~~+s. The correspondence is explained in Fig. 3.

VI. EXCLUSIVE B DECAYS

From an experimental view it is more interesting to
consider exclusive rather than inclusive decays. Many
papers (see, for example, Refs. 10—13) have considered
these. Corresponding to the U states of Sec. V one may
consider the specific transitions B + ~K+m or
B+~K+p . Similarly for the transitions b~u+u+d
one may consider B+~m+p or B+~ppm. +. In general
the analysis of such exclusive decays involves additional
uncertainties.

To extend our approach we label the exclusive state U1

This appears to be a hard way to get rid of terms that
never should have been included in the first place. Note
also that in our treatment it is not necessary to treat the
interactions responsible for 5 perturbatively as it is in
the penguin approach.

Questions have been raised as to the accuracy of using
the absorptive part of penguin graphs to calculate final-
state interactions; that is, using the one-gluon-exchange
processes to describe the final-state S matrix. We will not
pursue this question here. However, it is useful to note
that the process (16a) is irrelevant for the calculation of
the semi-inclusive asymmetry and only process (15)
matters. It is easier to defend the use of one-gluon ex-
change for the necessarily hard process (15) than it may
be for (16a). Note also that the use of a single absorptive
cut to describe the final-state interactions is equivalent to
our assumption that only the lowest order in S1 is includ-
ed.

Let us turn to the penguin graph approach to hU& and
hzU. We focus on the states S and U, neglect the state D,
and let rn, & mb /2 so as to avoid involving AUc and b&&.
For the U state we start with Eq. (21a) with a&=0 while
for S we have

(a)

~U Aa Qx Vc Py tea
w s

FIG. 3. Two ways of looking at Eq. {19a)in terms of penguin
graphs. In calculating the rate difference hzU for the final-state
S it appears as {a) the interference between two penguin graphs.
In calculating AU+ for the final-state U it appears as {b) the in-
terference between a tree amplitude and a two-loop graph.

a, =r(B v, ) r(B v, )—
~1U +~1D +~1S+~1C

~iv= X ~i
a&1

(24)

The quantities 61D,A, ~, 61& can be deduced from Eqs.
(14) by setting a= 1 and omitting the sum over a. The
term 6,U, however, does not have an analog in the semi-
inclusive result. Nevertheless we might expect K+-m
scattering primarily yields U states such as K'+p or
K+n~ rather than S or C states. Thus 61U might be a
dominant contribution to 61.

Writing explicitly only the terms needed for 61U the
transition amplitude to U, is

(I~T~B)=e ' v„T&+iu„g T t, +v, P&
a&1

+iv, +P t, +. . .
a&1

(25)

Any penguin term proportional to v„has been absorbed
in T, . With similar equations for Anal U states one cal-
culates

and the other U states U (a%1). In addition there are
the states D, S, and C. For multiparticle states such as
K+~ m+ the distinction between U and D states is not
really meaningful and it may be more useful to lump the
U and D states together. This will not affect most of our
discussion. To go further we must once again treat all
off-diagonal S matrices perturbatively, which may be con-
siderably less justified than for the semi-inclusive case.
The rate difference for U1 is given by



LINCOLN WOLFENSTEIN 43

hiU=Im(u„*u, ) g t, (P, T P—T, ) .
a&1

(26)

From a naive quark point of view one might imagine t,
arises from the quark scattering (16a). The first term in
Eq. (26) corresponds to the interference between the real
and absorptive parts of penguin diagrams whereas the
second term corresponds to the interference between a
tree and the absorptive part of a two-loop diagram. As
discussed in Sec. V these terms cancel for the semi-
inclusive case. It is seen that 5,U vanishes only if

Pi /Ti =P /T (27)

independent of a. Thus one can consider, in some sense,
that a nonzero h&U requires scattering from U states that
are more "treelike" to U states that are more "penguin-
like". One problem in trying to calculate A&U is that soft
physics may give large terms in t, corresponding to soft
m emission. On the other hand it is possible that for
states so connected Eq. (27) holds and there is no contri-
bution to A, U.

In fact even from the quark point of view t& is not
well represented by the uu quark scattering (16a). When
K+ scatters from m. , for example, there are also s u, su,
uu, s d, sd, ud, and ud scatterings. Some of these may be
included when all absorptive parts of QCD corrections to
order 0., are taken into account. ' In any case the whole
question of the evaluation of b, , U deserves more serious
attention.

In most of the previous analyses only the term 4,~ is
calculated. This is the case for the K~ final state as dis-
cussed in Refs. 11 and 12 and the ppm. state discussed in
Ref. 13. In contrast Gerard and Hou suggest that the

and A&g terms may dominate the case of the Em final
state in which case the asymmetry has the opposite sign.
There seems to be no serious consideration of 6

& U in any
of the papers.

Our conclusion is that no published quantitative results
for the asymmetries in exclusive B decays can be trusted.
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APPENDIX

+u, a,P' +i g (Ates+a, PI3)t t3

P

(A2)

plus a similar equation replacing (13b). The CP-violating
rate difference is now given by

6, = —b,~ =4 Im(u„*u, )

X g g t ti[A At3+a, (P At3+PpA )
a P

+a, (P Pp P'PtI )] . —(A3)

Since we expect the various P's to be less than the A's we
see that Eq. (A3) differs from Eq. (14) at most by a term
of order e, . Given the large uncertainty in calculating
t

&
our previous result is quite adequate. Thus we con-

clude that in calculating 6 we can simply ignore one-loop
penguin graphs except insofar as we represent t

~
by the

absorptive graphs of Fig. 1. A detailed analysis shows
that the a, correction in (A3) is about 30%.

We extend the calculation of Sec. IV to include the am-
plitudes from penguin graphs. We first neglect the
strong-interaction matrix t so that we add the dispersive
parts of the penguin to Eqs. (12a) yielding

(N ~T~B) =e [u„(A +a,P )+u, a,P' ], (Ala)

(C&~T~B ) =e ~[u, ( A&+a, P&)+u„a,PtI ] . (Alb)

As noted in the text we have replaced U by
N =(U+D+S) . We have replaced u, by (u„+u, ) via
the unitarity of the KM matrix and explicitly shown the
strong-coupling constant e, dependence. The quantities
P and P' are smaller than A, A p in general by the factor
[ln(m, /mb )/6'] so that it is only the term u, a, P' that
makes a significant new contribution because v, ))v„.

We now once again include t perturbatively. In place
of Eq. (13a) we have

(N
~
T~B ) =e u„A +a,P~+ia, , Q P&t &
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