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Threshold production of heavy top quarks: QCD and the Higgs boson
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We calculate the threshold cross section for e+e ~tt to leading-logarithmic order in QCD, us-

ing a nonrelativistic approximation suggested by Fadin and Khoze. We study the mass range
100~ m, ~ 250 GeV, and show that the cross section is an excellent measure of n, for the lower por-
tion of the mass range, while for a heavier top quark it is sensitive to the mass and couplings of the

Higgs boson. We argue that a precise determination of I, and a measurement of I, are possible.
We also show that nonperturbative eftects are small, confirming that the tt threshold is a detailed
perturbative test of the standard model.

I. INTRODUCTION

GF I,3r-
v'2 8' =(180 MeV)

4.s I, is raised from 100 to 200 GeV, the bound-state res-
onances lose their separate identify and smear together
into a broad threshold enhancement.

At first sight, this effect would seem to remove all of
the interesting details of the threshold region. However,
in a remarkable set of papers, Fadin and Khoze have ar-
gued that the large width of a heavy top quark brings in a

Recent results from Fermilab indicate that if the top
quark decays as predicted by the minimal standard mod-
el, then it is heavier than 89 GeV. While we await its
detection, it is useful to begin thinking about its detailed
properties if in fact it is very heavy. For the known
heavy quarks c and b, it has been exceptionally interest-
ing to study e+e annihilation near the quark-antiquark
threshold, where the nonrelativistic dynamics of quarks
in their binding potential produces a rich spectrum of
bound states and resonances. The tt threshold region
most probably lies beyond the reach of the CERN e+e
collider LEP II, and thus its exploration will be part of
the program of a future e+e linear collider. In addi-
tion, the t mass probably lies near or across a boundary at
which a dramatic qualitative change occurs in the nature
of the threshold region and the physics issues which it il-
luminates. In this paper we will analyze the behavior of
the tt threshold for top-quark masses in this new regime.

The most striking feature of the cc and bb thresholds is
the presence of narrow resonances corresponding to the
nonrelativistic bound states of the quark-antiquark pair.
The widths of these resonances are controlled by the an-
nihilation of the quark and antiquark to gluons. Howev-
er, as the mass of a quark increases beyond the mass of
the 8' the weak decay of a single quark comes to dom-
inate the width of the bound state, and the familiar struc-
ture of the quark-antiquark threshold is destroyed. If
the top quark is heavier than the 8, it may decay directly
to 8'+b, and its decay width is large and steeply increas-
ing with its mass. Asymptotically, for very large I„

new set of fundamental questions. They have pointed out
that the top-quark width acts as an infrared cutoff which
justifies the use of perturbative QCD. As a result, the
variation of the threshold cross section with energy be-
comes a quantitative prediction of QCD, largely indepen-
dent of nonperturbative phenomenological considera-
tions, such as the choice of the quark-antiquark potential.
Thus the tt threshold region may be identified as the
long-sought "hydrogen atom of the strong interactions. "

In this paper, following the ideas of Fadin and Khoze,
we study in detail the shape of the tt threshold, which is
strongly dependent on the value of the t-quark mass and
which exhibits a complex, intricate structure. In carrying
out our analysis, we make two improvements in the phys-
ics of their calculation which have an important qualita-
tive effect. Since the quark-antiquark potential is close to
a Coulomb potential at the short distances relevant for tt
binding, Fadin and Khoze in their analysis used the exact
solution of the nonrelativistic Coulomb problem. This
made it awkward for them to take proper account of the
running of the QCD coupling. We will introduce a sim-
ple numerical technique which can straightforwardly
treat an arbitrary quark-antiquark potential and is thus
well suited to including effects of asymptotic freedom.
This technique also allows us to include the effect of
Higgs-boson exchange on the quark-antiquark potential.
Inazawa and Morii have studied the inAuence of the
Higgs-boson-exchange potential for particle-antiparticle
systems of heavy leptons and of long-lived heavy quarks,
computing the effect of this potential on the spacing of
the narrow resonances. We will show that the Higgs-
boson-exchange potential is also important for heavy top
quarks (m, ) 150 GeV), providing an essential correction
to the pure QCD problem and becoming the doininant
effect on the tt cross section for I, )200 GeV. For
m, ~ 150 GeV, on the other hand, we confirm the result
of Fadin and Khoze that the shape of this threshold pro-
vides a new and sensitive method of measuring o,

We should warn the reader that our calculation of the
tt threshold shape is accurate only to leading-logarithmic
order in QCD. As we explain below, we include in our
analysis certain specific corrections of order u„but we
do not try here to systematically collect all one-loop
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QCD corrections. This approximation is adequate for
our main purpose, which is to assess the sensitivity of the
tt threshold shape to the parameters of the standard mod-
el. To extract precise values of a, and the properties of
the top quark, one should compute the full set of order-
+, corrections. We believe that this is straightforward,
and we hope to report the result in a future publication.

We should also remark that, except where we indicate
explicitly, our results apply only to the minimal standard
model, which contains one physical Higgs boson and no
exotic physics. The tt threshold is sensitive to nonstand-
ard Higgs structures and to exotic decay modes of the top
quark, through their effects on the top-quark —Higgs-
boson Yukawa coupling and the top-quark decay width.
We will display this sensitivity through some specific ex-
amples in Sec. VII.

This paper is organized as follows: In Sec. II we justify
our physical picture by giving a general discussion of the
Coulomb problem in QCD and estimating the depen-
dence of the tt production cross section on a, and the
width of the top quark. Next, we derive the formalism
needed for our calculation: In Sec. III we discuss the ap-
propriate nonrelativistic reduction of the Bethe-Salpeter
equation to a simple Schrodinger problem, and in Sec. IV
we describe our technique for solving this problem nu-
merically. The following sections present the detailed
physical assumptions underlying our calculation: In Sec.
V we give a careful discussion of the static potential pre-
dicted by QCD, and in Sec. VI we discuss the inliuence of
the Higgs boson and explain our treatment of other elec-
troweak effects at the tt threshold. Section VII presents
our numerical results, and Sec. VIII contains our con-
clusions.

While preparing this paper, we received a paper by
Kwong which also discusses the top-quark threshold.
He has used a method related to ours, and our two papers
give similar results. Our approaches are complementary;
Kwong is most interested in spectroscopy of the 1S and
2S level spacings, which can only be studied if the top
quark is lighter than 120 GeV, while we focus on the
shape of the cross section for heavier top quarks, and its
sensitivity to a, and the Higgs boson. We also received a
paper by Feigenbaum which studies the effect of the
Higgs boson on toponium production as a function of the
Higgs-boson mass, using both an analytic approximation
based on the work of Fadin and Khoze and a numerical
calculation similar to though less complete that that of
Kwong. The results differ quantitatively from ours,
though the general conclusions of the two papers are in
agreement.

II. COULOMB PROBLEM
AND EFFECTS OF THE TOP-QUARK WIDTH

In order to understand the basic physics of the tt
threshold and the relative importance of the various
effects which determine its shape, it is useful to quickly
review the properties of Coulomb bound states. Consid-
er, then, a particle-antiparticle system bound by a
Coulomb potential. This system is characterized by the
reduced mass @=I /2 and the coupling strength a.

In the ground state of a nonrelativistic Coulomb sys-
tem,

2 —
~
V(a )~ -pa

2p
(2.1)

for the characteristic radius ao =(pa) . The relative ve-

locity of the particle and antiparticle is a, and so relativ-
istic corrections will be of order e. This implies that we
are self-consistent in specializing to the nonrelativistic
limit, since our calculation is only intended to be accurate
to leading order in u, .

Now let us use this estimate quantitatively for a QCD
bound state. For the tt system, o.'= —', n„where —', is the
usual SU(3) group theory factor associated with the fun-
damental representation. The S-wave states have binding
energies

E„=—
n

(2.2)

where the Rydberg W =—'a, m, . The radius of the nth
state is r„na-o, ao=( —', a, m, ) ', and the characteristic
velocity is U„-—3o,, /n. The ratio of twice the diameter to
the velocity is roughly the period of oscillation for S
states: (4r„lv„)—n I(—', a, m, ). This is a reasonable esti-
mate of the time needed after the t and t are created for
the formation of the bound state. For the ground state,
this formation time [evaluated using a, (ao )] is of order

T

( )) 100 GeV
m,

(2.3)

In the minimal standard model, the heavy top quark
decays almost exclusively to 8'+b, with other decay
modes suppressed by Cabibbo-Kobayashi-Maskawa mix-
ing angles. As the mass of the t increases, the decay rate
becomes proportional to the square of the t-
quark —Higgs-boson Yukawa coupling and so increases
steeply with m, . The width of the t is 93 MeV at
m, =100 GeV and goes asymptotically to Eq. (1.1) for
large m, . (The complete formula appears at the end of
Sec. VI.) Models with a nonminimal Higgs sector or oth-
er exotic physics may have a substantially different top-
quark width; we will discuss this point in Sec. VII.

The lifetimes of previously studied quarkonia were set
by annihilation of the quark and antiquark into gluons or
photons, since the time scales associated with annihila-
tion were considerably smaller than the lifetimes of the
quarks themselves. By contrast, the heavy top quark de-
cays so rapidly that the toponium system decays predom-
inantly to W+W bb via two independent single-quark
decays. Decay channels which involve quark-antiquark
annihilation (e.g. , tt ~ W 8', bb, My, two gluons,
etc.) are suppressed at least by the factor
~g(0)~ /m, —(aom, ) -a„where g(r) is the bound-state
wave function. Therefore, as there are no other impor-
tant decay modes, the width of the toponium resonances
will be approximately twice that of the top quark. Furth-
ermore, the lifetime of toponium is so short that the
bound states barely have time to form at all. ' In Fig. 1

we compare the lifetime of toponium with the formation
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FIG. 2. Diagrams which contribute to H, .

less than for lighter top quarks. We will see that
leading-logarithmic corrections to the Coulomb approxi-
mation do not substantially change this picture.

0.1
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III. FORMALISM FOR THE NONRELATIVISTIC

APPROXIMATION

mi (Gev)

FIG. 1. Comparison of the lifetime (21, ') and the formation
time [estimated above, Eq. (2.3)] of the 1Stoponium state.

peak I, (2.4)

where g( v ) is the wave function of the tt bound state.
Noting that the wave function at the origin is largest for
the ground state (n =1) and estimating
~i/ti(0)~ =(ao) =(m, a, ) in the limit I, && ~A ~, we find

time for the ground state; these cross at m, of about 140
GeV. Thus we should expect the distinct toponium states
to smear out into a broad threshold structure as I, in-
creases, with the 1S resonance, the last to go, disappear-
ing somewhere near I,=140 GeV.

There is another interesting eFect due to the large
width. For I,—120 GeV or greater, the fact that)AQCD implies that, in the continuum region above
threshold, the t and t will generally decay befove hadroni-
zation occurs. This permits the decays to be treated per-
turbatively, allowing a more accurate analysis than is
possible for longer-lived quarks.

It is interesting to estimate the dependence of the tt
production cross section on a, and I, . If the top quark
is relatively long lived, so that the cross section can still
be described as a sum of sharp resonances, the peak cross
section at a resonance is given (in units of R) by

We will now present the formalism we need to make
this intuitive picture concrete. Because a heavy top
quark has no narrow resonances, we should concentrate
our attention not on spectroscopy, but on the behavior of
the total cross section for top-quark pair production as a
function of energy. To leading order in QED, this cross
section is given, via the optical theorem, by

477(xQEDo(e+e ~tt ) = I
—lmlI, (q )~,

S
(3.1)

(a)

where II, (q ) is the top-quark contribution to the photon
vacuum polarization. It is straightforward to improve
the formula to include the Z and higher-order elec-
troweak corrections, and we will do this in Sec. VI. The
more difficult problem is to compute ImII, (q ). In this
section we reduce this problem to the solution of a nonre-
lativistic Schrodinger equation. This is a straightforward
exercise, which we include to make our assumptions
clear.

In perturbation theory, Il, (q ) is given by the sum of
diagrams shown in Fig. 2. For most values of q, this set
of diagrams can be evaluated by directly summing the
perturbation expansion. Diagrams containing loops

(m, a, )

peak
m,

p + q/2

k+ q/2
p + q/2

3
S

I, R. (2.5) p- q/2

This indicates a strong sensitivity to u, and a swift de-
crease of the peak height with increasing m„due to the
rapid growth of I, . The exact Coulomb calculation
shows that for a large width (I,» ~% ~ ), the peak disap-
pears into the continuum, and

1/2
P1to-u, R, (2.6)

in the region just below threshold. Thus, for larger I„
the cross section drops as m, ', as can be seen using (1.1),
while the sensitivity of the cross section to a, and I, is

p + q/2

k — q/2
p - q/2

p - q/2

FIG. 3. (a) Diagrams responsible for the leading contribution
to II, in the nonrelativistic limit; these are the ladder diagrams,
involving the exchange of any number of uncrossed gluons. (b)
The equation which is satisfied by the vertex function I ", in the
ladder approximation. (c) The equation which gives H, in terms
of I ".
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whose momenta are o6' shell by an amount I, are
suppressed by factors of a, (m, ). However, it is well
known that, near threshold, the Coulomb exchange of
n+1 bosons between the quark and antiquark is not
suppressed relative to the exchange of n bosons, since the
energy denominator from each loop integral contributes a

factor a, '. Thus the leading-order expression for II, (q )

near threshold is the sum of the ladder diagrams shown
in Fig. 3(a). These diagrams may be summed by con-
structing the vector vertex function I ~(p, q ), which
solves the equation shown in Fig. 3(b), and then contract-
ing this vertex function as shown in Fig. 3(c). This gives

2
. 2 d4pi(g"'q q"q—')II, (q ) = i e—f trl S~(p+q/2)I "(p,q )SF(p —q/2)y'],(2'�) (3.2)

where SF is the fermion propagator, and the trace is taken over Dirac and color indices.
To leading order in e„ it suffices to analyze the equation for I in the nonrelativistic approximation. Set

q =(2m, +E,O), so that E represents the binding energy of the tt system, and treat all three-momenta as being of order
a, . Then the fermion propagators may be approximated by their nonrelativistic particle and antiparticle poles:

i2m, (1+y )/2
SF(p+q/2)~

2m, (E/2+p lpl /2—m, +i I, /2)
(3.3)—i2m, (1 —y )/2

SF(p —q/2)~
2m, (E/2 p p—

l
/2m—, +iI, /2)

To be consistent with the nonrelativistic expansion, we must ignore in (3.3) the momentum dependence of the imaginary
part of the denominator in the quark propagator. We have therefore taken the top-quark width to be constant, evaluat-
ing it on the mass shell, using the tree-level standard-model result. This approximation was suggested by Fadin and
Khoze.

In the nonrelativistic limit, we need keep only the instantaneous Coulomb part of the gluon propagator. The
Coulomb exchange is given to lowest order by

(3.4)

where T' is a color-SU(3) representation matrix. We can isolate all terms in the expansion of this form; acting on a
color-singlet tt state, they can be combined as i(y )(y ) V(p —k). To leading order,

4~a, ,
V(p —k) = ——

3 Ip —kl'
(3.5)

The leading-logarithmic QCD corrections modify this (I/r ) potential by logarithms; we will discuss this effect in Sec.
V.

In the nonrelativistic approximation, the equation for I (p, q ) in Fig. 3(b) becomes

d4k
r~(p, q) =y~+ J'

(2m. )

1+y' „„, ,
1 —y'

X
1

o z o(E/2+k lkl l2m, +i I,—/2)(E/2 —k —lkl l2m, +i I, /2)
(3.6)

Since the right-hand side of this equation is independent
of p, we may self-consistently take I (k, q) independent
of k; then we can perform the dk integration explicitly.
A further simplification takes place in the Dirac struc-
ture. Inserting (3.3) into (3.2), we see that this integral
depends only on (1+y )I P'(p, q)(1 —y ). Equation (3.6)
implies that this component of I "takes the form Let

Xl (k, E) . (3.8)

I (p, E)=1+ V(p —k)d k
(2~)' (E+il, —Ikl'/m, )

1+y' „, ,
1 —y' 1+y' „1—y'-„

p q (3.7)

G(k, E+i I, )
=—

E+ i r, —Ikl'/m,
I (k, E) . (3.9)

where I is a scalar function of lpl and E. In all, the
equation for I " reduces to the scalar equation [H (E+il, ) jG(r, E+i—l, )=5' '(r), (3.10)

Then we can return (3.8) to coordinate space and see that
it is just the Schrodinger equation
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with

1
V + V(r), (3.1 1)

We can simplify the problem by defining

g(r, r')=rr'G(r, r') . (4.3)
m,

correctly reflecting the reduced mass of the tt system.
We recognize G(r, E) as the standard Schrodinger
Green's function G(r, r', E), evaluated at r'=0. As the
width of a state is twice the imaginary part of its eigen-
value, we find that the width of the toponium system is
21 „as argued in Sec. II.

The nonrelativistic representation of I " that we have
just derived can be inserted into the nonrelativistic reduc-
tion of (3.2) to provide an expression for II,(E). As in

(3.6), the dp integration may be performed explicitly.
Then we find

2 d3

(2~)' E+il, —Ipl /m,

This leads to the one-dimensional Schrodinger equation

m]
+m, [E+iI,—V(r)] g(r, r')= Sir r') —.

dr 4m

The solution to this equation will be of the form

g(r, r')=Ag)(r) )g((r(),

(4.4)

(4.5)

where r& =max(r, r'), r& =min(r, r'), and g&,g& are
solutions of the homogeneous equation regular as r~ ~,
r ~0, respectively. Note that, if 1, & 0, the solution
g&(r) decreases exponentially as r&~. The constant 3
is chosen to give the correct coefficient of the 5 function;
the matching condition is

2 e G(r=O, r'=O, E+iI, ).
m

(3.12) dg dg
dr , drr=r'+e r=r E'

= —A'K(g, ,g, ; r')

Inserting this formula into (3.1), we find, for the one-
virtual-photon cross section for tt production,

2 28& CXgED
a (e+e +tt ) = — ImG(0, 0;E+iI, ) . (3.13)

3m,4

For I,=0, this equation is easily seen to be equivalent
to the standard formula for e+e production of nonre-
latvistic bound states. The derivation we have given, fol-
lowing the suggestion of Fadin and Khoze, clarifies that
the effect of the top-quark width is to cause the
Schrodinger Green's function to be evaluated off the real
axis. We will see in the next section that this causes the
Green's function G(r, r', E+i 1, ) to decay exponentially
for all values of E. Thus, if I, is sufficiently large, the
calculation of this Green's function will involve only
short distances where QCD perturbation theory is valid.

IV. METHOD FOR FINDING Imo(0, 0;E )

To calculate the total cross section using the formalism
of the previous section, we must construct the Careen's
function of the Schrodinger equation, G (r, r'; E ), evalu-
ated at r=r'=0. This can be done very simply by the
technique we will present in this section.

Our basic problem is to solve the second-order inho-
mogeneous differential equation

V + V(r) (E+iI, ) G(r, r—',E+iI, )

(4.6)

where &(f„f2; r ) = (f,f z f ',fz ) I „ —is the Wronskian of
two functions f, and f2. It is well known that, if f i,f2
satisfy the Schrodinger equation, 'lH(f, ,fz) is indepen-
dent of r.

To go further, let us define two standard solutions to
the one-dimensional Schrodinger equation with specified
boundary conditions at r =0. Since G(r, r') must be finite
at r =0, the regular solution for g(r) must vanish there.
Let us define a regular and an irregular solution
go(r), g, (r) satisfying

go(r)=r+ . as r~O,

g, (r)=1+ . . as r&0 .
(4.7)

This definition is not complete, because it allows gi to
contain an arbitrary admixture of go. If V(r) were regu-
lar at the origin, we could impose (d/dr )gi =0 at r =0.
However, in the case of a Coulomb potential
gi(r)=1 Pr ln(r/d)+ —. , where P and d are con-
stants, and so (d /dr )gi diverges as r &0; the arbitrari-
ness in the parameter d induces an arbitrary admixture of
gii into gi. (A similar ambiguity appears for the case of
the asymptotically free QCD potential discussed in Sec.
V.) Fortunately, it will su(fice to impose on gi the con-
straint

=5' '(r —r') . (4.1) Im g (r) &0 as r~O,
dr

(4.8)

which can be maintained for any V(r ) less singular than
1/r .

Any gi satisfying (4.8) may be chosen, but once it is

fixed, we may write the solutions g & (r ) and g & (r )

defined in (4.5) as linear combinations of go and g, . Since

g (r), like go, must vanish at the origin, we may identify
them:

1 d2 2 d+ — + V(r) —(E+iI, ) G(r, r')
m, dr 2 r dr

1 5(r r') . —
4m.r

(4.2)

Since we will evaluate G(r, r') at the origin, the only
relevant contributions will come from S-wave states. In
this partial wave, (4.1) becomes
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g (r)=gp(r) . (4.9) V. QCD POTENTIAL

The other solution

g (r ) =gi(r )+Bgp(r )

vanishes as r ~ oc, which implies

(4.10)

B= limr~ oo

g, (r)
gp(r)

(4.11)

Note that while the real part of B is dependent on the
choice of g„ the imaginary part is fixed by (4.8).

With these definitions, it is easy to compute the Wron-
skian at r =0 and to show that "K(g),g ( )= —1 and,
from (4.6), 2 = —I, /4~. We now use (4.3) and (4.5) to
write

To arrive at a fully self-consistent perturbative result,
one needs to calculate all contributions to the tt cross sec-
tion to a given order in a, . There are a very large num-
ber of such contributions: corrections to the top-quark
width, box diagrams, vertex corrections, crossed gluons,
etc. In this paper we will concentrate on the most impor-
tant source of a, dependence, the static potential due to
one-gluon exchange, and reserve the full accounting of
order-a, corrections for later work.

However, there is one additional order-a, correction
that is conventionally included in calculations of quar-
konium production, and so we will include it here as well.
The exchange of a hard gluon at the photon-quark-
antiquark vertex corrects the cross section by a factor

mt
lim

4~ r' o

g, (r')
+B

r

Using (4.7) and (4.8), we find

m, g((r) g) (r')
G(0,0)= — lim

4K r, r'~0 r r'

(4.12)

(1 —8a, /3'�) (5.1)

where o;, must be evaluated at 2m, . ' This decreases
the cross section by about 15%.

Now we will discuss the nonrelativistic potential,
which for the tt system is dictated almost completely by
perturbative QCD. To lowest order,

m,
ImG(0, 0) = — ImB,

4~
(4.13)

4 ~sV(r)= ——
3 r

(5.2)

which shows that the ambiguities in the definition of g&

and B mentioned above do not appear in the final result.
We have now reduced the computation of the tt pro-

duction cross section, in the one-virtual-photon approxi-
mation, to

2'7Tcx QED
2

o.(e+e ~tt )=- ImB,
3m'

(4.14)

where ImB can easily be computed numerically using
(4.11) and the homogeneous version of (4.4).

As a simple application of this formalism, let us com-
pute the production cross section for a nonrelativistic
heavy lepton pair. If the lepton mass is about 150 GeV,
the width of the lepton will be similar to that of the top
quark, while the potential will be negligible. In this case,
it is easy to see that (for r ( r')

G(r, r', E+il )=—
I

m sinkr e' "

4m Ar
(4.15)

where A, =[m(E+il )]' . Note that this function falls
oA' exponentially for all values of E, with decay length at
most v'2/ml . Inserting (4.15) into the cross-section for-
mula [and removing from (3.13) the factor 3X(—,') from
the top-quark color and charge], we find

2 2

o(e e ~L L )=
3

Rel,
77 CXQED

2mL
]. /2(E'+ r')'"+E

2mL 2

(4.16)
where E =&s —2mL is the energy measured from the
L+L threshold. This agrees with Fadin and Khoze
for this case.

More generally, the static qq potential V(r) obeys a
renormalization-group equation. This equation is solved
by replacing a, in (5.2) with a running coupling a, (pr ),
where p is a renormalization scale, such that

, a ~oo.
p a, =p(a, )=-

()p2
' ' 4~

For QCD with nf fiavors of light quarks,

bo = 11—-', nf, b
&

= 102——", nf .

(5.3)

(5.4)

The solution to Eq. (5.3) with constant coefficients, using
the p-function calculated to two loops, is

4~
CXs

bpln(A r )+(b, /bp)ln[ln(A r )]
(5.5)

4 (b I /2bo ) 2&
AM

--Q exp —,(5.6)MS
bourg

where a& —=aM (Q ). It is clear that AMs suffers from an

ambiguity involving the number of quark flavors in the
coefficients of the p function. Physically, it is reasonable
that one should take nf equal to the number of quarks
much lighter that the scale of the relevant physics, and so

where A, which sets the strength of the potential, must be
specified by relating it to other parameters of perturba-
tive QCD. In a moment we will consider how to relate A
to the commonly used parameter AMS, where MS refers
to the modified minimal-subtraction renormalization
scheme.

First, however, we should remind the reader that A—
s

is defined from a, at some scale Q through an equation
with the same form as (5.5). Inverting (5.5), one finds
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we choose nf =5. Since the tt wav|.' functions have
characteristic radius (a, m, ), which lies well between
mb and I, , the corrections to this choice are small.

However, AMs is much more sensitive to experimental
uncertainties than o.', itself, since it appears only in loga-
rithms in any physical amplitude. For this reason, we
find it is clearer to express our potential in terms of a, in
some renormalization scheme at some scale. We choose
az:—ns (mz) as our reference point. Since m& ((mz
&I„ the conversion from o.'z to our potential involves
only scales for which nf =5 is appropriate.

We now return to the task of relating A and AMs. The
energy of a quark-antiquark pair as a function of q was
calculated to two gluon loops by Fischler. " In the MS
scheme, his result is

16~(z, 3o.,
&(q,~„p)=— 1+ [—", ln(p /q )+ —", ]

3g
2

3cxs+ [—",'ln[ln(p /q )]

+ —",,'ln(p /q )+ . .

+ 0 ~ ~ (5.7)

Billoire' extended this to include fermion loops:

V(q)= V„;„h&„+[—', ln(p /q )+ I90]nf+. . . (5.8)

d'q ln(q )e'~'
(2m. ) q

[in(r )+2yz],4~I"
(5.9)

where yE is Euler's constant. The expansion of the result
in terms of ln(pr) can be matched, term by term, with
the expansion of (5.5); this allows us to identify

(Billoire was also the first to show that nonperturbative
effects remain important in studying the threshold behav-
ior of heavy quark systems until the quarks reach a mass
of about 100 GeV. ) Following Buchmuller, Grunberg,
and Tye, ' ' we take the Fourier transform of (5.7) and
(5.8), usillg

a few tenths of a fermi, where a, becomes large. Equa-
tion (5.5) even has a pole at

Ar„,, =[In(A r„;,)] ' =0.785 (nf =5), (5.13)

which is fortunately outside the range of the tt wave func-
tions. We will deal with these problems in a physically
motivated but still somewhat ad hoc fashion, and will
show in our results that wide deviations from our exact
choices do not strongly affect our curves, particularly for
the higher masses we consider.

First, we perform a simple regulation, replacing

Ar
Ar +f(A—r ) =a tanh (5.14)

-0.7 GeV .dV
d inr

(5.15)

This tells us how to match our perturbative potential
onto the nonperturbative region in order that it repro-
duce the known quarkonium spectra. We therefore
choose

where a is an arbitrary number less than the value of
Ar„;, given in (5.13); this eliminates the pole and ensures
the potential is smooth. The corrections induced by this
replacement are small until Ar approaches the pole, par-
ticularly as the potential depended only on In(Ar ). If a is
taken too large, the potential develops an unphysical dip
in the vicinity of the pole; if it is too small, substantial de-
viations from the perturbative potential appear in the
perturbative region. We choose a =0.3 as an intermedi-
ate value which minimizes these problems, though, as we
will describe in Sec. VII, the effect of changing a on the
observable cross sections is small.

Because of the insensitivity of these cross sections to
long-distance effects, we need not be extremely careful in
our choice of potential beyond about a fermi. We employ
the commonly used prescription that at large distances
the potential becomes linear. Buchmiiller and Tye have
shown' that all of the potentials which successfully give
the cc and bb bound-state spectra have the same shape in
the relevant region of 0.1 —1 fm: They are approximately
logarithmic with the slope

CA=A —exp —=2.43A—(n =5)Ms 2 Ms f (5.10)

V(r) = , +K'
boln[f(Ar) ]+(b&/bo)ln[ln[f(Ar) ])

(5.16)

where

1 31'
b. 3

10nf
9

+2/E (5.11)
(r =ra=1.3 GeV ')=0.733 GeV .dV

d lnr
(5.17)

with the coefficient K of the linear term adjusted so that

Thus the potential is stronger than one might have
suspected:

~MS( I /&2)
/v(r) f&—

3 I"
(5.12)

This potential is somewhat problematic. It is perturba-
tive and cannot be trusted at distances larger than about

The value 0.773 GeV is taken from Quigg and Rosner
we choose ro = 1.3 GeV ' =0.26 fm as an arbitrary
matching radius. Our results are insensitive to these par-
ticular choices, as we will show later.

Below is a summary of our method for defining the
QCD potential. The first four steps are required by per-
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turbative QCD; the last two are an ad hoc prescription, to
which our results are generally insensitive, in which we
match our potential onto successful phenomenological
potentials for the cc and bb systems. (1) We choose a
value for az=a, (mz); (2) using n&=5, we compute
AMs from the formula (5.6); (3) we compute A from Eq.
(5.10); (4) we take a, as in (5.5); (5) we eliminate its pole
using (5.14) with a =0.3; and (6) we add to the resulting
potential a linear term as in (5.16), choosing E so as to
satisfy Eq. (5.17).

eff

0.4

0.3

0.2

0.1

VI. EFFECT OF THE HIGGS BOSON
AND OTHER CORRECTIONS

In addition to the leading-logarithm QCD calculation,
we will consider the interesting effect on the static poten-
tial of the Higgs boson. Since the Higgs effect is small, of
the same order as certain QCD corrections we have ig-
nored, this part of the calculation is not self-consistent;
rather, it is intended to be indicative of the magnitude of
the effect and of the precision, following a complete cal-
culation, to which the Higgs-boson mass or coupling
could be determined from the tt threshold.

It is well known that the effect of scalar exchange be-
tween a fermion and an antifermion is to induce an at-
tractive interaction, which in the nonrelativistic limit
takes the form of a Yukawa potential. It has been point-
ed out by Inazawa and Morii that for extremely heavy
quarks (m —500 GeV) the Higgs interaction would be
stronger than that of QCD, and if the quark were
sufficiently stable to have well-defined bound states, we
would see an enormous enhancement of the quarkonium
resonances. However, even without toponium reso-
nances, the Higgs boson can have a large effect on the top
threshold region, and this effect is substantial long before
the Higgs interaction dominates that of QCD.

For nonrelativistic quarks both gluon and Higgs-boson
exchange are approximately static, and we can simply
add to the QCD potential of Sec. V the Higgs-boson-
mediated Yukawa potential

2 2
8«~ ]. pl~ 1 ~g 1 p1~ p'

&~(r)= —e (6.1)4~ & 4~v'
where rn~ is the Higgs mass, g«~ is the Yukawa coupling
of the Higgs boson to the top quark, and v =246 GeV is
the Higgs-field vacuum expectation value. Note that we
have used the minimal standard model to evaluate g„~.
If the Higgs boson has a tiny mass, so that the potential it
induces is nearly Coulombic out to radii well beyond the
Bohr radius of the top quarks, then to leading order the
effect of the Higgs boson is simply to increase the
strength of the interquark coupling:

4 4
+ A~+ 2 (6.2)

4~v

In Fig. 4 we show a comparison of the QCD and Higgs-
boson contributions to the tt potential, using
a,s= —3a, (ao) as an estimate of the gluon coupling. If the
cross section in the threshold region is proportional to
cx,", we find a relative enhancement for a massless Higgs
boson of

0
100 200 300

mt (Gev)

400 500

2
3n m,

-(20%%uo )n
16~ 200 GeV

2

(6.3)

The estimate (2.6) shows that n lies between 2 and 3 for
the region of interest. [For very large quark masses in
the 500-GeV range, one may use (2.6) to estimate that the
cross section, in units of R, grows as m, ; in real terms it
goes to a constant. ] On the other hand, as the Higgs bo-
son becomes more massive, the range and inAuence of its
Yukawa potential are reduced. Thus the size of the
Higgs-boson correction to the cross section is a measure
of the Higgs-boson mass.

One might ask whether Z or photon exchange might
also produce a substantial effect. The answer is no: The
photon correction is of order o.QED &n„and the Z vec-
tor coupling to the t quark is smaller than aQED by the
factor

(1——,'sin 8~) =0.048 .
16 cos Og sin 0~

(6.4)

The Z axial-vector coupling is also unimportant, be-
cause the axial-vector coupling is momentum and spin
dependent and thus is suppressed in the nonrelativistic
limit.

Though electroweak corrections to the tt potential are
very small, there are four other electroweak effects which
are important in the determination of the total cross sec-
tion for e+e ~tt. ' All of these effects were included in
the analysis of Fadin and Khoze. The first of these is
the effect of e+e annihilation through a Z, which we
have neglected in our formulas from (3.1) onward, but
which is easy to reintroduce. The Z current has both
vector and axial-vector pieces. However, the axial-vector

FIG. 4. Comparison, as a function of the top-quark mass, of
the effective strength of the QCD, QED, and Higgs-boson in-
teractions between the quark and antiquark at the 1S resonance.
The curves are —,a, (ao) for QCD, ( —, ) aQso for QED, and

(m, /U) /4~ for the Higgs boson. The last curve is appropriate
for a massless Higgs boson; the real Higgs-boson eA'ect is some-
what smaller.
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coupling to tt, which produces only P-wave states, can be
neglected, since the amplitude for producing such states
contains an extra power of the quark three-momentum,
suppressing their production by a factor a, . The vector
coupling on the electron side, which is proportional to
the small quantity ( —,

' —sin Hw), is also negligible. Thus
the photon- and Z -exchange contributions do not inter-
fere, and the Z may be included simply by replacing

2
3

2 2
2 +
3

(1——,'sin Ow)

16 sin O~cos 0~ s —mz

2

(6.5)

in (3.1) and subsequent formulas.
The second important effect is the renormalization-

group running of uQED. Since the tt production cross sec-
tion is proportional to eQED with this coupling constant
evaluated at the scale s —(4m, ), we should multiply our
formula for the cross section by'

2 2

cKQED( 4m, )

AQED(0)

137.0
127. 1 —1.4151n(2m, /300 GeV)

2

(6.6)
which involves a 15% increase.

The third important electro weak effect is that of
initial-state radiation, which can reduce the center-of-
mass energy in the e+e collision and thereby move the
virtual Z or y below tt threshold. It is well known, from
theoretical studies of the Z line shape, that initial-state
radiation decreases the peak cross section of a resonance
by a substantial amount; it is a 25%%uo reduction for the Z,
but of order 50% for the low-mass toponium resonances,
due in part to their smaller width. In the calculations re-
ported here, we have used the formalism of Kuraev and
Fadin, ' which views the initial-state photons as arising
from an electron structure function. Working to first or-
der in aQED and to all orders in collinear radiation, we
write the measured cross section o (s ) in terms of the un-
corrected cross section o o(s ) as

2&QED 772

6 4 j dx [Px~ '( I+3P/4) —/3(1 —x/2)]o o[s(1 —x )], (6.7)

where

2+QED s
ln —1 =0.11 .

7T m,
(6.8)

(6.9)

Here m, is the electron mass, and since the radiated photons are at low energy in the electron frame, aQED takes its
low-momentum value of about 37 For a full explication of this formula, the reader should consult reviews of the Z
line-shape problem (e.g. , Refs. 18 and 19).

Finally, the tt production cross section depends sensitively on the value of the top-quark width. Except where it is
noted below, we have used the formula of the minimal standard model:

3 2 2 2 2 4Fmt 2k b b mW mW
1 — + 1+ —2

8V'2~ "
m, m' m,2 m,2 m 4

8 O's
1 ——

3 7T
(6.10)

where k is the three-momentum of the decay products in the t rest frame. The asymptotic form of this expression has
been quoted in (1.1). We approximate

~ V,b ~

= 1 in most of what follows.
We have now presented all the details of our prescription for computing the cross section for tt production in high-

energy e+e colliders. Let us summarize this procedure. We will express e+e cross sections in units of R
throughout the following discussion. In these units the cross section for tt production, without initial-state radiation,
is given by (4.14), as modified by (5.1), (6.6), and (6.5):

= 2 aQED(4m, ) 3(1—
—',sin 8 )

o.o(s ) = 1+ (1mB ) R,
m, CZQED( 0 ) 32cos 0 sin 0 s —mz

where B is computed from (4.4) and (4.11) using (5.16),
(6.1), and (6.9). The final cross section is then obtained by
inserting (6.10) into (6.7) to account for initial-state radia-
tion.

VII. RESULTS

In this section we present our results on the tt cross
section as we vary the parameters of our model. For
most of this section, we will work within the minimal ver-

sion of the standard model and consider the effect of
varying m„mH, and e, . At the end of the section, we
will consider the effects of nonminimal Higgs-boson cou-
plings and of modifications of the top-quark width.

The numerical programs used for these calculations
were carefully checked. Each of us wrote an independent
program, and our final results agree to better than 1%,
far less than uncertainties due to QCD corrections. For a
pure Coulomb potential without initial-state radiation,
our programs agree with the exact analytic result to 1
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on the tt cross section, with m, =210 GeV. The notation is as in

Fig. 17.

1.5. In Fig. 18 we do the same for m, =210 GeV. The
change in the cross section due to the Higgs boson is ap-
proximately quadratic in the top-quark —Higgs-boson
coupling, as was argued above [see Eq. (6.3)]. The effect
is systematic, so that the area under the curve may be
used in the measurement, decreasing the statistical errors
substantially. We may therefore hope that the top-quark
threshold will provide one of the few available tests of the
coupling of the Higgs-boson and fermion sectors of the
standard model.

VIII. SOME CONCLUDING COMMENTS

The measurement of the tt cross section raises a num-
ber of experimental problems, which we have not studied
in detail. An initial analysis of this system has been done
by Komamiya. We limit ourselves to some general
comments. The greatest experimental problem for this
measurement is obtaining both high luminosity and small
beam spread. Since the cross sections are of order one
unit of R, the rates will be low, and so careful considera-
tion will have to be given to the method of scanning the
threshold region in order to best extract the relevant
physical quantities. Fortunately, efticiencies for detecting
tt events should be high because of the characteristic ki-
nematics of the decay t ~8 b. In addition, other physics
studies, such as the measurement of the 8'8'y vertex and
the searches for the Higgs boson and other new particles,

can be done simultaneously with the scan of the tt thresh-
old.

We remind the reader that our results are only accu-
rate to leading-logarithmic order in QCD. They contain
several e6'ects which, though higher order, are important
corrections: Higgs-boson exchange, initial-state radiation
of photons, the running of a&ED, and the hard-gluon
correction to the ytt vertex. We use the full one-loop
corrections to the QCD potential, but treat the potential
as static (energy independent) and take the top quarks to
be nonrelativistic. Clearly, there are many corrections to
our results which must be considered, some of which may
be substantial; we intend to perform the full order-o;, cal-
culation in the future.

Nevertheless, our results clearly show that the study of
the tt threshold will be a fruitful one. Exactly what will
be learned from this study depends in detail on what will
be known from other experiments, and one can best view
it as providing increasingly strong constraints in a mul-
tidimensional parameter space. It will certainly be possi-
ble to make high-precision correlated measurements of
m, and a, with relatively few events, assuming the stan-
dard model. One may hope to eventually reduce the er-
rors on m, to half a percent or better, while determining
a, unambiguously to a few percent. With a larger num-
ber of events, it will be possible to measure I, to perhaps
20%. Determinations of the quantities mH and g„H,
though imprecise, will still be of great importance as tests
for nonminimal Higgs sectors. In summary, it is evident
that the ability to correctly predict the entire tt threshold
cross section at the level of a few percent will be an im-
portant and detailed test of the standard model, or of any
other model which is overed to replace it.
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