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For unpolarized beams in e e+ collisions at the Z, beam-referenced spin-correlation functions
for the production-decay sequence e e+ —+Z ~~, ~2+ —+(h

&
v)(h&+ v) can be easily derived using

the helicity approach. For ~, ~~& v, for example, this reaction is analyzed relative to the final ~
momentum vector. The most interesting result is an azimuthal correlation function I(P„P) where
the azimuthal angles are defined relative to the final ~r, . I(P„P) allows one to simply test for maxi-
mal P, maximal C violation in the Z ~r, r,+ coupling. For e e+ collisions in the Y or j/g re-

gions, I(P„P) can be used to test for a complex phase in the y*~r r+ coupling. Previously it was
shown that the measurement of the energy correlation function I(E&,E& ) for
Z ~~& ~&+~ 3 B+Xdetermines independently the fundamental parameters sin 0&, the ~ Michel
parameters, and for hadronic r decays the analogous chirality parameter g„which tests for right-
handed currents. Now by referencing this energy correlation function to the incident e beam
direction, the associated ideal statistical errors for these parameters for the case of hadronic ~ de-

cays are reduced only by about 25%.

I. INTRODUCTION

At the CERN e +e collider LEP in four high-
precision experiments, ' many ~ ~ events are being
produced by unpolarized e e+ collisions in the Z mass
region. Many ~ ~+ events are also being produced in the
Y region in the ARGUS (Ref. 6) and CLEO (Ref. 7)
detectors. There is also a strong interest in the physics
community in the construction of a high-luminosity
e e+ collider near the ~ ~+ threshold to produce a
high-statistics sample of r r+ events (the so-called r
charm factory).

It is very important that these experiments not only
make high-precision measurements of fundamental pa-
rameters such as sin 0~, assuming that the ~ is an ortho-
dox sequential heavy lepton, but also systematically
search for new phenomena outside the standard model
such as violations of lepton universality and right-handed
currents in ~ decays, and observable complex phases in
the Z ~~ ~+ and y

*~~ ~+ couplings. Previous-
ly, " it was shown' that measurement of the energy-
correlation function I (E„,Eii ) for the decay sequence

e e +Z ~r, r—2+~(h i v)(h 2+ v) . (1.3)

The treelike structure of this process is illustrated in Fig.
1 for the {iri rr2 I final state. A central idea is to analyze
this reaction [Eq. (1.3)] relative to the final ir& momen-
turn vector. The standard reference system, therefore, is
that shown in Fig. 2. Note that the final w2+ momentum
has been used to specify the positive x half-plane.

The energy correlation function I(Ei,E2), which was
studied earlier, exploited the ~ spin correlation in the
sequential decay starting from the Z . Because the initial
e and e+ beams are unpolarized, it is natural for this
reaction to work backward from the observed final state
in the analysis of the complete process. So, as shown in

has the value /=+1, respectively, for a pure V+ A cou-
pling in ~ ~h v.

In this paper we generalize this analysis' and consider
the production-decay sequence

determines independently the fundamental parameters
sin Hii, , the r (Ref. 12) Michel parameters for r ~l vv,
where I =p or e, and for hadronic ~ decays ~ ~h v the
analogous chirality parameter g&, which tests for possible
right-handed currents. This parameter

(1.2)
FIG. 1. Illustration of the treelike structure of the helicity

amplitude description of the production-decay sequence
e e+~Z ~~l ~2+ —+(~l v)(~2+7).
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e beam

z' rest frame

FIG. 2. Angles describing the distribution of the incident e
beam relative to the final ~ and n+ momentum directions in
the Z rest frame. The sr+ momentum specifies the P, =0 half-
plane.

Section V contains the analytic expressions for the az-
imuthal correlation function I(P, P) discussed earlier in
Sec. II.

Section VI shows that there is a simple gS substitution
rule which directly converts any BRSC for

Imari

vrz+ ] [Eq.
(1.4)] to that for [h, hz+ ] [Eq. (1.3)].

In Sec. VII the ideal statistical errors for a 10 Z
event sample for the determination of sin 8~ and of the
chirality parameters gi, are compared between those ob-
tained when one uses the full BRSC function
I(8„$„E„E2,$), and those obtained when one uses the
simpler energy-correlation function I (E, , E2 ).

The principal conclusions are listed in Sec. VIII.
Additional material which will be of iriterest to certain

readers is contained in the appendixes.
We stress that the information in this paper is limited.

Experimental information (resolutions, biases, systematic
errors, etc. ) and additional theor'etical information (radia-
tive corrections, etc.) need to be systematically included.
This can be best done by ~-pair Monte Carlo simula-
tions. '

e e+~Z ~r, ~,+~(~, v)(~,+v) . (1.4)

The helicity approach is both convenient, simple, and
powerful in describing reactions such as that shown in
Fig. 1. Very useful kinematic variables appear from the
start in this approach, in spite of the need to be careful
due to the missing v and v momenta.

Fig. 2, we now include the direction of the incident e
beam in this standard reference system. This references
the earlier-considered ~ spin correlation to the initial e
beam, and so we call the resulting correlation functions
"beam-referenced spin-correlation functions" (BRSC).
Actually, these are nothing more than angular distribu-
tions. However, the name "BRSC" is appropriate, for
the useful variables are indeed those which occur natural-
ly in a final-state spin-correlation function (Ei,E~, P) and
in the referencing of it to the initial beam direction
(0„$,) as shown in Fig. 2.

The paper has been organized so that an interested
reader can select those parts he wishes to read, while
omitting other parts. The headings of the various sec-
tions and appendixes clearly indicate their respective con-
tents.

Section II contains what appears to be the most in-
teresting result of this analysis. There is an azimuthal
correlation function I(P„P) where the azimuthal angles
are relative to the final ~&, which allows one to simply
test for maximal P, maximal C violation in the
Z —+~ ~+ coupling. For e e collisions in the Y and
J/g regions, the test is for a complex phase in the
y*~~ ~+ coupling. Compare the CP tests in Refs. 13
and 14.

In Sec. III we return to a deductive organization for
the rest of the paper. In this section we explain the kine-
matics of the production-decay sequence [Eq; (1.3)].

In Sec. IV, using the helicity formalism, we derive
the full beam-referenced spin-correlation function
I(O„Q„E,,E~,Q) for

II. TEST
FOR MAXIMAL P, MAXIMAL C VIOLATION

. T(+ —)=T( —+) . (2. 1)

In contrast, in the standard model at Born level, the
Z —+~ ~+ helicity amplitudes in the Jacob-Wick' phase
convention are (see Appendix A)

T( —+ ) = —(M+2Pr ),
2

T(+ —) = (M —2Pr ),1

v'2

T(+ + ) = T( ——
) =m,

(2.2a)

(2.2b)

(2.2c)

with M=Z mass, m =~ mass, and P=magnitude of a
final w momentum in the Z rest frame. The r parameter

1

(1—4 sin Oii, )

=12.5 for sin 0~=0.23 .

(2.3)

(2.4)

The form of the standard-model equation (2.2) does not
violate CP invariance. In general, if CP invariance is as-
sumed,

T(++)=T(——), (2.S)

but T(+ —
) and T( —+ ) are not related. These various

In this section we (i) define what we mean by "maximal
P, maximal C " violation in the Z ~~ ~ decay ampli-
tude, and (ii) explain the striking signature in an azimu-
thal correlation function I(P„P) for other than maximal
P, maximal C violation in Z ~~ ~+ decay.

Let T(A, il2) be the helicity amplitude which describes
the decay Z ~~ ~+, where A, &, A, z are the respective heli-
cities for the 7, and ~z . If either P invariance or C in-
variance were exact symmetries in Z —+~ ~+ decay,
then
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TABLE I. Relations among the Z —+~ ~+ helicity ampli-
tudes due, respectively, to CP, P, or C invariance.

looked for using polarized initial beams in the other,
e e+ Z'.

If Z —+v.) ~2+

CP invariant
P invariant
C invariant

Then

T(++ )= T( ——)

T(+ —)= T( —+ ), T(++ )=(T——)

T(+ —)=T( —+)

A. Signature for ~'WO

Later in this paper the full beam-referenced spin-
correlation function I(8„$„E„E2,$) will be derived for
the production-decay sequence

symmetry relations are tabulated in Table I.
The Born-level standard-model (SM) amplitudes equa-

tions (2.2a) and (2.2b) do have another property, howev-
er, and it is the one we are interested in here: Both
T ( —+ ) and T( + —

) have the same phase. Empirically,
one sees that this property can be simply stated in terms
of the measurable Z ~~ ~+ decay intensity parameter

e e+~Z r, r2+~(h, v)(hz+v) .

However, the simpler azimuthal correlation function

I($„$)=L(P„P)[i+a'R(P„(h)], (2.8)

Im[ T(+ —
)T*(—+ )],2

(2.6)

where the overall normalization factor is

W=y~T(z„z, )l' (I+r', )M', (2.7)

where the arrowed result is the Born-term value in the
standard model. We will soon explain how the value of ~'

can be simply measured from the azimuthal correlation
function I(P„P). We define maximum P, maximum C
violation to mean that the amplitudes T(+ —

) and
T( +) are u—nequal, but with the same phase; that is,
~'=0. Even though K'=0 follows from the Born-level
Z ~~ ~ coupling in the standard model, it is very im-
portant to test whether this is, indeed, true in nature. In
an effective Hamiltonian framework, the origin of such a
violation would be a violation of T invariance, i.e, a viola-
tion time-reversal invariance, when a first-order perturba-
tion in a Hermitian Hamiltonian can be regarded as reli-
able. Consequently, to relate a'WO and T noninvariance
requires further theoretical or empirical information on
the scale of the effective Hermitian Hamiltonian. In par-
ticular, a'WO could be due to a strong-interaction
higher-order effect in a Hamiltonian framework such as
could be induced by a strongly interacting Higgs sector
or from the existence of supersymmetric particles. In the
literature' ' ' on CP violation and on T violation in the
kaon and hyperon systems, such effects are sometimes re-
ferred to as unitarity corrections, or final-state correc-
tions. Here the process is Z ~~ ~+, and so a strong-
interaction higher-order effect would be a signal of new
physics.

In the case of CP violation, one can frequently define
CP-even and CP-odd combinations of observables for the
reaction of interest and the CP-conjugate reaction, and
thereby separate fundamentally CP-violating phenomena
from that due to a strong-interaction higher-order effect.
In contrast, here the time-reversal operation relates the
decay process Z —+~ ~+ to the formation process

~+ —+Z, which is not experimentally available. Con-
sequently, it is not obviously helpful here to define T-even
and T-odd combinations of analogous observables for the
decay and formation reactions. If ~-e universality is as-
sumed, this can be done, and certainly if a candidate
effect is observed in one, e.g. , Z ~~ ~+, it should be

in the Z rest frame, is almost as sensitive to ~'. See Figs.
2 and 3, respectively, for the definition of the two azimu-
thal angles. Figure 2 shows that P, is the azimuthal an-
gle of the incident e, in the Z rest frame, with ~
moving in the positive z direction. The ~+ momentum
vector specifies the positive x half-plane.

The other angle P that appears in the azimuthal
correlation function I (P„P) is the angle which was
used in the PP parity test' for the g, . There
rI, ~Q&$2~(&+& )(&+& ) and the angle p is simply
the angle between the P&~(K+K ) and Pz —+(K+IC )

decay planes in, for instance, the g, rest frame. The one-
dimensional decay distribution in the angle P provided a
striking signature of the pseudoscalar nature of the g,
from around 18 events. So it is physically natural to in-
troduce the analogous angle here, and indeed, again, the
spin-correlation effect has a very striking behavior in the
P variable.

Therefore, the angle (t) is the azimuthal angle between

0 = 0) + 42

rest frame

FICs. 3. Usual helicity angles 0; and P, specifying the rr,
momentum, in the ~, rest frame, with &2+ moving in the nega-
tive z direction. The polar angle 02 for the ~~+ is defined analo-
gously in the r,+ rest frame. The azimuthal angles P, and Pz are
Lorentz invariant under boosts along the z axis. The sum
P=P, +$2 is the angle between the r, and rz+ decay planes. Its
cosine, i.e., cosP, is measureable [Eq. (3.15)]. The angles 8; and
Oz are also measurable [see, respectively, Eqs. (3.5) and (3.9)].
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in the form

I(p„p)=L(p„p)+fr'K'(p„p),
and so

K'(P„P)
R(P„(t )

(2.10a)

(2.10b)

0. 4

0.3-

0.2-
O. t p3

Note that L is symmetric about the (t, =0 axis, whereas
both R and K' are antisymmetric.

Explicit expressions for L and K' are given, respective-
ly, by Eqs. (5.2a) and (5.2b) in Sec. V. Specifically,
L(P„P) contains terms in the angle P, which are con-
stant, vary as cosP„and vary as cos2$„whereas,
K'(P„P) varies as sin2$, since

0. 1-

0.0

—0 ~ 1-

-0, 2-

K'(P„P)= sin2$, K'(P), (2.11a) —0.3-

where

K'(P) = L (P)R ((t ),0.622
(2.11b)

—0, 4 ~ 1 I I ~ I l ~ I
l

1 ~ I ~ ~ I I I ~
l

~ ~ I ~ I ~ I ~ ~
1

~ I I I I I I l I

0 45 90 135 180

with L(P) and R (P) as shown, respectively, in Figs. 7 and
8. [Here (0.662) '=3(5/2') ].

This antisymmetry for K'(P, P) about the P, axis is as
would be expected from a simple symmetry argument for
a triple-product correlation (p Xp +) p, : As shown in

Fig. 9, by time-reversal invariance and rotational invari-
ance, such antisymmetric in (t, terms must be absent if
the decay is due to a Hermitian effective Hamiltonian in
lowest order.

This symmetry of I(P„P) with respect to the P, =0
axis enables a simple one-dimensional display of this az-
imuthal correlation. For events with P, in the 0' —90', we

1.00

0.75-

0, 50-

0.25-

FICi. 8. R (P) term in the folded azimuthal correlation func-
tion for the [m. m. + } spectrum.

I((P)=L(P)[1—i~'R((())] . (2.12b)

We call I(p) the "folded azimuthal correlation function. "
[Explicit expressions for L and R in Fqs. (2.12a) and
(2.12b) are given by Eqs. (5.7) and (5.8) in Sec. V.]

In Table II are tabulated the ideal statistical errors
for measurement of ~' by the azimuthal correlation func-
tion I(P„P) and by the full beam-referenced r spin-
correlation function I(H„P„E&,E2, $), assuming 10 Z
events. The [vr vr } decay mode gives the smallest ideal
statistical errors. For the folded azimuthal correlation
function I(P), we find a statistical error of o (a') =0.109.
On the other hand, if the polar angle 0, for the e beam
is not integrated out (this angle is shown in Fig. 2), then
the associated I(8„$„$)gives o (I~') =0.0798.

Also tabulated are the results of the other major two-
body ~ decay channels assuming a pure V-A coupling for

~h v. When h is not spin zero, a "hadron helicity
parameter" [see Eq. (6.2)]

integrate out (t, . The resulting distribution

I) ( (t)=L(P)[1 +a'R(P)]

is shown in Figs. 6 and 7. Events with p, in the range
90 —0' can be similarly integrated over p, to obtain

0.~ 00 ' l ~ ~ I L ~ ~ 0 ~ I ~ I ~ E l ~ ~ ~ I
/

I ~ ~ ~ I ~ ~ ~ I I ~ ~ ~ I ~ I ~ ~ ~

0 45 90 135 180

m —2mh
gh ——

m, +2mb
(2.13)

FIG. 7 L(P) factor in the folded azim. uthal correlation func-
tion I(P)=L (P)[1+a'R (P)] for the [vr sr+ } spectrum.

appears in L and K'. In particular, K' is proportional to
gzgz for the [ A, B+} spectrum, which suppresses the
signature for ~'. Thus modes listed in later tables in this
paper have been omitted from Table II if they gave a
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I
I
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I
I
I

e- I

Rotate
About y Axis

7
I

I

I

I

z+

X

(a)

e-
/

X

(c)

FIG. 9. Assuming a first-order Hermitian effective Hamiltonian, by time-reversal invariance and rotational invariance, decay (a) is

equivalent to decay (c).

=0.457R (2.14a)

cr(ir') greater than l.
For the I

m. p+ I spectrum, the larger number of events
almost compensates for the extra 4 factor in E'. For it,
for I(P) we find o (k') =0.116 and for I(8„$„$),
cr(ir)=0 0871 . We .find the R figures for t~ p I are as
shown in Figs. 5 and 8 except

and

L +—-L (2.14b)

Clearly, L and R di6'er significantly in their depen-
dence on P. With 10 Z events, such a striking signature
should enable a test to the few percent level for whether
the violation of I', and of C, is indeed maximal in the
Z ~~ ~+ decay process.

Unlike for r spin-correlation functions I(E, , E2) and

TABLE II. Comparison of ideal statistical errors for ~' from measurements by the full beam-

referenced r spin-correlation function I(0„$„E~,E2,$) with those from measurements by the simpler

azimuthal correlation function I (P„P). A nonzero value for lr' is the signature for other than maximal

P, maximal C violation in Z ~~ ~+ decay; that is, ~'=0 at Born level in the standard model. Super-

scripts a and b denote the smallest and next smallest ideal statistical error for a single decay mode.

Note that the ideal statistical errors are about the same for the I~ sr+
I and Irr p+ I spectra. 10' Z

events have been assumed.

Sequential
decay mode

Number
of events

Comparison of ideal statistical errors
o.(~')

I(O„P„E,, E„$)

3 861
500

16087
1 001
1 043

16757
2 085

0.0619'
0.1707
0.0719
0.4029
0.2772
0.1492
0.5822

0.0970'
0.2660
0.1044
0.5822
0.3949
0.2087
0.8087

Sum of
above modes 41 334 0.042 0.064

factor worse = l. 50

Sum of
'IT' 7T, 77 P 19 948 0.047 0.071

factor worse = 1.51

'Smallest.
Next smallest.
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I(E„E2,$) which, because of a factorization property'
are similar to AgR", the radiative corrections needed
for a high-precision measurements of I(P„P) or some
other BRSC are more analogous to those for A„~. Be-
cause of 8, and/or P„both the initial and final states are
involved in the correlation. Note that I(P„P) is much
less sensitive than AFB to interference of initial- and
final-state bremsstrahlung since in the signature region
e is not in general parallel to w . The energy smearing
and y* —Z interference eA'ects will also be much less im-
portant for I(P„P) than for AFB because there is already
a y* eAect in AFB, whereas y* does not produce an odd
P, component in I($„(()) in the standard model.

Unlike the A „B, additional one-loop electroweak
corrections to the decays ~ ~h v can contribute here
as may some higher-order QED corrections associated
with the occurrence of a final decay sequence, instead of
only an ff final state, but again these corrections should
be small ones. Most of the theoretical and experimental
corrections to Figs. 4—8 and to the ideal statistical errors
o(a') can best be investigated by w-pair Monte Carlo
simulations.

2 — 2~ (1 r2)M—/JV= = —0.987,
SM p +g

(2.16)

where JV is defined above in Eq. (2.7). The azimuthal
correlation function I(P„P) is sensitive to a (See the fol-
lowing, subsection. ) The associated ideal statistical errors
for measurement of ~ are listed in Table III for the

I ir sr+
I and Im. p+ I spectra.

(iii) An aplanarity test of the e momentum versus the
~, ~2+ momenta plane is available here: From considera-
tion of Fig. 5, one can define

I(P, (())l,„~t I((t„g) sM=constXsin(2$, )K'(P),

(2.15)

where K'(P) is given by Eq. (2.11b).
(ii) There is also a natural sensitivity check that can be

used in the data analysis in the measurement of ~'. In the
standard model there is a nonvanishing decay intensity
parameter ~:

2 Re[T(+ —)T*(—+)]

B.Remarks

(i) From Eqs. (2.10) and (2.11), we see that if ~'WO,
then neglecting radiative and other corrections, with

&i, 3
—&2,4

aplanarity
1, 3 2, 4

(2.17)

X» =total number of events with P, in first plus third quadrant

0(P, ( vr /2 or 7T

e

X2 „=total number of events with P, in second plus fourth quadrant

However, both Figs 5 and 8 with Eq. (2.lib) show that
the integration over P reduces the sensitivity of A,„&,„„;,„
in measurement of ~'. This reduction can be avoided by a
cut (t (—152', which removes some of the most back-to-
back events. Due to limitations on angular resolution,
this type of cut may be needed anyway.

(iv) The time-reversal argument associated with Fig. 9
applies to using I(P„P) for r leptonic decay modes, that
is, for the tl& l2+ I and II& h2+ ) sequential decay chan-
nels. For three-body r decay modes, an effective P vari-
able can be defined using Eqs. (3.15), (3.5), and (3.9a).
Likewise, for e e collisions in the Y or J/P regions,

TABLE III. Comparison of ideal statistical errors for s from measurements by I(0„$„E~,E2,$)
with those from I (P„P).

Sequential
decay mode

Number
of events I(0„(t„E„E„() I(P„P)

Comparison of ideal statistical errors
o.(~)

p

3861
16087

0.0478
0.0700

0.0952
0.1040

Sum of
7T 'lT, 77 p 19948 0.0395 0.0702

factor worse = 1.78
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the P, behavior of I(g„tt ) can be used to test for a com-
plex phase in the y*~r r coupling. If I( P„P) has an
odd component when P, ~P„ then such a phase is
present. [For these two generalizations, the associated
explicit L(P, P) distribution in the standard model and
the associated explicit ~ analyzing power distribution
R(P„P)=K'(P„P)/ L(P„P) has not yet been calculat-
ed. ]

C. Determination of ia'i from unitarity equality

The magnitude of ~', we refer to it as
~

ir' ~, can be deter-
mined alternatively by the "unitarity equality"

dependence. The errors for ~ from I(P„P) were listed in
Table III. In I(P„P) the ~-dependent term has a pure
cos(2$, ) dependence on P, . But there is also a cos(2$, )

dependence, as well as constant and cos(P, ) dependen-
cies, in the (1—5) and a terms. [See Eq. (5.2a) in Sec. V
below. ]

Finally, we stress that measurement of 5, u, v, and v'

will completely determine the fundamental helicity am-
plitudes T ( —+ ) and T( + —).

III. KINEMATICS

We discuss the kinematics of the production-decay se-
quence

~' +Ir =(1—5) +a (2.18) (3.1)

where the additional Z decay intensity parameters are

(1—|)= [iT(+—)('+iT( —+)(']1

(2.19a)

[/ T(+ —) /' —
/
T( —+ )/']

JV

2r,M "' =-0.159,
v +a

(2.19b)

and ir' and ir are given above by Eqs. (2.6) and (2.16).
Note that the 5 parameter is

[IT(++ ) '+
I
T( ——) I']1

—+0. (2.20)

Therefore, Eq. (2.18) can be used to determine ir' if the
three intensity parameters 6, o., and ~ are measured.
These (5,a, ir) are, in principle, independent parameters
and can all be measured independently from
I( O„Q„E„E2,p ).

Since 6 is zero in the standard-model, Born-level, limit,
we list in Table IV associated ideal statistical errors for
the tn. vr+J and Irr p+] spectra when a and Ir are mea-
sured from I(O„Q„E„E2,$). Note that since the mag-
nitude of ir' is at present unknown, the error for ~ir'~cr(ir')

is listed.
Note also that whi';e 5 and n can be measured by the

simpler distributions such as the energy correlation
I(E„E2),to be sensitive to ~ requires inclusion of the P,

2Pp i cosO], =2P0E
&

M pi (3.2)

where PO=M/2, P =P 0
—m, with M= the Z mass,

m =the w mass, and p&=the ~& mass. By squaring, Eq.
(3.2) easily yields the kinematic limits to E&. See Eq.
(3.6c) below. From the y and P for the relativistic boost
to the r, rest frame [y=M/(2m)] the helicity polar an-

gle 9; (see Fig. 3) is determined by

e beam

The e e+~Z ~~& Tp+ part is shown in Fig. 10 for the
Z rest frame. The ~& and ~2+ momenta are, of course,
back to back. We assume that the v and v momenta are
not measured, and so the observed part of the
production-decay sequence is as shown in Fig. 11. The
polar angle 0, describes the distribution of the final ~&

relative to the initial e beam direction.
In Fig. 12 these two figures have been overlaid to ex-

hibit the angles 0, 2 between each pion's momentum and
its associated ~'s momentum direction. The angle 0, and
the m.

&
energy E& are, in fact, not independent. To see

this, first note that cos9, is known since with p, the mag-
nitude of the m& momentum

TABLE IV. ideal statistical errors associated with the mea-
surement of the magnitude of K' by use of the unitarity equality
of Eq. (2.18). The errors for ~ and a are from measurements by
I(O„Q„E,,E2, $). See text for remarks about how simpler an-
gular distributions can be used to measure a and ~.

w/ w
/

/
/

e+beam

Sequential
decay mode

Sum of
7T ~ 7T P

Number
of events

3861
16 087

19948

0.0473
0.0692

0.0390

lal~la)

0.003 45
0.002 02

0.0471
0.0691

Z' rest frame

FIG. 10. e e+ ~Z ~~& ~2+ part of the production-decay se-

quence e e+~Z ~~& ~2+~(m. , v)(~~+v). The ~& and ~&+ mo-

menta are back to back in the Z rest frame.
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e beam

e+ beam

O&
=arccos

Note that

(3.5a)

are Lorentz invariant under boosts connecting the three
frames.

In summary
—M(m +p2)+4E, m2

(m —p&)V M —4m

Z' rest frame cos8t= [2(E) /EP'") —1][1+O((m /M)2)] (3 5b)

FICx. 11. Observable part of the production-decay sequence
e e+~Z ~~& ~2+~(~, vj(~2+v). The polar angle 0, de-
scribes the distribution of the final ~& relative to the e beam
direction, in the Z rest frame. The m& and m2+ do not, in gen-
eral, both lie in the beam plane.

where, from Eq. (3.2),

M(m +p, , )

4m'2 2
' 1/2

+ 1—
4m M

(3.5c)

p t cos8t y(p i cos8i PE i ) (3.3) Then the angle O& is determined uniquely from cosOI
and sinO& of

p, cos8, =y(p;cos8;+PE; ),
p&sinO& =p &sinO& .Pal P ) E i

= [Vi+(p t
)'l'" (3.4)

A check is

since 0~8;&rr In Eq. . (3.3) the magnitude of the m,
momentum in the ~2 rest frame is, of course, (3.6a)

(3.6b)

This then yields O& since E, =y(E, +Ppfcos8;) . (3.7)

p, sinO; =p, sinO

Throughout this paper the w superscripts denote the
respective r rest frame variables and the variables free of
superscripts are for the Z rest frame. The angles P, P„P2 2Pp 2cosO2 =2PoE2 —m —

p2

is the analog of Eq. (3.2). In summary,

—M(m +@2)+4E2m

(m —p~)t/M —4m

(3.8)

By the obvious symmetrical relabeling, the analogous
formulas are obtained for the +2+.. Again, cosO2 is known
from E2 since

0~ O2~ ~, (3.9a)

e beam

where Ez is the +2+ energy in the Z rest frame and
p2=the mz+ mass. Also,

cos82= [2(E2/E2 '"
) —1][ I+0((m /M)2) ], (3.9b)

e+ beam
and

e M(m +@2) M(m —@22) 4 2

2
4ypz

2 4~ 2 M

(3.9c)

FICx. 12. Figures 10 and 11 overlaid. The angle 0& between
the ~, and r, directions is equivalent to the ~, energy E, [see
Eq. (3.2)]. Similarly, the angle 82 and the rr2+ energy Ez are
equivalent variables [see Eq. (3.8)]. Since the r& and r,+ mo-
menta are back to back, the angles 0& and 02 determine the 'T~

momentum direction, up to a twofold ambiguity, as shown in
Fig. 13.

The angle O2 is determined uniquely from cosOz and sinO2
of

pzcos8z= y(p2cos82+PEz ),
p2sinO2=p 2sinO2,

(3.10a)

(3.10b)

where p2 is the magnitude of the ~2+ momentum in the
Z rest frame. Its magnitude in the ~2+ rest frame is
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Pl Pp
A ~c s on Ulllk +I "+~c

s" 0)

Er [ 2+(+v )2]1/2 (3.11)

A check is

E2 =y(Ez +Pp zcosOz) . (3.12)

(I)A + 4B = Z'll

A. A- or B-axis ambiguity in the r& momentum direction "radius" (~ - 02)

(3.13a)

where Pz and Pz are defined in Fig. 13. Thus

cosP„=cosP~ =cosP, (3.13b)

but

Up to an ambiguity as to whether to use an 3 or a B
axis, the direction of the ~& momentum can be deter-
mined ' using some of the formulas listed above, as we
now explain.

For a given I vr, vr2+ I event corresponding to the
production-decay sequence of Eq. (3.1), we know the an-
gle 8& from Eqs. (3.6a) and (3.6b), and similarly the angle
82 from Eqs. (3.10a) and (3.10b). So, as illustrated in Fig.
13, on the unit sphere a circle of angle 0, about the ~,
momentum direction can be inscribed. Then another cir-
cle of angle (vr 82) abo—ut the ~2+ momentum direction
can also be inscribed. In general, these circles will inter-
sect at two points. One of these points is the 3 axis and
the other is the B axis. The ~, momentum direction lies
along one of these two axes. (Experimentally, the correct
axis would be known if either of the missing v and v
momentum in the r decays were measured. )

Note that

0
rest frame

FIG. 13. Illustration on the unit sphere of the twofold 3- or
8-axis ambiguity as to the ~, momentum direction in the Z
rest frame. Note that P„+Ps =360', and so cosP„=costs, but
sing„= —sing~. This P angle is, of course, simply the angle be-
tween the r, and &2 decay planes. Therefore, cosP is measur-
able [see Eq. (3.15)], but the sign of sing is not, because of the
missing v and v momenta.

momentum direction, therefore, is simply that cosP is
measurable for each Imt, F2+ I event, but that sing is not
because of the missing v and v momenta.

In the analysis of elementary-particle reactions, one is
accustomed to having to investigate out the kinematic
variables of the missing neutral particles, consistent with
the other kinematic constraints. Here, for the
production-decay sequence of Eq. (3.1), instead of an in-
tegration, there is a simple summation over the two possi-
ble signs of sing.

Finally, since Ot and Oz are known, the cosP can be ex-
pressed explicitly in terms of the cosine of the opening
angle g between the vr& and m2 momenta in the Z rest
frame. (See again Fig. 2.) The quantity cosP can be ob-
tained from

sing z = —sing~ . (3.13c) cost)'r = —cosO, cosOz+ sinO, sin82cosg . (3.14)

This P angle is, of course, the very important' ' ' angle
between the ~& and ~2+ decay planes.

The upshot of this twofold ambiguity in the

Equivalently, since 0& and Oz are known from the sum-
mary equations (3.5) and (3.9), we find that cosP is given
explicitly by

4 2 (ME, —m —p, )(ME~ —m —p~)
sinOfsinOzcosp=

2 2 2 z p&p2cosg+
(m —p, )(m —p~) M —4m

(3.15)

B. Summary and illustration

In thinking about the sequential decay

zo
772 v

7Tj v

(3.16)

and the interrelation among the three rest frames, Fig. 14
is often useful. See its caption.

C. P- bypass procedure for event labeling

Once recognized and understood, it is clear that this
and B-axis ambiguity does not complicate event

analysis. When the v and v momenta are not measured
by the detector, we can simply choose sing to be positive.
That is, we choose P to lie in the range O~g~vr. So,
from E, , E2, and g for each event, we can easily use Eqs.
(3.14) with (3.5) and (3.9) to derive the P label for that
event. We call this the "P-bypass" convention or pro-
cedure. With this bypass, we have labeled each event in

P and can consider it in either the Z rest frame, the ~&
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rest frame ~+ rest frame X2

X)

Z2

62
Y2

(b)(a)

FIG. 14. Summary illustration showing the three angles 0;, Hz, and p describing the sequential decay Z ~r, r+ with r, ~~, v
and ~2+~F2+v. In (a) the missing v momentum, not shown, is back to back with the m& . In (b) the missing v momentum, also not
shown, is back to back with the m2 . From (a) a boost along the negative z& axis transforms the kinematics from the ~& rest frame to
the Z rest frame and, if boosted further, to the ~&+ rest frame shown in (b).

rest frame, and/or the &2+ rest frame. (But this is only for
convenience in event labeling; see next paragraph. )

If one wanted to experimentally search ' for physical
v;and v;induced reactions, one could use cosP's value.
Then one would first choose 0~ / ~ vr and look in the v,
direction [see Fig. 14(a)] and v, direction [see Fig. 14(b)]
for possible candidate v, (or v,) reactions in the detector.
Then one must also choose vr($~2vr and perform the
same search. Of course, the final-state kinematics here
are not special to e e+ collisions at the Z and so the v
and V, directions are also known, up to this twofold am-
biguity for z ~+ production at other center-of-mass ener-
gies. However, even at the proposed ~/charm factory,
the v and v, fiuxes are much too meager and nothing
would be found by such a search unless the v, or v, were
to have nonweak interactions with the target. Con-
straints from ~ partial decay widths and the Z invisible
width make this option very unlikely for v, or v incident
on ordinary nuclei.

IV. DERIVATION OF THE BEAM-REFERENCED
7 SPIN-CORRELATION FUNCTION AT THE Z

In this section we derive the BRSC function for the
production-decay sequence

~Z ~&1 &2 ~(771 v)(772 v) (4.1)

It will be generalized to other ~ two-body decay modes in
Sec. VI. Then the chirality parameter gi, for describing
the chirality of the ~ —+h v coupling will also be in-
cluded, as will the hadron helicity parameter Sh. In the
present section we assume the standard V-A coupling,
i.e., g'=1, for r ~m. v decay.

A. 7 ~ i2 production density matrix at the Z

The matrix element for the decay of the Z into w& ~2+

is defined by

(e„e„X„X,~
JM &

=D'*,(e„e„—C,)T(&„&,), (4.2)

where X„A,2 denote, respectively, the helicities of the 'T,

and ~2+ and A, =A, , —A,2. Since Z has spin zero, J=1.
The angle s is defined in the Z rest frame in the usual
way; see Fig. 14.

The matrix appearing in Eq. (4.2) is related to the d
functions by

D J (y g y) —i(k —M)pd J (g)

The phase convention of Rose " is to be used for the d

functions, for this is part of the Jacob-Wick phase con-
vention. '

When Z ~7, 72 is invariant under CP, since w& and
~2+ are a particle-antiparticle pair,

T(A, 1~F2) RCPT( A'2~ ~1) ~ (4.3)

where @zan is the CP quantum number of the Z . Similar-
ly, if this decay were P invariant,

T(A, „A2)=qp( —
) T( —A.„—k~),

where gz is the parity quantum number of the Z system
(g~ = —1 in the SM). If this decay were C invariant,

T(A, „A2)=C„(—) T(kz, i, , ), (4.5)

where C„ is the charge-conjugation eigenvalve of the Z
(C„=—1 in the SM).

Likewise, the matrix element for the formation of the
Z in the center-of-mass frame from an e e+ collision is
defined by

& Jiv~e„C „s,s.
I & =D', (e„e„—C, )T(s„s,),

(4.6)

(4.4)

where equi and 4z specify the e (beam) momentum.
(Simply relabel r —+ e in Fig. 14 with e„@,~e~, N~.
The z axis, of course, is still the Z polarization axis). In
Eq. (4.6) s, and sz denote, respectively, the helicities of
e& and ez with s =s& —s2 and J=1.

If ~-electron universality and time-reversal invariance
hold, the amplitudes in Eqs. (4.2) and (4.6) are, of course,
related:

T(A, „A~)=T(A,„A2) . (4.7)

In terms of these two amplitudes T(k, i, A, 2) and
T(s„s2), the amplitude for e e+~r r+ scattering at
the Z is'

a. . .., = yD'*, (e„e„—c,)
M

T(A, „X2)T(s„s2)' ' a', (c„e,, —e, )
z

(4.8)

T (A.„A~)T(s „s2 ) D', (C&,e, —&0 ),
z

(4.9)
where Dz =sz —M +iMI z. The simpler expression of
Eq. (4.9) follows when the final r direction is chosen to
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~i v)=D~",'i*a(&i ~~
1 1

1'

(4.15a)

and

Pg 2'(r2 ~2 v) D2. ,
—1/2(W2&~2~ 02)22 27

42)
27

(4.15b)

z' rest frame

FICx. 15. Usual angles in the helicity formalism for describ-
ing the ~1 ~2+ distribution in the Z rest frame. The z axis is the
Z 's polarization axis.

coincide with the z axis of Z polarization (see Fig. 15),
so that

where the two irrelevant constants C and C' have been
omitted. '

Thus, associated with the production-decay sequence

e+~Z ~r, r+~(~, v)(~+v),

the general angular distribution is

I(e„e„e;,y„o;,y, )

pIod + +
1 2' 1 2

1 1

D~&(4„0,—@,) = e 'dMX(0) Xp, (r, ~, v)p, (r2+ rr2+v),
1 1 1 2

(4.16)

Note that, in Eq. (4.9),
i(s —A, )N~

D&, (Cz, ez, —Cz)=e d, (e&) .

(4.10)

(4.1 1) dx =1(e~,e„e;,y„e;,y2)

where the three density matrices are given, respectively,
by Eqs. (4.12), (4.15a), and (4.15b). With Eq. (4.16) there
is an associated differential counting rate

x —y IT(.„., )l'd,', (e, )d,',,(e, )
4

11 2

(4.12)

where k=k, —
A,2, A, '=A,

&

—A.z, and s =s, —sz.

B. Derivation of the BRSC function at the Z

In the standard model, the decay matrix element for
~& ~~& v decay is given simply by

(e;,y„o, ,'I,', X, ) =CD,'—",*„(y,e;, —y, ), (4.13)

where C is a constant, irrelevant to this derivation. The
angles are defined as usual in the helicity formalism;
again see Fig. 2. Similarly, for ~2 ~~2+ v,

(4.14)

The associated ~ decay density matrices are

Thus, for initially unpolarized particles in the e e+
collision, we find the 7, 72 production density matrix

T(A~ A )2T(kI A2);(2 2)q&
e

z

Xd(cose )d@ d(cos9;)dg, d(cos8')dP, (4.17)

where, for full phase space, the cosine of each polar angle
ranges from —1 to 1, and each azimuthl angle ranges
from 0 to 2n.

In the precision range of current interest at Z ener-
gies, some corrections due to finite e and ~ masses are
negligible or of higher order. First, the effect in Eq.
(4.16) from (m, /M)WO (i.e., from the nonzero electron
mass) in the r& r2 production density matrix is negligi-
ble.

Second, it is convenient to calculate separately the con-
tribution quadratic in T(+ —

) and/or T( —+ ). This
contribution survives in the I /M~O limit, where I=~
mass and M=Z mass, and so we call it the order-(1)
contribution. The contributions linear and quadratic in
T(++ ) and/or T( ——) vanish, respectively, as (m /M)
and ( m /M) in the standard model. The analogous
BRSC, which includes them, can be straightforwardly
calculated. We refer to them, respectively, as the
O(m/M) and O((m/M) ) contributions. Note that in
the present paper, except for not including these T(+ + )

and T (
——) contributions, we do not drop m /M or

p/m effects in the analytic formulas.
So, ovdering our calculation this way, we have

T(k„—A, , )T*(A,', , —A, ', )

z
I

xe' ' ' ' —IIT(+ —)I2d&, (e, )d,', , (e&)+IT( —+)I2d&, &(B&)d&, &(B&)],4
(4.18)
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where A, =2k, , and A, '=2k. ', . After using the two Kronecker 5's from Eq. (4.18), the angular distribution of Eq. (4.16) has
only four different terms quadratic in the Z ~r, r2+ amplitudes, T(+ —) and T( —+ ).

Each term can depend on

4'=4'i+4&

the angle between the two ~ decay planes, and on the angular difterence

@a—4i .

The angle P, can therefore be integrated out.
Explicitly, the four terms are as follows. For k& =k', =

—,',

t
T(+, —) cos (9&/2)cos (9z/2)[tT(+ —)t cos (6&/2)+ IT( —+)I'»n'(6~/2)] .

For X, =A, ', = —
—,'.

t
T( —,+ )t sin (9&/2)sin (92/2)[ T(+ —) sin (6&/2)+ T( —+ ) cos (6&/2)] .

For k, = —
A, ', = —,',

T(+, —)T*(—,+ )e ' e 'icos(9;/2)sin(9;/2)
—i2(4~ —

Pl )

X[—cos(9z/2)sin(92/2)][tT(+ —)t + tT( —+)t ]cos (6&/2)sin (6&/2) .

For A, , = —A, ', = —
—,',

T( —,+ )T*(+,—)e ' e'~sin(9&/2)cos(9&/2)

X [ —sin(9&/2)cos(9z/2)][t T(+ —)t +
t
T( —+)t ]cos (6&/2)sin (6&/2) .

(4.19a)

(4.19b)

(4.20a)

(4.20b)

(4.20c)

(4.20d)

I( ) =$P( )A(9;,9~), (4.21)

where

C. Structure of full I(. . . ) of Eq. (4.16)

From Eqs. (4.20a) —(4.20d), one can see that, in the hel-

icity formalism, the full production-decay distribution
has the form

This changes the variables from the original Q refer-
ence system shown in Fig. 16 with (xh, yh, zI, ) coordinates
to the barred reference system of Fig. 17 with (x, y, z)
coordinates. Note that z lies in the z direction of Fig. 2.

This means that we specify the initial e beam direc-
tion in terms of the final vr2 direction. So (see fig. 16) we
replace 6&, Nz by the polarangle 0, and an associated
azimuthal N variable. When N =0, the e beam lies in
the ~, ~, plane. The formulas for making this change of

( )=(6„C,—y„9;,9;,y) . (4.22)

We refer to the P( .
) as Z production coefficients at

the Z and the A(0;, 9z) as Z decay analyzer
coefficients. If the v and v momenta directions were mea-
sured, then all the angles in Eq. (4.22) would be measur-
able and one would only need to rewrite Eq. (4.21) in a
more convenient form for an application.

Instead, to obtain a measurable angular distribution,
we must recast the variables appearing in P( . ) in
terms of those defined earlier by Figs. 2 and 3. The final
variables are 9, P„E&,E2 and cosP. We do this in three
steps: The first two steps are coordinate rotations in the
Z rest frame, and the third step is the necessary summa-
tion over +tsinPt.

e beam

D. Completion of the calculation

Step 1. We rotate by 0& so that the new z axis, z is
along ~, .

Z' rest frame

FIG. 16. Angles, needed in the derivation, to describe the e
and ~& distribution in the Z rest frame, with ~& moving in the
positive z direction.
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e- gaea~

0
2', rest frame

'2 rest frame

FIG. 17. Barred reference system has ~& along the positive z
axis with the 1, in the negative x half-plane.

FIG. 19. ~2+ in the barred reference system. The angles 62
and 4, are shown. (The cos@2 is Ineasurable, but the sign of
sin+2 is not because of the missing v and v momenta. )

variables are

COSO =cosO)cosB, +sinO, sinBz cos(rI&s —rt), )

sinO, cos&„=—sinO&cosO~

+cosO&sinB& cos(4s —P, ),

(4.23a)

(4.23b)
cos82 =cosO, cosO2 —sinO, sinO2cosg,

sin62=(l —cos 82)'

(4.26a)

(4.26b)

momentum is shown by itself. By "step 1"we specify the
wz+ in the barred reference system shown in Fig. 19. The
~2+ is at angles 62 and N2. These auxiliary variables are
given by

sinO, sin@ =»nBg»n(C's —P)) .

Since this is simply a coordinate rotation,

d(cosO, )dd& =d (cosBs )d(4s —P, ) .

(4.23c) and

(4.24)

sin62cos4&2 = sinO)cosO, +cosO, sinO2cosg,

sinBzsin@z = sinO2sing .

(4.27a)

(4.27b)

So the Jacobian is 1, and cos O, and N have the usual
range for spherical coordinates. Note also that

cosO~ =cosOIcosO, —sinO&sinO, cos+ (4.25)

The second rotation will make use of the direction of
the ~z momentum. It was displayed in Fig. 3 in the orig-
inal h reference system. See Fig. 18 where the

Note from Eq. (4.27b) that the sign ambiguity in sing in-
duces a corresponding sign ambiguity in sin@2.

These auxiliary variables cosNz and sin+2 will appear
in the various BRSC functions later on in this paper in
order to shorten those expressions.

Step 2: We rotate by —@z about z=z so that ~2+ is in
the positive x plane.

he

rest frame

est frame

FIG. 18. ~2+ in the original h reference system.

FIG. 20. Summary illustration on the unit sphere showing
the azimuthal angles P, and P, as well as the polar angle 0, .
Note that cosP=cosP„=cosP~. See Fig. 13 and its caption for
how the radii of the two circles can be obtained.
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This changes the variables from the barred reference
system of Fig. 17 to the desired ~& reference system of
Fig. 2 with (x, y, z) coordinates. By this rotation,

I(O„Q„E„E~,i')=g P„A„(E„E~), (4.29)

p, =iIi +@2 (4.28)
where r =0, 1,~, ~'. The Z decay analyzer coefficients
are

The Jacobian is 1, and P, has the full 2~ range,—vr~P, ~sr.
In Fig. 20 the important angles P, and P are shown,

along with O, on the unit sphere.
Step 3:The sum over + sing~ is performed.
This summation discards those terms linear in sing or

in sinN~.

E. Result

The result then is the full beam-referenced spin-
correlation function

Ao=(1 —5)(1+cosH;cos02)+cr(cosO;+ cosOz),

A i =(1—5)(cosO;+cosOz)+a(1+cosO;cosOz),
(4.30)

A, = —~ sinO&sinOz,

M ' = —a' sinOIsinO2,

where the Z decay intensity parameters (5,a, ir, a') have
been defined in Sec. II. The Z production coefficients
are

Po=2+2cos H, cos 0, +sin O, sin 0, —2cosg, sin20, sinO, cosO, cos&&z+cos2$, sin O, sin O, cos2@2,

T.
P, =4 (cosH, cosO, —cosg, sinO, sinO, cos@2),

S,

P,= sin20icosg(3 cos 0, —1)+2cosg, sin20, sinH&(sin&2sing+cosOicos@2cosg)

+cos2g, sin 0, [2 cosH&sin2@2sing+ ( 1+cos Hi )cos2@2cosg],

P„=2sing, sin20, sinHi(cos@2cosg+cosOisiniIi2sing)+sin2$, sin 0, [2cosOicos2@2cosg+(1+cos Oi)sin2@2sing] .

(4.31)

The total number of events is then

(No. of events)=constX f dP I dP, f d(cosH, )f d(cosOi) f '
d(cosH;)i(H„y„E„E„y) .

The result is quadratic in the e e ~Z formation amplitudes T(sis2), since the parameters S, and T, are

S, =
I
T( —+ ) I'+ I

T(+ —) I' (1+
I r, I')I',

T, = /T(+ —)/' —
f
T( —+)/' —(r, +r,*)M'.

(4.32)

(4.33)

These S, and T, are simply e e ~Z formation intensity parameters. Since there is a spin-correlation effect in the
final state, Eq. (4.29) does not factor into a production times a decay part. Instead, I( .

) consists of the sum of fac-
toring terms.

F. I(H„Ei,E2, $) beam-referenced spin-correlation function

If the azimuthal angle of the e beam, the angle P„ is integrated over, from Eq. (4.29), we obtain

I(O„Ei,E2, i')= (2+2cos O, cos 0, +sin O, sin 0, )[(l—5)(1+cosH;cosOz)+a(cosO;+cosz)]

T.+4 cosHicosO, [(1—5)(cosOi+cosOz)+a(1+cosO&cosHz)] —irsin Hi(3cos 0, —1)sinOisinO~cosg .
e

(4.34)

However, there is a more direct route to obtain Eq. (4.34). After step 1, we simply integrate Eq. (4.20) over the az-
imuthal angle iIi and sum over +~sing~.

In Appendix B we discuss how from Eq. (4.34) one can obtain other asymmetry functions and correlation functions
for e e collisions producing ~ ~+ at the Z or at a more massive Z .
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V. AZIMUTHAL CORRELATION FUNCTION I(P„P)

In this section, from Eq. (4.29), we obtain the azimuthal correlation function I(P„P).
The 0, variable is easily integrated out to give

I ((b„P)=L (P„P)+ir'K'(P„P),

where

(5.1)

1 1 1 1

L (P„P)= —", f d (cosOi) f d (cos02)Ao+ 4cos2$, f d (cos0&)f d(cos02)sin Oicos2+zAO

2~T 1

cosP, f d (cos0;)f d (cosOz)sinO, cos@~,—1 —1e

+ 43i~cos2$, d f (cosOi) f d(cos02)[2cosOisin24&2sing+(1+cos Oi)cos2&zcosg]A„,—1 —1

(5.2a)

1 IK'(P„P)=
—,sin2$, d(cosOi) d(cos02)[2cos0&cos2&2cosg+(1+cos Oi)sin2C'&sing]A,—1 —1

(5.2b)

The associated ~' analyzing-power function is

K '( (t'„((' )8 (p„p)—: (5.3)

The decay analyzer coefficients were listed before in Eq. (4.30) except that now the barred ones have their intensity pa-
rameters removed: i.e.,

A =A, = —sinO&sino& (5.4)

Similarly, the (1 —5) and a intensity parameters can be easily isolated in Eq. (5.2a), and also in Eq. (4.29), by rearrang-
ing the A 0 and A

&
terms.

The folded one-variable distributions I~(P) are obtained by integrating Eq. (5.1) over the P, variable:

I) (P) =L (P)+~'K'(P) = f dP, I(P„P), (5.5)

and

I((P)=L (P) ~'K'(P)= f— dP, I(P„P), (5.6)

where

with

3 e 1

L (P)= 1 —5 — f d (cos0;)f d (cos02)A, sinO, cos@z,
16 S,

A, = ( 1 —5)(cos0;+cosOz) +a( 1+cos0;cos02), (5.7)

1 7 2K'(p)= f d(cosOi) f d(cosOz)[2cosOicos2@2cosp+(1+cos Oi)sin2@2sinp]A, , ,8~ —1
(5.8)

with A, given in Eq. (5.4). With I(P) the associated i~'

analyzing-power function is

K'(P )R (P)= (5.9)

The auxiliary variable N2 which appears in these equa-
tions for I(P„P) and for I(P) is defined by Eqs. (4.26)
and (4.27).

VI. GENERALIZATION TO INCI, UDK
THE r DECAY CHIRALITY PARAMETER g

AND TO OTHER w DECAY MODES

By a simple gS-substitution rule, one can easily gen-
eralize any of the above I ( .

) functions to those for the
production-decay sequence

e e+~Z ~'ri 72 ~(hi v)(h2+v) .
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For ~~h v the hadrons considered are h =~, K, p, K',
and a &". The notation a &" denotes the decay

v assuming that it is dominated by the
spin-1 a, resonance, as expected. See the ARGUS Colla-
boration result of Ref. 12.

There are two parameters to be inserted in the equa-
tions for I( . ). The chirality parameter g was ex-
plained in Eq. (1.2) in the Introduction.

The other additional parameter eVz has the following
values when ~ ~h v:

1 for h =~,K,
g' = ~ m 2mh2 2

for h =p, K*,ai .
m +2mh

(6.1)

This & parameter we call the "hadron helicity parame-
ter" since it characterizes the effective hadron helicity of
the ~ ~h v coupling in the pure V —A limit. That is,
for gh

= 1, when Sz = 1, only helicity 0 hadrons couple in
~h v, and if (unphysically) Sz = —1, only helicity

—1 hadrons would be coupled. When 4& =0, which is al-
most true for the a„ there is an equal probability that a
helicity 0 and —1 hadron is coupled. Numerically,

4 =0.457,

4 .=0.333,

4, = —0.011 .

When respect to using spin-correlation effects via a
BRSC function in the analysis of event distributions, it is
the unequal average amounts of helicity 0 and —1 had-
rons in ~ —+ h v which are responsible for the spin-
correlation effect when the coupling is V —A. Therefore,
gh actually acts as a suppression factor.

cosO;~$, $,cosO;,

sinO; —+g, S,sinO;,

and likewise for cos Oz and sinOz .

(6.2)

It is to be understood that the angle variables without ~
superscripts are not to be replaced. So this only affects
the A coefficients and not the P coefficients.

The origin of this useful rule is the form of the two-
body ~ decay density matrices, plus the structure of the
derivation of these various spin-correlation functions:

For h with spin 0, e.g. , w& ~n& v, when we allow for a
neutrino with helicity», the helicity amplitude C(o,p2)
is defined by

A. gS-substitution rule

The BRSC function derived in Sec. IV for the spec-
trum [~, vr2+ ) can be very simply generalized to the spec-
trum (h, h 2+ j, where each r decays in a two-body mode
and h &&+ =n, IC,p, K*,a& by using a gS substitution rule:
Replace

0 p2l-,', xi & =D g', ,'*„(y„o;—yi )c(o,pz)

The associated density matrix then is

p, (r, vr, v)= g Dq *„D', lc(o,p2)l
1 1

p —+ 1/2P2 +

1+/ cosO;=
2

( lgL I'+ Igg I'&e
'

where

Ic(o, —,' &I' —Ic(o, ,')I'
Ic(o, —

—,'.)I'+ lc(o, —,') '

g sinO;

1 —
g cosO;

(6.3)

(6.4a)

(6.4b)

(6.Sa)

lgL I'+ lg~ I'

For r2+ ~vrz+v, in Eq. (6.4b) simply replace A, ,
—+kz, A, ', ~A, z, and change g —+ —

g .
For spin 1, e.g. , ~ ~p v, instead,

&ot 4i vi v2l —,
' ~i &=D~",,'„*(0i oi —4i»(vi v2»

where p=p& —p2, and so

(6.sb)

(6.6)

1
1+(' 4 cosO;

pg g
('ri pi v)= X IT(»»)l e g 8I I 2 4 sinO&

p i&M2

g 4 sinO;

1 —
g S cosO; (6.7)

where

I T(0, —
—,
' &I' —

I
T( —1, ——,

'
) I'+

I T(1,-') I' —IT(0, —') I'

I T(o, —
—,') I'+

I
T( —1, ——,

'
) I'+ I

T(1 -') I'+
I T(o -') I' (6.8)



1482 CHARLES A. NELSON 43

TABLE V. Comparison of ideal statistical errors for sin 0~ from measurements by the full beam-referenced ~ spin-correlation
function I(O„Q„E,,E2,$) with measurements by the energy-correlation function I(E, ,Ez) for the production-decay sequence
e e+ ~Z ~v

&
~2+ ~(h

&
v)(h 2+ v). Superscripts a denote the smallest ideal statistical errors which can be obtained from a single de-

cay mode. 10 Z events have been assumed. For the reader's convenience, the equivalent error to o.(sin 0~) is listed for
ALz ———eH—-2au/(a +U ), where a, U describe Z —+w ~+ at the tree level. ALR is the initial-state longitudinal-polarization asym-
metry in muon-pair production by a longitudinally polarized e beam in e e+ annihilation.

Sequential
decay mode

Number
of events

o.(sin 0~)
I(O„J„E„E2,$) I(Ei,E2)

Comparison of ideal statistical errors
o«a = —~LR)

I(O„Q„E„E2,$) I(E& E2 )

(~,K) (m.,K)+
(-,'K)-p:
(-',K)-K*.
(-',K)-","
p p—~g+

—
g ch+

K*-'X*-
ch+

a&

4377
17 129

1066
5101

16757
2085
9980

65
621

0.199X
0.121 X
0.495 X
0.233 X
0.192X
0.595 X
0.310X
3.805 X
1.473 X

10
10 2R

10
10
10
10
10
10
10

0.261 X 10
0 159X 10
0.652 X 10-'
0.307 X 10-'
0.271 X 10
0.871 X 10
0.482 X 10
5.905 X 10
2.654 X 10

0.0156
0.009 48'
0.0389
0.0183
0.0150
0.0467
0.0243
0.2986
0.1156

0.0205
0.0124'
0.0511
0.0241
0.0213
0.0684
0.0379
0.4634
0.2083

Sum of
above modes

'Smallest.

57 181 0.0798 X 10
factor worse = 1.34

0.107X 10 0.006 26 0.008 41
factor worse= 1.34

VII. IDEAL STATISTICAL ERRORS
FOR A 10 Z EVENT SAMPLE

We consider a 10 Z event sample and assume a
Z ~r r+ branching ratio of 3.31%%uo. For other choices
any of the ideal statistical errors listed here can be res-
caled. We take all ~ into one-charged-particle branching
ratios from the tabulation of Hayes and Perl except that
for ~ ~a;" v with a;" ~m m+m we use the "for-
mal average" listed by Gan and Perl in Ref. 26.

Using the full BRSC function of Eq. (4.29) for the
production-decay sequence

e e ~Z ~r& r&+~(hi v)(h2 V), (7.1)

we have calculated the associated "ideal statistical er-
rors" for a least-squares measurement of the three param-
eters sin Oii, the chirality parameter g, for r, —+h, v,
and the chirality parameter (2 for rz ~h2 v. In calcu-
lating the errors for sin 0~, we assume lepton universali-
ty with S, and T„and the Z decay intensity parameters

For r2+ ~p+v the analog to Eq. (6.7) has A i~Az, A'i~A&,
and/ ~—g.

From Eqs. (6.4) and (6.7), plus the structure of the
derivation in Sec. IX, the gS-substitution rule follows.

all depending on sin 0~. Our procedure is "ideal" in
that we do not, unlike in a Monte Carlo simulation, in-
clude the statistical error from a presumably Poisson dis-
tribution of data in each bin instead of the "theorist's
ideal distribution" according to Eq. (4.29). It is also ideal
in that we sum over modes to compute a formal average,
whereas the Particle Data Group's method is to first
combine the systematic and statistical errors in quadra-
ture.

The BRSC function of Eq. (4.29) is asymmetric in ap-
pearance with respect to the treatment of the final parti-
cles h

&
and h2+. This arises because 0&, and not 02, ap-

pears on the right-hand side of Eq. (4.29). However, we
find the same numerical o.(gs&) errors for Ih i h2+ ) and
for Ihz+h i ), and so we have combined the errors in
quadrature to obtain o.(gs, ) in the tabulation in the
tables. The same is true for o (sin Oiv).

The results for sin 0~ are listed in Table V. For
comparison purposes we have also tabulated the corre-
sponding ideal statistical error for measurement using the
simpler energy-correlation function I(E&,E2), which is
discussed in Ref. 10. Also, for comparison and as a
check, for three of the modes we list in Table VI the re-
sults for I(O„Ei,Ez, g) versus the full BRSC function
I(O„Q„E„E2,(b).

TABLE VI. Comparison of ideal statistical errors o.(sin 0~) as obtained from the full BRSC func-
tion, I(O„Q„E,, E2,$) with those from I(O„E,,E2,$).

Sequential
decay mode

Number
of events I(O„Q„E,,E„Q) I(O„E„E,, P)

Comparison of ideal statistical errors
o.(sin 0~ )

(m K) (m, E)+
(m K) p+

p p

4377
17 129
16757

0.199X 10
0.121 X 10
0.192X 10

0.202 X 10
0.121 X 10-'
0.192X 10
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TABLE VII. Comparison of ideal statistical errors for the
chirality parameter g' from measurements by the full BRSC
function with those from measurements by I(E,E& ). For the
standard V —2 coupling in w ~n v decay, g =1.

TABLE IX. Comparison of ideal statistical errors for the
chirality parameter g « from measurements by the full BRSC

K

function with those from measurements by l(E ~,Ez ). For the
sc *'

standard V —2 coupling in ~ ~K* v decay, g «=1.
Sequential
(m K) B+

mode

B particle
(w, K)+
pg$+

ch+
Q)

Sum of
above modes

I(0„$„E,Es, p)
o(g )

0.0122
0.0328
0.1650
0.1173

0.0114

l(E,E )
o.( ~ )

0.0157
0.0410
0.2086
0.1512

0.0146
factor worse = 1.28

Sequential
K* B+

mode

B particle
(~,K)+
px*+

ch+
Q)

Sum of
above modes

I(O„Q„E~«,Ee,g)
a(g , )

0.217
0.300
1.179
1.031

0.171

I(E~~,E~ )

tT(g «)

0.2646
0.3734
1.474
1.309

0.2108
factor worse=1. 23

VIII. CONCLUSIONS

(1) The beam-referenced spin-correlation functions for
production-decay sequence

e e+~Z ~~ ~+~(h, v)(h~ v), (8.1)

at the Z resonance, are easily derived using the helicity
formalism. For ~& ~~& v, for example, this reaction is

TABLE VIII. Comparison of ideal statistical errors for the
chirality parameter g from measurements by the full BRSC
function with those from measurements by I(E~,E&). For the
standard V —3 coupling in w ~p vdecay, g =l.

Sequential

p B+
mode

B particle
(m, K)+
p
~+

ch+

I(0„$„E,Es, g)
o.(g, )

0.0385
0.0416
0.2672
0.1870

I(E,E )

o(gp)

0.0472
0.0517
0.3344
0.2378

Sum of
above modes 0.0278 0.0343

factor worse = 1.23

Tables VII —IX, respectively, continue the comparison
between the full BRSC function and the energy-
correlation function, but in terms of the determination of
the hadronic w decay chirality parameters g, g, and

Before, ' from I(E&,E2), we found that by a one-

parameter At the ideal statistical percentage error in the
determination of the Michel parameter g is 2.9%; and of
the chirality parameters is for g, 1.3% (here the ~ and IC
modes have been combined); for g, 3.08%; and for g
18%. (For a',", since 4, -0.0, the associated g, chirali-

1

ty parameter cannot be accurately determined by this
technique. ) These o's involved a sum over modes.

analyzed relative to the final ~ momentum vector as
shown in Fig. 2.

(2) In spite of the missing v and v momenta, events for
production-decay sequences can be easily recorded in
terms of the 8, and P, angles, the h, energy E„the h 2+

energy E2, and the cosine of the angle P between the
~& ~h, v and ~2+~h2+V decay planes. These are all
measurable quantities in the Z rest frame. Since the h

&

energy E, is equivalent to the 0& angle of the h
&

in the ~&

rest frame, and analogously E2 is equivalent to the Oz an-
gle in the ~2+ rest frame, the power of the helicity ap-
proach can be easily exploited for simple spin-correlation
analyses of such production-decay sequences. For the re-
action in Eq. (8.1) and, more generally, for
e e+~~ ~, the directions for the missing v, and v,
are known up to a twofold kinematic ambiguity.

(3) Using the full BRSC function for 10 Z events, the
ideal statistical error in the determination of sin 0~ is
0.8X10 when the [h, , h2+ ) channels are summed
over where h =~,~,p, K*,a &". The best individual mode
is [(m.,K) p+j, for which o.(sin On, )=1.2X10 . This
is only a 25% reduction in the ideal statistical errors,
which were obtained in Ref. 3 from the simpler energy-
correlation function for hadronic ~ decays. However,
usage of the azimuthal correlations in, for instance,
I(P„P) may help in controlling systematic errors. There
is a similar, but smaller, reduction in the ideal statistical
errors for the chirality parameters g, g, and g «when
the full BRSC function is used instead of I (E„E2).

(4) Measurement of the Z ~r ~+ decay intensity pa-
rameters (5,a, a, a') will completely determine the funda-
mental helicity amplitudes T ( —+ ) and T(+ —).

(5) The most interesting result is that an azimuthal
correlation function I(P„P) can be simply used to test
for maximal P, maximal C violation in the Z ~w
coupling. The explicit P, and P distribution of I(P„P)
and of the associated a' analyzing power R (P„P) is given
in Figs. 4 and 8 and, analytically, in Eqs. (5.1)—(5.9).

This observable I($„$),can also be used for leptonic w

decay modes. For the (l, h2 } and {l, l2+ ) sequential
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decay channels, an odd P, component in I(P„P) would
indicate a violation of time-reversal invariance if a first-
order Hermitian Hamiltonian is assumed.

(6) For e e+ collisions in the r or J/g regions, the P,
behavior of I(P„P) can be used to test for a complex
phase in the y* —+~ w+ coupling. Assuming a first-order
Hermitian effective Hamiltonian, I(P„P) tests for a
violation of time-reversal invariance.

We hope that the material in this paper will help in the
evaluation of when to include, and when not to include,
the 8, and P„and P dependence in spin-correlation anal-
yses for production-decay sequences in unpolarized e e+
collisions.

APPENDIX A: CALCULATION OF STANDARD-MODEL
Z ~v. s HELICITY AMPLITUDES WITH

JACOB-WICK PHASE CONVENTION

Central to any spin-correlation eA'ect, such as that of a
BRSC function, is a careful and systematic treatment of
the quantum-mechanical phases of the basic amplitudes.
In part because of its convenience and great versatility,
we have assumed the Jacob-Wick phase convention' in
our derivations. In this appendix we explain how we cal-
culate the Z —+~ ~+ helicity amplitudes in the standard
model with this phase convention.

As before in Eq. (4.2), except that in this appendix we
will use lower-case Greek letters without subscripts for the

angles, the matrix element describing Z ~~, ~&+ is

ACKNOWLEDGMENTS (e,y, k, „k ~1M ) =D'*g(y, e, —y)T(k„A, ), (A 1)
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Jadach and Z. Was, and he thanks Stephen Goozovat for
help with the computer analysis and for checking some of
the material. He thanks LEP experimentalists for helpful
discussions, and thanks the theory groups at CERN and
Cornell for their hospitality and intellectual stimulation.
This work was completed at CERN and was partially
supported by the U.S. Department of Energy, Contract
No. DE-FG02-86ER40291.

where A.
&

denotes the helicity of the 'T~, and A, 2 that of the
rz+, X=A,

&

—
A, z. The angles 8 and P are, respectively, the

usual polar and azimuthal angles of the ~& momentum
(see Fig. 14). The z axis is the Z polarization axis for the
eigenstates 1 M ) of Eq. (Al).

We do not calculate Eq. (Al) directly in the standard
model, but instead we calculate the corresponding density
matrix for the Z eigenstate with M=0, i.e., J=1,
M =0). From Eq. (Al) these density matrix elements
are

p, , = T(A, „A~)T"(A,'„1,,')Do~ ($, 0, P)DO~ ($,6, ——P),
12~ 12

(A2)

by the usual helicity formalism.
Using the standard Dirac spinor formalism, we can

also calculate Eq. (A2) at the tree level in the standard
model. Specifically, we do this for the density matrix ele-
ments p++ ++, p++ +, and p + since, by CP in-
variance [Eq. (4.3)j, we know T(++)=T(——). We
use the following results: From Auvil and Brehm,

—e '&sinO/2

cosO/2
0
0

—e '~sinO/2

u(p, —)= (p'+m)1

E+m (A4a)

cosH/2

1 e '~sinO/2
u (p, + ) = -(gt +m )&E+m

0

(A3a)

and as usual

cosO/2
r

e '~sinO/2

E +m
—cos6/2

(A4b)

cosO/2

e '~sinO/2

cosO/2

& +m e '~sinO/2

(A3b)

u (p, +)u(p, +)=—,'(P+m)(1+@5&),

U (p, +)U(p, +)=
—,'(P —m)(1+@,g),

where the contravariant four-vectors are

p~=(E; p sinocosg, p sinOsing, p cos9),

(A5)

(A6)

(A7)

where the Lorentz boost is explicit in the first line, and
, —P P=—P/~PIm'm (A8)
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t te J=l, M=O), we knowFor the Z at rest in state
e"=(1,0).

i The 9 and P dependence agrees for thetheseRemarks: (i T e an
the results withnsit matrix elements between e r

th bove spinors and that from q. wea
f Rose. (ii) Since this calculation is o ynl tofixt e

ener spinors have been used only to calculate density
rix elements and on y or amp

'

d e ) and the second parti-particle is the fermion (r an~ e an
cle is the antifermion.

del b the above calculation we find
that at the tree level the amplitudes in Eq. are

s. (2.2). The formation amplitudes T(s&,s2listed in Eqs. . . e
time rever-Z then follow from Eqs. (2.2) by imefor e& ez ~

sal per Eq. (4.7).

APPENDIX Bo USAGE OF I ( 0~ ~ E ] )

TO OBTAIN SIMPLER CORRELATION
FUNCTIONS (REF. 29)

from the full BRSC functionIn Sec. IV, from t e u
we obtained„E„E2,P ) listed in Eq. (4.29), we o

~~). Both as a check and because it is in-I(B„E„E2,v~ . o
the vari-structive, it is use u of l to integrate out some of th

ables to obtain simpler correlation functions.
When, an

tion func-1 —5) and a give the energy-correlation
t ted in Ref(E E ), which was previously inves iga-: .--.-.d10. On the other hand, if E„E2, an

l(O) EXACT vs L. O.
m/M = 0.373 p/m = 0.324

L. O.

/
/

/

1 ~ ~ ~ ~ I I I I ~
[

~ ~

0 45
~ ~ 0 ~ ~ ~ ~ ~ II I I ~ ~ I ~ I

~ ~ I ~ ~ I ~ I ~

90 135 180

e
FIG. 22. Comparison of I(0, ) (exact) (solid curve) to I(0, )

(leading order as e
and is a heavy pion,values shown. Here nz is a heavy ~, an p is a

where M is a heavy one oh Z ( of which sets the mass scale).

4

t which can be done analytically using MACSYMA, oneout, w ic
b ins the forward-backward asymme y

' ' fetr distribution ofo tains e
s the initial e beamten mn momentum vector versus e

'

momentum.
~ ~ ~ ~ ~

in Fi . 21.The resulting I(8 ) distribution is displayed in F'g.
in -orderTo about the l%%uo- level, this is simply the leading-or er

contribution.
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M
I(H, )Lo= [ (a, +u, )(a, +v, )(1+cos H, )

4U, U

+8a, u, a,v,cosH, ] . (81)

Note that Eq. (Bl) is the same as the exact tree-level I(H)
for the unobserved process e e+~w w+, where 0 is the
angle between the Anal ~ and the initial e . Note also
that the chirality parameters gt, do not appear in Eq.
(81).

Analytically, Eq. (81) can be considered as arising
from an expansion of I(H„E, , E2, $) in the Z rest-frame
variable sin 0&, where

where

2
2TIo= —(1+cos H, )Ao+ cosH, A,

e

2T.I, = (1—3 cos H, )Ao — cosH, A,
e

+ ( 1 —3 cos H, )tc sin H
& sinH &co sf (85)

sin 0&=
p &sino,

2

+O(1/y )
y E;+Pp', cosH;

2
p &sinO;

[1+O((p, /E, ) )],
y E;+Pp', cosH;

(82)

with @=M/(2m)=25. 6 for the relativistic boost y be-
tween the Z rest frame and either of the ~+—rest frames.
The variables on the right-hand side of Eq. (82) are for
the ~& rest frame. In particular, we find

I(H„E&,E2,$)=Io( . )+sin H&I&(
. )+O(sin H&),

(83)

For larger values of sin H&, the expansion of Eq. (83) is
not sufhcient. Figure 22 shows how the asymmetry in 0,
for the final ~, versus the incident e is typically re-
duced. This reduction is sizable when m/M and p/m
have both increased to about —,'. Because of this reduc-
tion in signature, the leading-order approximation, Eq.
(81), to I(H, ) cannot be used indiscriminantly in con-
siderations about new physics in the case of a decay se-
quence in the final state. To help in quantifying this limi-
tation, a contour plot is presented in Fig. 23, which
shows the ratio of (I,„„,/I~„d;„„d„)at H, =90'. (More
details are presented in Ref. 29.)
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