
PHYSICAL REVIEW D VOLUME 43, NUMBER 4 15 FEBRUARY 1991

Relativistic quantum Hall effect
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Quantum electrodynamics in 2+1 dimensions (QED2+i) at finite density and temperature is
analyzed by reducing it to an effective (0+1)-dimensional theory. A realization of QEDzyi at
finite density in the context of (planar) gapless semiconductors is suggested.

In this Brief Report we are concerned with (2+1)-
dimensional quantum electrodynamics (QED2+i) at fi-
nite density, and with a physical realization of the
theory in the context of condensed-matter physics. Rel-
ativisticlike fermions arise naturally in condensed mat-
ter when the spectrum of nonrelativistic fermions is lin-
earized around a Fermi surface that is pointlike. The
analogy has found applications in spin chains and Peierls
dielectrics (for reviews, see Refs. 1 and 2, respectively)
in planar systems, s and in (3+1)-dimensional systems. 4 s

Here, a condensed-matter realization of relativistic pla-
nar electrons is pointed out, taking into account a finite
density.

The consequences of a large chemical p otential ill

QEDz+i have only recently been studied in the litera-
ture. The investigation was carried out by Lykken et
at. in their work on anyon superconductivity. Earlier
accounts dealt with a small chemical potential p only,
i.e. , p (( ~m~, with m the mass gap. As will become clear
in the following, this restriction amounts t, o taking into
account only the lowest Landau level.

One of the salient features of (2+1)-dimensional
QED is that the vacuum current induced by an exter-
nal gauge field is of abnormal parity. There are several
ways to calculate this current; see, for example, Refs.
12—14. Below, we develop an extremely simple method
to obtain the induced vacuum current. Our approach
is somewhat similar to the calculation of anomalies in
even-dimensional gauge theories with the Landau level
technique. In addition to giving a physically intu-
itive understanding of the vacuum result, it allows foi' a
straightforward generalization to finite density and tem-
perature. The scheme is also easily adapted to the non-
relativistic case, as we will demonstrate.

I et us start by considering vacuum QED2+i, with p =
T = 0. We choose the three-dimensional Dirac matrices
in such a way that the Dirac Hamiltonian H takes the
form

tromagnetic field A". We assume this vector potential to
be given by

A =A =0 A =Bz

rn if eB & 0,
—rn if eB ( 0 (4)

is relevant. The reason is that the contributions of the
higher Landau levels to the induced current cancel. The
effective (0+1)-dimensional theory then reads

I = Q'iOpg —AO1b*@,

where @ is an anticommuting field. The propagator S~
that follows from this Lagrangian is

Sp(k) = 1

ko —Ap + ikob
' (6)

with b an infinitesimal positive constant that is set to zero
at the end of the calculation. In terms of this propagator
the particle "density" J is given by

with 8 a constant magnetic field.
The key observation is the fact that the theory is in-

variant under (generalized) translations in the zy plane.
Indeed, although a translation by a distance a in the z
direction changes the vector potential A —+ A + Ba,
this change may be canceled by a gauge transforma-
tion A& —+ A& + B&A, with A = Bay—and, hence, the
theory is invariant under this combined syrrunetry. As a
result, the (2+1)-dimensional theory effectively reduces
to a (0+1)-dimensional theory, i.e. , quantum mechanics,
cf. Schwinger's proper-time method. Also, each energy
eigenvalue is infinitely degenerate. The number of de-
generate states per unit area is given by ~eB~/2z for each
level. In the vacuum case under consideration only the
lowest Landau level with energy eigenvalue

8=~-m
with a the Pauli matrices and

(2)

The theory will be minimal coupled to an external elec-

remembering that the eA'ective theory is 0+1 dimen-
sional, so that there is no integration over momenta as
there is in higher dimensions. The (2+1)-dimensional
particle density jo is obtained froiri (7) by taking into
account the degeneracy of the level: viz. ,
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.o . leB
Z 2'

dkp 1

2x kp —Ap+ ikpb
(8)

Using contour integration one easily obtains from (8)
with (4) the standard expressions for the particle den-
sity induced into the vacuum by an external magnetic
field:

eB m

4~ lml
(9)

Z,~ —ye"" I„Ap,
with p = e2sgn(m)/16m. This term is of topological ori-

gin and imparts mass to the gauge field A&.
The representation (8) is very convenient when consid-

ering a finite density of electrons. In the presence of a
(large) chemical potential p, also the higher Landau levels
with energy eigenvalues

A+„= ++2nleBl+ m2 (12)

(n = 1, 2, ...) may be occupied. In this case, Eq. (8)
generalizes to

. leBl2'= -~
27r

dko ) 1

27r ko —(A —p) + iko~

where the sum is over all eigenvalues. The shift kp ~
kp + p, is the usual rule to incorporate a finite density
of particles. (We assume p ) 0 throughout. ) Carrying
out the kp integration, we obtain

leBl ( 1 m
(

——sgn(eB) 0(lml —p)2 lml

1+—0(p —lml) + ) 0(p —A„) l,
2

(14)

thereby recovering the result of Lykken et al. :

eB rn
0(lml —v)4-1 I

+ leBl p~ —m~

2leBI
ll

+ —
I ~(v —I»l),2)

which they obtained by directly solving the correspond-

The induced density is of abnormal parity, since B is odd
under parity transformations (naively one would expect
j to be parity even). In fact, (9) rellects the fact that
a mass term in QEDq+i is not invariant under parity
transformations. By Lorentz covariance it follows that
in an arbitrary electromagnetic field, with field strength
I"I", the induced particle current reads

e m Apvp
8~ lml'

This result is thus shown to be due to the lowest Lan-
dau level only, as is the case with anomalies in even-
dimensional gauge theories. 4 The corresponding term in
the eAective Euler-Heisenberg Lagrangian is the Chern-
Simons term first introduced by Deser et al. :

ing Green's-function equation. In (15) 0 stands for the
Haeviside unit step function, and [z] denotes the largest
integer less than z. The latter function rellects the pres-
ence of (relativistic) Landau levels. When the argument

(p —m )/2leBl of this function is an integer, the value of
the function is ambiguous. In the limit p ~ 0 (15) yields
the density (9) of abnormal parity. The terms in (15)
that are relevant for large chemical potential (p & lml)
are of normal parity; i.e. , they are parity even. These
terms are, consequently, not related to the fact that a
mass term in QED2+i violates parity. Indeed, they sur-
vive the limit rn ~ 0 as opposed to the anomalous term
in (15) which vanishes in this limit. (The absence of the
sign anomaly in the massless limit when p g 0 was first
noted by Niemi. )

If, in addition to a magnetic field, there is also a uni-
form static electric field E present, we find, for the in-
duced current,

eE rn
0(lml —~)4~ lml

eE( p' —m2 1
+sgn(eB) l + — 0(p —lml),

2ir ( 2 eB 2

where, without loss of generality, the electric field is cho-
sen in the z direction: Ao = Ez. Equ—ation (16) is
obtained by simply multiplying the density (15) with the
drift velocity E/B. The terms in (16) that survive the
limit rn ~ 0 are, again, parity normal. These terms,
being proportional to sgn(eB), constitute the relativis-
tic Hall current. The eA'ective Lagrangian related to this
current is given by (11) with2o

~(l»l —s )

e' / y,
' —m' I )sgn(eB) l

+ —
I 0(p, —l»l), (17)2)

provided (p2 —m )/2leBl is not an integer. o The first
term in (17) corresponds to a genuine Chem-Simons
term that breaks parity. The second term, on the other
hand, having a factor sgn(eB), is invariant under parity
transformations. This term is dubbed a "pseudo-Chern-
Simons" term by Abouelsaood. 2i Despite its invariance,
the term does contribute to the mass of the gauge field.

For comparison, we next consider the nonrelativistic
case. In this instance, the energy eigenvalues of the Lan-
dau levels are given by

A„= (n+ si)A (»)
with n = 0, 1, 2, . . . , and 0 the cyclotron frequency

(»)
where now m ) 0. Contrary to the relativistic case, we

have here, in the absence of antiparticles, only positive-
energy eigenvalues. As usual in nonrelativistic many-
body theory one has to include a convergence factor
exp(ikob) in the propagator. In this way, we obtain,
for the induced density at p & 0,



1430 BRIEF REPORTS 43

$0 — 2
2~

eikP6dkp ).
27r k() —(A„—p) + ikph j = g(eB) tanh —(p —m))

eB
4z 2

leBl ) . , leBl pm 1

(2o)

—6(—eB) tanb —(p + m))2

+ ) tanh —(p —A ))4~ 2n=1

Because of the [ ] function here the filling factor v, which
is defined as

+tanh
~

—(p+ A„))
('p

(, 2 (25)

QQ

leBI/2~
' (21)

eE pm 1
~ =g( )2

Equations (20) and (22) should be compared with the
relativistic analogues (15) and (16). Since in nonrela-
tivistic planar electrodynamics parity is not violated by
massive electrons, there can be no currents of abnormal
parity. And indeed, (20) and (22) are parity normal.
The corresponding term in the effective Lagrangian has,
consequently, solely a pseudo-Chem-Simons piece.

So far we considered the systems at zero temperature.
I"inite temperature is easily incorporated in this scheme
by replacing the k0 integration with a summation over
Matsubara frequencies u = 2+mP

takes on integer values only. This was to be expected for
an ideal electron gas at zero temperature; given a value
of the chemical potential a Landau level below the Fermi
surface is filled, while a level above the Fermi surface is
empty. (i(Vhen the energy of the Fermi surface and that
of a Landau level coincide, the value of the [ ] function
is ambiguous. ) The current carried by the filled Landau
levels is obtained by multiplying the induced density (20)
with the drift velocity EjB, which is the same for both
relativistic and nonrelativistic electrons. In this way one
finds

eE t'p
0(eB) tanhl —(p —m) l4x

6( eB) tanh~ —(p—+ m—))g2

eE P+ega(eB) ) tanh —(p —A„))4~ 2n=1

+tanh
~

—(p + A„))
('p

(2
(26)

with A„given by (12).
In the nonrelativistic case, where there is an extra con-

vergence factor present in the propagator, we employ the
identity

P ' ) ,„ A
= f(A-) (27)

where f(z) is the Fermi-Dirac distribution function

It is easily checked that this expression reproduces the
zero-temperature result (15). Tlie first two terms at the
right-hand side of (25) pertain to the lowest Landau level,
which was considered earlier by Niemi and SemenoK.
Their result differs from (25) in that the step functions
0(+eB) are absent. For the corresponding induced cur-
rent we find the expression

g(kp) ~iP ') g(iu) ),
f(e) = (e~~ a~+1) (28)

With the eigenvalues given by (18), this leads to the re-
sults

where g is an arbitrary function, P = T is the inverse
temperature, and the sum is over all integers m. In the
relativistic case we obtain from (8) with (23), using the
identity

$0—

(29)

j„=sgn(e B) ) f((n + -')0),
=0

the induced density at finite temperature:

(24) where 0 is the cyclotron frequency (19). The last equa-
tion is the (nonrelativistic) Hall current at finite temper-
ature.
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We next turn to a discussion of a possible realiza-
tion of the relativistic quantum Hall effect in the con-
text of condensed-matter physics. More specifically, we
will consider two-dimensional gapless semiconductors, or
semime tais. These materials have isolated points in
which the valence and conduction bands intersect; i.e. ,

the Fermi surface consists of points. A small number of
electrons, typically 10 per atom, will move from the oc-
cupied valence band to the unoccupied conduction band,
leaving behind an equal number of holes in the valence
band.

The prime example of a planar semimetal is graphite.
To a first approximation, graphite may be thought of
as composed of independent layers of carbon atoms, the
separation between lattice planes along the t." axis being
2.8 times the nearest-neighbor distance within planes. 2

Each layer has a honeycomb lattice and there are two de-
generacy points per (two-dimensional) Brillouin zone.
As observed by Nielsen and Ninomiya, near such dia-
bolic points the electrons have a linear spectrum and are
described by a two-level Hamiltonian. Hence, sufFiciently
close to a degeneracy point the electrons are modeled by
relativistic massless fermions. (In Ref. 3 this has been
explicitly demonstrated for the case of graphite, starting
from a tight-binding description. ) The interaction with
an electromagnetic field is assumed to be obtained via
minimal coupling. Since there are an equal number of
particles and holes, the eA'ective theory has particle-hole

symmetry which implies that the chemical potential is
zero.

The fact that there is an even number of degenera-
cies per Brillouin zone in graphite is a manifestation of
fermion doubling on a lattice. 4 More specifically, in
the context of two-dimensional gapless semiconductors,
the no-go theorem due to Nielsen and Ninomiya asserts
that diabolic points come in parity-invariant pairs. This
then implies the absence of (anomalous) electromagnetic
currents in these systems with particle-hole symmetry.

A nonzero electromagnetic current is easily obtained
by doping. This breaks the particle-hole symmetry and
leads to a finite chemical potential. The ensuing electro-
magnetic current is a (relativistic) Hall current

j = ) sgn(eB) ~

+-
2z. q 2eB (30)

using Eq. (16) with m = 0. In (30) the sum is over all

degeneracy points labeled by the index a. The equation
shows that the Hall current is nonzero no matter how
small the chemical potential. Hence, the presence of dia-
bolic points in doped planar semimetals would manifest
itself through a relativistic quantum Hall current.
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