Dynamical mass generation at finite temperature

T. F. Treml

1308 Wesmar Drive, Ottawa, Ontario, Canada K1H 7T2 (Received 14 June 1990)

The dynamical generation of fermion mass at finite temperature is studied in the Gross-Neveu model and quantum chromodynamics, in a generalization of the approach of Nambu and Jona-Lasinio. The dynamical quark mass behaves, in leading-logarithm approximation, in exactly the same way as the dynamical fermion mass in the Gross-Neveu model. Chiral symmetry is restored in quantum chromodynamics via a second-order phase transition at $T = 1.10\Lambda$.

I. INTRODUCTION

In this paper, we investigate the dynamical generation of fermion mass in the Gross-Neveu model¹ and in quantum chromodynamics² (QCD) at finite temperature T(Ref. 3). We are interested in these problems because of the possibility that spontaneously broken chiral symmetries may be restored in these models by thermal effects.^{4,5} The phase diagram of the asymptotically free^{1,6} Gross-Neveu model has been extensively studied,⁷⁻⁹ as has the question of chiral-symmetry restora-tion in QCD at finite temperature.¹⁰⁻¹² The aim of this paper is to show that a recent study¹³ of a generalization of the Nambu-Jona-Lasinio (NJL) technique¹⁴ of dynamical mass generation to the renormalizable theory of T=0 QCD can be extended to provide an elementary derivation of dynamical fermion mass when $T \neq 0$. The present work has been directly motivated by worthwhile initial attempts $^{15-17}$ to extend the analysis of Ref. 13, and we hope that it will lead to an improved understanding of the dynamics underlying the breaking of chiral symmetry in the Gross-Neveu model and QCD.

The Gross-Neveu model is an appropriate subject for our investigation because it is an adaptation, in two space-time dimensions, of the NJL model, which in turn was constructed in analogy with superconductivity. Part of our aim has recently been satisfied in the case of the Gross-Neveu model by an analysis⁹ that used the imaginary-time formalism of quantum field theory at finite temperature and density.³ In Sec. II, we will repeat part of the analysis of Ref. 9 using the alternative realtime formalism³ in order to gain confidence in our approach to dynamical mass generation^{13,14} in a simple setting that permits direct comparison of results obtained in the two formalisms. The Gross-Neveu model has not been studied in detail in the real-time formalism, and it is instructive to see the parallels between our real-time calculations and earlier work carried out in the imaginarytime formalism.^{7,9} However, our main reason for using the real-time formalism is its simplicity, especially in the more complicated study of the dynamical quark mass in $T \neq 0$ QCD. In Sec. III, we will find that the dynamical quark mass exhibits, in leading-logarithm approximation, exactly the same behavior at finite T as the fermion mass in the Gross-Neveu model,⁷⁻⁹ and that chiral symmetry is restored in QCD via a second-order phase transition at a phenomenologically reasonable critical temperature.^{11,18} In part because of its simplicity, our analysis usefully complements the qualitative variational calculations of Ref. 12, in which the QCD effective potential^{19,20} was studied in the imaginary-time formalism; we expect that the relationship between our work and a fully quantitative QCD effective potential calculation may be similar to that between the analysis of Ref. 9 and the complementary effective potential calculations for the Gross-Neveu model,^{7,8} and we are encouraged in this belief by the observed similarity between the phase diagrams of the two models.¹²

II. GROSS-NEVEU MODEL

We will first consider dynamical mass generation in the Gross-Neveu model at finite T in the infinite-N limit, where N is the number of fermion flavors.^{1,7-9} The Lagrangian of the Gross-Neveu model is given by¹

$$L = i \overline{\psi} \gamma^{\mu} \partial_{\mu} \psi - \frac{1}{2} \sigma^2 - g \overline{\psi} \psi \sigma , \qquad (1)$$

where σ is a nonpropagating auxiliary field. Following NJL, ^{13,14} we rewrite the Lagrangian (1) as

$$L = L_{\text{pert}} + L_{\text{ct}} , \qquad (2)$$

where

$$L_{\text{pert}} = L - m \,\overline{\psi} \psi, \quad L_{\text{ct}} = (\delta m) \overline{\psi} \psi$$
.

As an intermediate step, we will evaluate radiative corrections in perturbation theory to one-loop order using the Lagrangian L_{pert} in (2). Next, we will set $\delta m = m$ and impose the condition that the radiative correction to the dynamical mass m, Σ_m , must vanish. We will then obtain a "gap equation" for the dynamical mass m, which, because of the renormalizability of the theory, will be a renormalization-group (RG) invariant.^{13,21}

In the infinite-N limit, only the tadpole graph contributes to the fermion self-energy $\Sigma(p)$, and we have

$$\Sigma(p) = g^2 N \delta^{ab} \int \frac{d^2 k}{(2\pi)^2} \mathrm{Tr} S_{\beta}(k) , \qquad (3)$$

<u>43</u> 1424

©1991 The American Physical Society

where³

$$S_{\beta}(p) = \frac{i}{\not p - m + i\epsilon} - \frac{2\pi(\not p + m)}{e^{\beta E} + 1} \delta(p^2 - m^2) ,$$

 $E = |p_0|, \beta = T^{-1}$, and a, b are flavor indices.

The divergent self-energy (3) may be renormalized in the modified minimal subtraction (MS) scheme using a T=0 counterterm,^{21,22} and we obtain

$$\Sigma(p) = \frac{1}{\pi} g^2 N \delta^{ab} m \left[\ln(\mu/m) - 2I(\beta m) \right]$$

where μ is an arbitrary mass scale and

$$I(a) = \int_0^\infty \frac{(x^2+1)^{-1/2} dx}{\exp[a(x^2+1)^{1/2}]+1}$$

We write the renormalized inverse fermion propagator as

$$\delta^{ab}(\not p - m + \delta m) - \Sigma(p) = \delta^{ab} Z^{-1}(\not p - m + \Sigma_m) ,$$

where Z^{-1} is a finite wave-function renormalization, and note that $Z^{-1}=1$ at one-loop order. The nontrivial solution of the conditions $\delta m = m$, $\Sigma_m = 0$ is found to be^{1,7,9}

$$m(T) = m(0) \exp[-2I(\beta m)],$$

and we readily obtain⁵ the critical temperature⁷⁻⁹ $T_c = \pi^{-1} e^{\gamma} m(0) \approx 0.5669 m(0)$ at which the discrete chiral symmetry of the Gross-Neveu model is restored via a second-order phase transition, where γ is Euler's constant. We may expand the integrand of $I(\beta m)$ in a geometric series and use the integral representation for the modified Bessel function $K_0(x)$ (Ref. 23, p. 959) to obtain^{7,9}

$$m(T) = m(0) \exp\left[2\sum_{n=1}^{\infty} (-1)^n K_0(\beta m n)\right].$$
 (4)

The evaluation of a class of series that includes the series in (4) as a limiting case has recently been studied in Refs. 9 and 24 [see also Ref. 3, Appendix (A2)], and we may be confident that we fully understand the application of the approach of Ref. 13 in the Gross-Neveu model using the real-time formalism of $T \neq 0$ field theory.

III. QUANTUM CHROMODYNAMICS

We will now consider the dynamical generation of quark mass in QCD at $T \neq 0$. We will repeat the NJL approach^{13,14} with the fermionic part of the QCD Lagrangian, specified by

$$L_{\rm quark} = i \, \overline{\psi} \gamma^{\mu} D_{\mu} \psi \; ,$$

where $D_{\mu} = \partial_{\mu} + ig A_{\mu}$; the usual gauge-field (A_{μ}) , gauge-fixing, and ghost contributions are understood.² The one-loop quark self-energy is given by

$$-i\Sigma(p) = (ig)^2 C_f \int \frac{d^4k}{(2\pi)^4} \gamma_{\mu} S_{\beta}(p-k) \gamma_{\nu} D_{\beta}(k)_{\mu\nu}$$

where the gluon propagator is given by³

$$D_{\beta}(p)_{\mu\nu} = -\left[\frac{i}{p^2 + i\epsilon} + \frac{2\pi}{e^{\beta E} - 1}\delta(p^2)\right] \\ \times \left[g_{\mu\nu} - (1 - \alpha)\frac{p_{\mu}p_{\nu}}{p^2 + i\epsilon}\right]$$

 $E = |p_0|$, C_f is a group theory factor,² and α is the covariant Lorentz gauge parameter. We renormalize $\Sigma(p)$ in the MS scheme by adding a T = 0 counterterm. In the rest frame of the quark $(p_0 = m)$, we obtain^{3,15,25}

$$-i\Sigma(p) = im(\gamma_0 A + B)$$
,

where

$$\begin{aligned} &(\lambda C_f)^{-1} A = G(\alpha) - 8J(\beta m) - \frac{4}{3} \left[\frac{\pi}{\beta m} \right]^2, \\ &(\lambda C_f)^{-1} B = -G(\alpha) + 16I(\beta m) - 2[2 - 3\ln(m/\mu)], \\ &G(\alpha) = 2\alpha [1 - \ln(m/\mu)] + 4(1 - \alpha)I(\beta m), \\ &J(a) = \frac{1}{a^2} \int_0^\infty \frac{(x^2 + a^2)^{1/2} dx}{\exp[(x^2 + a^2)^{1/2}] + 1}, \end{aligned}$$

 $\lambda = g^2 / (16\pi^2)$, and μ is an arbitrary mass scale. We note for later convenience that we may write¹⁶ $J(a) \equiv I(a) + a^{-2}K(a)$, where K(a) satisfies the relation

$$\frac{dK(a)}{da^2} = -\frac{1}{2}I(a) \; .$$

The approach of Ref. 13 involves a subtle departure, in its intermediate steps, from the usual perturbative study of $T \neq 0$ mass corrections.²⁵ We write the one-loop renormalized inverse quark propagator as¹³

where $Z^{-1}=1+A$ is a temperature-dependent finite wave-function renormalization. We obtain

$$(1+A)\Sigma_m = m(A+B) + \delta m .$$
 (5)

In the usual perturbative study with a preexisting treelevel mass m, the δm term in (5) is absent, $-\Sigma_m = 0(\lambda)$ is interpreted as the mass shift, and we obtain the manifestly gauge-independent one-loop result²⁵

$$(1+A)\Sigma_m \approx \Sigma_m = m (A+B) . \tag{6}$$

In the approach of Ref. 13, we impose the condition $\Sigma_m = 0$ to obtain a "gap equation" for the dynamical mass *m*, but before we do this we must note that $\Sigma_m \neq 0(\lambda)$ since Σ_m now contains a term of $O(\lambda^0)$ [cf. (5)]. We must therefore be careful to impose the condition $\Sigma_m = 0$ in a self-consistent manner at the one-loop level. Setting $\delta m = m$, we may divide (5) by 1 + A to obtain

$$\Sigma_m \approx m (1-A)(1+A+B) \approx m (1+B)$$
. (7)

Alternatively, we may solve iteratively for Σ_m , obtaining

$$\Sigma_{m} = m (1 + A + B) - A [m (1 + A + B) - A (\cdots)];$$

this solution illustrates most clearly the need to exercise caution since $A\Sigma_m = Am + O(\lambda^2)$, and we again obtain

(7) as the expression for Σ_m that correctly enumerates all the terms of $O(\lambda^0)$ and $O(\lambda)$ that are needed for the selfconsistent solution of the one-loop condition $\Sigma_m = 0$ in the approach of Ref. 13. Unfortunately, we now find that Σ_m contains an explicit gauge dependence, but we can appeal to complementary studies of the Dyson-Schwinger equation (see, e.g., Ref. 26) to justify our expectation^{13,20} that the choice of Landau gauge ($\alpha = 0$) will specify the correct gauge-independent dynamical quark mass; in the following, we will evaluate the dynamical quark mass in leading-logarithm approximation.

We impose the condition $\Sigma_m = 0$ in the form^{2,13}

$$\Sigma_m = \Sigma_0 (\lambda / \lambda_0)^{h/b} = 0 , \qquad (8)$$

where Σ_m and λ satisfy the one-loop RG equations

$$\mu \frac{d\Sigma_m}{d\mu} = -h\lambda\Sigma_m$$
$$\mu \frac{\partial\lambda}{\partial\mu} = -b\lambda^2 ,$$

 $h = 6C_f$ and $b = 22 - \frac{4}{3}N_f$. We match (7) and (8) at the one-loop level¹³ to obtain the "gap equation"

$$\Sigma_m = m \left[1 + \frac{b}{h} B \right]^{h/b} = 0 ,$$

which has the nontrivial solution

$$m(T) = m(0) \exp[-2I(\beta m)]$$

where

$$m(0) = \mu \exp\left[\frac{2}{3} - \frac{1}{b\lambda}\right] \equiv e^{2/3}\Lambda$$

and Λ is the one-loop RG-invariant scale parameter of QCD in the MS scheme.^{27,28} We find that m(T) has exactly the same behavior as the $T \neq 0$ fermion mass in the Gross-Neveu model. In particular, we find a second-order chiral-symmetry-restoring phase transition at the phenomenologically acceptable^{11,18} critical temperature T_c given by

$$T_c = \frac{1}{\pi} \exp(\frac{2}{3} + \gamma) \Lambda \approx 1.10 \Lambda .$$

Finally, we note that^{5,23}

$$A \approx \lambda C_f \left[1 - \frac{2\pi^2}{\beta^2 m^2} \right]$$

for $\beta m \ll 1$, and that consequently the perturbative mass shift of Ref. 25 is infrared (IR) divergent in the limit $m \rightarrow 0$ [cf. (6); in massless scalar field theory, it is the two-loop contribution to the $T \neq 0$ mass shift that is IR divergent²⁹]. In our approach,¹³ we are fortunate to be able to avoid this IR divergence by using the renormalization group to shunt it into the wave-function renormalization $Z^{-1} = 1 + A$, where it does not worry us. This explains why we are able to obtain a second-order phase transition in $T \neq 0$ QCD. It would be interesting to try to understand this "harmless" IR divergence in terms of the IR divergences that appear to plague perturbative thermal QCD;³⁰ clearly it would also be desirable to extend our analysis to the two-loop (next-to-leading-logarithm) level.^{3,13} It is worth pointing out that the work of Ref. 13 treated $(\delta m)\overline{\psi}\psi$ as an $O(\lambda)$ counterterm; then, if we take $\delta m = O(\lambda)$ in (5), we obtain a gaugeindependent result that does not lead straightforwardly, if at all, to a phase transition.^{15,31} This might seem natural because at first sight it appears from (5) that $\delta m = O(A + B) = O(\lambda)$; however, the $\lambda \ln(m/\mu)$ term in B may be seen to be of $O(\lambda^0)$ once the functional dependence of m/μ on λ is self-consistently taken into account. Consequently, we have treated $(\delta m)\overline{\psi}\psi$ as a tree-level $O(\lambda^0)$ "spectator" term in the Lagrangian, thereby obtaining the self-consistent result (7). We also point out that our one-loop dynamical mass is not RG invariant unless $\alpha = 0$, but that we expect use of (8) to be reliable in this case because of the invariance of the Landau gauge under renormalization.^{22,32}

ACKNOWLEDGMENTS

The author would like to thank Dr. M. Qureshi for helpful discussions.

- ¹D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
- ²F. J. Ynduráin, *Quantum Chromodynamics* (Springer-Verlag, New York, 1983).
- ³N. P. Landsman and Ch. G. van Weert, Phys. Rep. 145, 141 (1987).
- ⁴D. A. Kirzhnits and A. D. Linde, Phys. Lett. **42B**, 471 (1972);
 S. Weinberg, Phys. Rev. D **9**, 3357 (1974).
- ⁵L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
- ⁶W. Wetzel, Phys. Lett. **153B**, 297 (1985); L. V. Avdeev and M. V. Chizhov, Phys. Lett. B **184**, 363 (1987); N. D. Tracas and N. D. Vlachos, *ibid.* **236**, 333 (1990).
- ⁷L. Jacobs, Phys. Rev. D **10**, 3956 (1974); B. J. Harrington and A. Yildiz, *ibid.* **11**, 779 (1975); R. F. Dashen, S. -K. Ma, and R. Rajaraman, *ibid.* **11**, 1499 (1975).
- ⁸U. Wolff, Phys. Lett. **157B**, 303 (1985).
- ⁹T. F. Treml, Phys. Rev. D 39, 679 (1989).

- ¹⁰T. Akiba, Phys. Rev. D 36, 1905 (1987).
- ¹¹R. Alkofer, P. A. Amundsen, and K. Langfeld, Z. Phys. C 42, 199 (1989).
- ¹²A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, and G. Pettini, Phys. Rev. D 41, 1610 (1990); Phys. Lett. B 240, 429 (1990).
- ¹³L. -N. Chang and N. -P. Chang, Phys. Rev. D 29, 312 (1984); Phys. Rev. Lett. 54, 2407 (1985).
- ¹⁴Y. Nambu and G. Jona-Lasinio, Phys. Rev. **122**, 345 (1961); **124**, 246 (1961).
- ¹⁵M. Qureshi and B. Wong, Phys. Rev. D 31, 1528 (1985).
- ¹⁶I. M. Qureshi, Ph.D. thesis, University of Toronto, 1985.
- ¹⁷H. J. Munczek, Z. Phys. C 32, 585 (1986).
- ¹⁸J. Cleymans, R. V. Gavai, and E. Suhonen, Phys. Rep. **130**, 217 (1986).
- ¹⁹J. M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D

10, 2428 (1974).

- ²⁰A. Barducci, R. Casalbuoni, S. De Curtis, D. Dominici, and R. Gatto, Phys. Rev. D 38, 238 (1988).
- ²¹J. Collins, *Renormalization* (Cambridge University Press, Cambridge, England, 1984).
- ²²P. Ramond, *Field Theory* (Benjamin/Cummings, Reading, MA, 1981).
- ²³I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series and Products* (Academic, New York, 1980).
- ²⁴A. Actor, Nucl. Phys. B265, 689 (1986); H. A. Weldon, *ibid*.
 B270, 79 (1986); E. Elizalde and A. Romeo, Phys. Rev. D 40, 436 (1989).
- ²⁵G. Peressutti and B. -S. Skagerstam, Phys. Lett. 110B, 406 (1982); K. Babu Joseph, *ibid*. 115B, 252 (1982).
- ²⁶D. Atkinson, P. W. Johnson, and K. Stam, Phys. Lett. B 201,

105 (1988).

- ²⁷D. W. Duke and R. G. Roberts, Phys. Rep. **120**, 275 (1985); S. G. Gorishny, A. L. Kataev, and S. A. Larin, Phys. Lett. B **212**, 238 (1988); V. L. Eletsky and M. I. Polikarpov, *ibid.* **215**, 139 (1988).
- ²⁸The value of m(T=0) given in Ref. 13 specifies a dynamical mass $m(p^2=0)$ rather than the mass $m(p^2=m^2)$ considered here.
- ²⁹T. Altherr, Phys. Lett. B **238**, 360 (1990).
- ³⁰A. D. Linde, Phys. Lett. **96B**, 289 (1980); D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys. **53**, 43 (1981).
- ³¹L. -N. Chang, N. -P. Chang, and K. -C. Chou, Phys. Rev. D 43, 596 (1991).
- ³²S. Narison, Phys. Rep. 84, 263 (1982).