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The dynamical generation of fermion mass at finite temperature is studied in the Gross-Neveu

model and quantum chromodynamics, in a generalization of the approach of Nambu and Jona-

Lasinio. The dynamical quark mass behaves, in leading-logarithm approximation, in exactly the

same way as the dynamical fermion mass in the Gross-Neveu model. Chiral symmetry is restored in

quantum chromodynamics via a second-order phase transition at T = 1.10A.

I. INTRODUCTION

In this paper, we investigate the dynamical generation
of fermion mass in the Gross-Neveu model' and in quan-
tum chromodynaniics (QCD) at finite temperature T
(Ref. 3). We are interested in these problems because of
the possibility that spontaneously broken chiral sym-
metries may be restored in these models by thermal
effects. ' The phase diagram of the asymptotically
free' Gross-Neveu model has been extensively stud-
ied, as has the question of chiral-symmetry restora-
tion in QCD at finite temperature. ' ' The aim of this
paper is to show that a recent study' of a generalization
of the Nambu —Jona-Lasinio (NJL) technique' of dynam-
ical mass generation to the renormalizable theory of
T=0 QCD can be extended to provide an elementary
derivation of dynamical fermion mass when TAO. The
present work has been directly motivated by worthwhile
initial attempts' ' to extend the analysis of Ref. 13, and
we hope that it will lead to an improved understanding of
the dynamics underlying the breaking of chiral symmetry
in the Gross-Neveu model and QCD.

The Gross-Neveu model is an appropriate subject for
our investigation because it is an adaptation, in two
space-time dimensions, of the NJL model, which in turn
was constructed in analogy with superconductivity. Part
of our aim has recently been satisfied in the case of the
Gross-Neveu model by an analysis that used the
imaginary-time formalism of quantum field theory at
finite temperature and density. In Sec. II, we will repeat
part of the analysis of Ref. 9 using the alternative real-
time formalism in order to gain confidence in our ap-
proach to dynamical mass generation' ' in a simple set-
ting that permits direct comparison of results obtained in
the two formalisms. The Gross-Neveu model has not
been studied in detail in the real-time formalism, and it is
instructive to see the parallels between our real-time cal-
culations and earlier work carried out in the imaginary-
time formalism. ' However, our main reason for using
the real-time formalism is its simplicity, especially in the
more complicated study of the dynamical quark mass in
TWO QCD. In Sec. III, we will find that the dynamical
quark mass exhibits, in leading-logarithm approximation,
exactly the same behavior at finite T as the fermion mass

in the Gross-Neveu model, and that chiral symmetry
is restored in QCD via a second-order phase transition at
a phenomenologically reasonable critical tempera-
ture. "' In part because of its simplicity, our analysis
usefully complements the qualitative variational calcula-
tions of Ref. 12, in which the QCD effective potential'
was studied in the imaginary-time formalism; we expect
that the relationship between our work and a fully quan-
titative QCD effective potential calculation may be simi-
lar to that between the analysis of Ref. 9 and the comple-
mentary effective potential calculations for the Gross-
Neveu model, ' and we are encouraged in this belief by
the observed similarity between the phase diagrams of the
two models. '

II. GROSS-NEVEU MODEL

We will first consider dynamical mass generation in the
Gross-Neveu model at finite T in the infinite-N limit,
where X is the number of fermion flavors. ' The La-
grangian of the Gross-Neveu model is given by'

where 0. is a nonpropagating auxiliary field. Following
N JL, ' ' we rewrite the Lagrangian (1) as

L =L „,+L„,
where

(2)

Lp„, =L ming, L„=(5—)Pm/ .

As an intermediate step, we will evaluate radiative
corrections in perturbation theory to one-loop order us-
ing the Lagrangian L „, in (2). Next, we will set 6m =m
and impose the condition that the radiative correction to
the dynamical mass m, X, must vanish. We will then
obtain a "gap equation" for the dynamical mass m,
which, because of the renormalizability of the theory, will
be a renormalization-group (RG) invariant. ' ' '

In the infinite-X limit, only the tadpole graph contrib-
utes to the fermion self-energy X(p), and we have

d kX(p)=g N5' f TrS (k),(2'�)
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where

2m(gf+m)
5 2

ei'~+1Sp(p) =
p' —m +ie

E = ~po~, P= T ', and a, b are fiavor indices.

The divergent self-energy (3) may be renormalized in
the modified minimal subtraction (MS) scheme using a
T =0 counterterm, ' and we obtain

X(p) = gN—5' m [ln(p/m) —2I(Pm)],1 2

Dg(p)„,=— + 5(p )2+ ~ PE

X g„—(1—a)
P +EE

E =
~po~, Cf is a group theory factor, 2 and a is the co-

variant Lorentz gauge parameter. We renormalize X(p)
in the MS scheme by adding a T =0 counterterm. In the
rest frame of the quark (po =m), we obtain ' '

—iX(p) =im (yoA +8),
where p is an arbitrary mass scale and

(x +1) ' dxI(a)=
exp[a(x +1)'~ ]+1

where

(kC ) A =G(a) —8J(Pm) ———1 4
f 3 ftm

2

as
We write the renormalized inverse fermion propagator

(A Cf ) '8 = —6 (a)+16I(Pm) —2[2—3 ln(m /p)],
5' (P —m +5m) —X(p) =5'"Z '(P m+X —),

where Z is a finite wave-function renormalization, and
note that Z '=1 at one-loop order. The nontrivial solu-
tion of the conditions 5m =I,X =0 is found to be' '

m (T)=m (0)exp[ 2I(Pm)], —

and we readily obtain the critical temperature
T, =m. 'elm (0)=0.5669m (0) at which the discrete
chiral symmetry of the Gross-Neveu model is restored
via a second-order phase transition, where y is Euler's
constant. We may expand the integrand of I(Pm) in a
geometric series and use the integral representation for
the modified Bessel function Ko(x) (Ref. 23, p. 959) to ob-
tain7'9

6 ( a ) =2a [ 1 —ln( m /p ) ]+4( 1 —a )I (Pm ),
1 (x+a )' dxJ(a)=

g2 o exp ~2+g2 1/2

X=g /(16m. ), and p is an arbitrary mass scale. We note
for later convenience that we may write'
J(a)=I(a)+a K(a), where K(a) satisfies the relation

( )

dQ 2

The approach of Ref. 13 involves a subtle departure, in
its intermediate steps, from the usual perturbative study
of TWO mass corrections. We write the one-loop re-
normalized inverse quark propagator as'

gf
—m +5m X(p)=—Z '(gf —m +X ),

m (T)=m (0)exp 2 g ( —1)"Ko(/3mn )
n=i

(4) where Z ' = 1+3 is a temperature-dependent finite
wave-function renormalization. We obtain

The evaluation of a class of series that includes the series
in (4) as a limiting case has recently been studied in Refs.
9 and 24 [see also Ref. 3, Appendix (A2)], and we may be
confident that we fully understand the application of the
approach of Ref. 13 in the Gross-Neveu model using the
real-time formalism of TAO field theory.

(1+A)X =m(A +8)+5m . (5)

In the usual perturbative study with a preexisting tree-
level mass m, the 5m term in (5) is absent, —X =0(A, ) is
interpreted as the mass shift, and we obtain the manifest-
ly gauge-independent one-loop result

(1+A)X =X =m (A +8) . (6)

III. QUANTUM CHROMODYNAMICS

We will now consider the dynamical generation of
quark mass in QCD at TAO. We will repeat the NJL ap-
proach' ' with the fermionic part of the QCD Lagrang-
ian, specified by

~quark i A'

where D„=r3„+igA„; the usual gauge-field (A„), gauge-
fixing, and ghost contributions are understood. The
one-loop quark self-energy is given by

—iX(p)=(ig) Cf I y„Sp(p —k)y~g(k)„, ,
d k
(2')

where the gluon propagator is given by

In the approach of Ref. 13, we impose the condition
X =0 to obtain a "gap equation" for the dynamical
mass m, but before we do this we must note that
X %0(A,) since X now contains a term of O(A, ) [cf. (5)].
We must therefore be careful to impose the condition
X =0 in a self-consistent manner at the one-loop level.
Setting 5m =m, we may divide (5) by 1+ A to obtain

X =m(1 —A)(1+A+8)=m(1+8) .

Alternatively, we may solve iteratively for X, obtaining

X =m(1+A +8)—A [m(1+A+8) —A( . )];
this solution illustrates most clearly the need to exercise
caution since AX = Am +O(A, ), and we again obtain
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(7) as the expression for X that correctly enumerates all
the terms of 0 (k ) and 0 (A, ) that are needed for the self-
consistent solution of the one-loop condition X =0 in
the approach of Ref. 13. Unfortunately, we now find that
X contains an explicit gauge dependence, but we can
appeal to complementary studies of the Dyson-Schwinger
equation (see, e.g., Ref. 26) to justify our expectation'
that the choice of Landau gauge (a=O) will specify the
correct gauge-independent dynamical quark mass; in the
following, we will evaluate the dynamical quark mass in
leading-logarithm approximation.

We impose the condition X =0 in the form '
r =r, (XyX,)"'b=o,

where X and A, satisfy the one-loop RG equations

dX
p

p = —bi.aA =
Bp

= —hA, X

(8)

h =6Cf and b =22 —4Nf. We match (7) and (8) at the
one-loop level' to obtain the "gap equation"

A/b

X =m 1+—Bb
m

h
=0,

which has the nontrivial solution

m ( T)=m (0)exp[ —2I (Pm )],
where

2 1
m (0)=p exp ———:e r A

3 bi,

and A is the one-loop RG-invariant scale parameter of
QCD in the MS scheme. ' We find that m (T) has ex-
actly the same behavior as the TWO fermion mass in the
Gross-Neveu model. In particular, we find a second-
order chiral-symmetry-restoring phase transition at the
phenomenologically acceptable" ' critical temperature
T, given by

T, =—exp( 2 +y )A = 1. 10A .1

Finally, we note that '

2~'
A =ACf 1—

pm

for pm ((1, and that consequently the perturbative mass
shift of Ref. 25 is infrared (IR) divergent in the limit
m —+0 rcf. (6); in massless scalar field theory, it is the
two-loop contribution to the TWO mass shift that is IR
divergent ]. In our approach, ' we are fortunate to be
able to avoid this IR divergence by using the renormal-
ization group to shunt it into the wave-function renor-
malization Z ' = 1+A, where it does not worry us. This
explains why we are able to obtain a second-order- phase
transition in TWO QCD. It would be interesting to try to
understand this "harmless" IR divergence in terms of the
IR divergences that appear to plague perturbative
thermal QCD; clearly it would also be desirable to ex-
tend our analysis to the two-loop (next-to-leading-
logarithm) level. ' It is worth pointing out that the
work of Ref. 13 treated (5m)gg as an 0 (A, ) counterterm;
then, if we take 6m =0(A, ) in (5), we obtain a gauge-
independent result that does not lead straightforwardly, if
at all, to a phase transition. ' ' ' This might seem natural
because at first sight it appears from (5) that
6m =0( 3 +B)=0(A,); however, the A, ln(mls) term in
8 may be seen to be of 0 (A, ) once the functional depen-
dence of m /p on k is self-consistently taken into account.
Consequently, we have treated (6m )$1t as a tree-level
0(A, ) "spectator" term in the Lagrangian, thereby ob-
taining the self-consistent result (7). We also point out
that our one-loop dynamical mass is not RG invariant
unless a =0, but that we expect use of (8) to be reliable in
this case because of the invariance of the Landau gauge
under renormalization.
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