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A method is described of solving Bethe-Salpeter equations for spin-2 particles using a standard

quasipotential approximation with a correction series. A three-dimensional, 16-component bound-

state equation is obtained whose form is diferent from the Breit equation. The equation has two
equivalent first-order forms which show each particle obeying a Dirac equation in the presence of
the other. The formalism also reconstitutes the four-dimensional bound-state vertex function from
the three-dimensional wave function. The method is tested on positronium and the hydrogen atom,
using a single-photon-exchange kernel in the Coulomb gauge. In the bound-state equation, in addi-

tion to the Coulomb potential and Breit interaction, the formalism gives a subtracted box potential
(1/2E)n /r where F. is the mass of the bound state. %'ith this term included, the energy levels (fine

structure and hyperfine structure) are correct to order a . The reconstituted bound-state vertex

function, when substituted in Feynman triangle diagrams, gives the lowest-order atomic dipole tran-

sition amplitudes correctly.

I. INTRODUCTION

In this paper we describe and test a formally exact
method of solving Bethe-Salpeter (BS) equations' by
mapping the equation from four-space down to three-
space, solving the resulting equation, and mapping the
solution back to four-space. The method is based on a
quasipotential approximation with a correction series.

In the quark model of mesons, it is still undecided what
is the best type of equation and interaction potential to
use. ' The primary application of the formalism defined
in this paper is intended to be the quark model. In the
present paper we aim only to derive the method and to
test it on two-body QED systems. For positronium and
the hydrogen atom, using a single-photon-exchange BS
kernel in the Coulomb gauge, we verify that the lowest-
order (ct ) fine structure (fs) and hyperfine structure (hfs),
as well as the lowest-order bound-state transition ampli-
tudes, come out correctly.

First we review brieAy some well-known three-
dimensional reductions of the BS equation.

(i) The earliest approach was that of Salpeter, applied
by him to hydrogen, and also used by Karplus and Klein
on positronium. This method separates the BS kernel
into an "instantaneous" Coloumb term, which causes the
binding, plus a remainder which is used in perturbation
theory.

(ii) A second way is the quasipotential approach, which
starts from the fact that the pair of bound particle propa-
gators has a sharp peak in the relative energy variable
(for bound states with small binding energy, the usual
case). This peak is approximated by a 5 function in rela-
tive energy, and perturbation theory uses the remainder
of this approximation. (a) The oldest work in which the 5
function is explicitly expressed seems to be that of Blank-
enbecler and Sugar; in that paper equal-mass interacting
particles were used and the coeKcient of the 6 function

contains a square-root kinematic function in the denomi-
nator. (b) A second, simpler type of approximation due
to the present author and to Todorov allowed unequal-
mass particles and contained no square-root factor in the
denominator. (c) A delta function in relative energy is
also used by Gross, ' but with the different objective of
putting one bound particle on its mass shell.

%'e also mention some ways of obtaining bound-state
equations using assumptions extraneous to the BS equa-
tion.

(iii) Rizov and Todorov, " treating unequal-mass parti-
cles, start from the Todorov approximation, but use it
only to set a constant of proportionality in the
identification of a first Born approximation with the
first-order interaction terms in an assumed form of the
Klein-Gordon equation [Ref. 11, Eq. (185) K].

(iv) Sazdjian' uses the constraints of quantized relativ-
istic Hamiltonian dynamics to obtain an independent
Dirac equation for each particle, with a common interac-
tion between them derived from compatibility conditions.
A combination of these equations gives a bound-state ei-
genvalue equation.

(v) Crater and van Alstine' also start from quantized
relativistic Hamiltonian dynamics with single-particle
constraints and compatibility requirements, but obtain
bound-state equations in a different form from Sazdjian's.

(vi) Finally, a common prescription to obtain lowest-
order fs and hfs splittings is simply to assume the interac-
tion potential to be the matrix element of the appropriate
lowest-order kernel between normalized free-particle spi-
nors (first Born approximation). ' Using single-photon
exchange and the relativistic kinetic-energy operator in
the Schrodinger equation, this method gives the QED fs
and hfs to order a correctly.

Category (ii) (b) above is most relevant to the present
paper. In this category we include the following work.
(1) Caswell and Lepage' used Todorov's approximation
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on positronium and muonium, choosing the numerator of
the fermion propagators to be the fermions' positive-
energy projection operators. (2) Bodwin, Yennie, and
Gregorio' use Todorov's approximation on the hydrogen
atom, allowing the 6 function in relative energy to deter-
mine the fermion propagators' numerators. However,
they simplify the proton numerator to a constant opera-
tor. (3) The present paper, of which Secs. II and III are
taken from an unpublished thesis, again uses Todorov's
approximation allowing the 6 function to determine the
numerators, but the masses are kept general and neither
numerator is approximated. An overview of this paper
follows.

In Sec. II, we give an independent derivation of
Todorov's quasipotential approximation using a transfor-
mation of Cutkosky.

Section III lays out in a standard fashion, for a pair of
spin- —,

' particles, the "4~3~4"-dimensional sequence of
mappings, which are determined by an operator which
can be expanded in a series in the error of the quasipoten-
tial approximation. The resulting three-dimensional
bound-state equation contains no Casimir projection
operators. This second-order bound-state equation is also
expressed in two equivalent first-order Dirac-like forms,
which show each particle simultaneously obeying a Dirac
equation in the presence of the other. Finally the four-
dimensional solutions are expressed in terms of the
three-dimensional ones using the mapping operator.

Section IV successfully tests the 4~3 part of the for-
malism by calculating the energy levels of the bound-state
equation for positronium and the hydrogen atom to order
a using a Coulomb-gauge single-photon-exchange ker-

nel. Relativistic kinematics are automatic and there are
no kinetic-energy operator (p ) corrections. Instead, we
find the presence of a potential term (I /2M& )a /r
(where M~ is the bound-state mass), proportional to the
square of the binding potential.

Section V deals with various technical points which
arise in Sec. IV: the existence of solutions; small radius;
one mass large; iteration of the transverse term in the
kernel.

Section VI contains a successful test of the 3~4 map-
ping, by verifying that the four-dimensional vertex func-
tions reconstructed from the three-dimensional wave
functions do give low-energy transition probabilities
correctly when substituted in Feynman triangle dia-
grams.

Section VII contains brief conclusions.

II. ORIGIN OF
QUASIPOTKNTIAL APPROXIMATION

In this section we define notation and give a derivation
from Ref. 8 of the quasipotential approximation to be
used in this paper, using the massless-scalar exchange BS
equation treated by Wick' and Cutkosky' as a model.

Consider two scalar particles of masses m, M subject to
an attractive interaction due to the exchange of a mass-
less scalar particle. Let the m particle (so named for
short) have initial four-momentum xE +q and final four-
momentum xK+p,' let the M particle have initial and
final four-momenta XK —q, XK —p. K is the total four-
momentum of the system, and x +X=1. The BS equa-
tion for the particles' truncated scattering Green's func-
tion T(p, q;K) is

—g 1 d l —gT(p, q;K)= +-
(p —q) i (2~)' (p —q)' T(l, q;K) .

2m 2M
( xK + l ) +m i e (X—K —I) +M ie—

(
2 P2 )

1 /2
Z ( M 2 P2 )

1 /2

x =t/E, X=T/E, E=t+T . (2)

Then for example the initial m, M particles carry energies
t+q, T —

q .
The quasipotential approximation to be used in this pa-

per is

(The Feynman diagram is represented by —iT )The fac-.
tors 2m, 2M are put in the numerators of the particle
propagators instead of in the coupling constant in order
to preserve the analogy with the spin- —,

' case, where the
rationalized propagators at low energies have numerators
which approximate 2m times an idempotent projection
operator. The coupling constant g has the dimensions of
e.

We shall use the c.m. system K =(O,E), with E
confined to the bound-state region ~M —m

~
(E (M +m.

With the "bound-state wave number" p defined by
E =(m —p )' +(M p)', we can fur—ther define

1 1

(xK+I) +m ie (XK— l) +M i—e-
2vri6(l )

2E(I2+P2)
(3)

We now give a derivation of this simple approximation,
which represents the well-known peak in relative energy
of the pair of particle propagators. This type of approxi-
mation was suggested many years ago independently by
the present author and by Todorov. In Ref. 8 we sub-
stituted (m +M) for E in (3); in the present paper we fol-
low Todorov, who proposed (3) as written.

Following Cutkosky, the relative energy in (1) is
Wick-rotated to l =il4, with d l =dl dl =idl dl4,
l =1 —

( l ) =1 + l ~. The fiat Euclidean four-space
I p, pz I is then projected onto the surface of a unit sphere
in five-dimensional space I u ] by means of the transfor-
mations u, =2pp, /(p +p ) (i =1,2, 3,4), u5
=(p —p )/(p +p ). Then this surface is projected back
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onto a four-dimensional flat space [g by means of the
transformations ( =u /(1 —u4) (a=1,2, 3, 5). Symbol-
izing this transformation by p~u~g, we also define
1 ~w ~g, q ~v ~g.

With the definition

/3(1 —u4) /3(1 —v4)
T, (g, r/;E) = T(p, q;K)

1 —u5 1 v5

—e 2

T(p, q;E) =

2

(2~)' (p —1)' 1'+/3'

For g =1 implies u4=0, giving the coordinate transfor-
mation

and the easily derived relation
=/3 [(1—w4)/(1 —

w~ )] d g, Eq. (1) becomes'
dl dl4

2 p;
7 P ) y5&=123

P P

2

T, (j,rt;E) =
(g —ri)'

(2~) (g —g)' cv&(g' —cv ')(g' —&')

X T, (g, r/;E),

—4 IM= —4m. 5(g —1) .
cod(g —cv )(g —0 ) /3E

(5)

The quasipotential approximation (3) follows from (5) by
reversing the transformations.

With the substitution of (5) into (4), the integral in (4)
becomes an angular integral restricted to the unit sphere
g =1. The variables g, q in (4) can be restricted to the
same unit sphere and denoted by g, g. Furthermore,
mM/E equals the reduced mass p to a good approxima-
tion. Then (4) becomes an equation on the unit sphere:

which is manifestly rotationally invariant in four-
dimensional g space. Here co=(t +i/3)/m, I1
=(T+i/3)/M, and Ical = I&I = l.

Now assuming that the energy E is near the threshold
m +M, /3 is small compared to m, M and the two com-
plex poles in g are slightly above and below unity. This
makes the function of g in the integrand peak sharply in
a Lorentz shape near g =1, behaving rather like a 5
function of (g —1). Estimating the area under this peak
by using the residue at either pole, and noting that
c00 cvQ=2i—/3E/mM, the term in the integrand has the
approximate behavior

with which Schwinger obtained (6) from (7).
Cutkosky's unusual O(4)-symmetric space has given a

direct derivation of the quasipotential approximation (3),
as well as Schwinger's expression for the Coulomb
Schrodinger equation and the Bohr levels. We hope this
derivation has some historical interest. In the following
sections we will use (3) to establish a perturbation formal-
ism and test the formalism on QED.

II cc4~ 3—+ 4» DIMENSIONAL FORMALISM

In this section (from the unpublished Ref. 8) we shall
lay out a standard type of formalism (see, e.g. , Refs. 7 and
15) for the BS equation for spin- —,

' particles, based on the
quasipotential approximation (3).

The momenta and notation of Sec. II are used, with
Dirac indices added to the scattering Green's function T
and kernel I. Denote the Dirac matrices of the I,M par-
ticles by y", I ". Instead of 2m, 2M the numerators of the
rationalized propagators are spinors. The BS equation is

T(p, q;K) =I(p, q;K)

+ —.f I(p, 1;K)S(l;K)T(l,q;K),
d4&

(2~)'

(8)

where

S (1;K)—:—m —y (xK+1) M —I (XK —1)

(xK+1) +m i@ (XK —1) +M ie— —

T, (g, r/;E)= — f T, (g, r/;E) .
(g —q)' (2') (g —g)' Now, using the c.m. frame K = (O, E) and (3), we have

Since

Nbn

(6) S(l;K)=SO(l;K) =So(1;E)2~i5(l ),
where

(m —y 1+@ t)(M+I .1+I T)
2E(1 +/3 )

(10)

where Y» are four-dimensional orthonormal surface
harmonics and N ) I )m )0, the solution to Eq. (6) can
be written down by inspection. It is an infinite sum of
pole terms. These poles, representing bound states, occur
at /3=ay/(N+1), where a=g /4'. Recalling that the
binding energy B =m +M E is /3 /2p to the —lowest or-
der, the energy levels of the bound states are the Bohr
levels, as expected.

Equation (6) is Schwinger's transformation' of the in-
homogeneous Coulomb Schrodinger equation (writing e
for g)

R =S —So,
U =I +IeRU,

(12)

(13)

Recall from (2) that t, T are the particles' individual
bound-state energies at zero relative energy.

It is now straightforward to derive a method using the
error of the approximation (10). Denote the operation

f d 1/i (2m) by e, and i (2n) 5 (p —q) by 1, and (10) by

So. Then (8) can be written T =I+INST, and we can
successively define
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8 =So 1 +So TSO

From these it follows that

8 =So 1 +So U4 8

(14)

(15)

Evidently R is the error of the approximation (10), and U
appears as powers of this error when Eq. (13) (from
Blankenbecler and Sugar ) is evaluated by iteration. By
iteration of (15) it is clear that

W(p, q;K)=2vri6(p ) W(p, q;E)2mi5(q ) . (16)

in which U(p, q;E) = U(P, q;K), P =(p, O), q =(q, O),
K =(O,E) in the c.m. system. Equation (17) is an exact
three-dimensional equation for the function W(p, q;E) in
terms of the function U(p, q;E). The inhomogeneous
Schrodinger equation (17) is defined on the plane of zero
relative energy in the c.m. system, relative energy being
offset as in Sec. II.

It is well known that at (nondegenerate) bound-state
poles of the scattering Green's function T, the residue
factorizes:

I (p;K)I (q;K)T p, q;K
M s —MB

(18)

It follows that the equation (15) for 8' is effectively only
three-dimensional; it is equivalent to

W(p, q;E) =So(p;E)(27r) 6'(p —q)

+So(p; E)f U(p, I;E)8'( I,q; E),(2' )'

(17)

each other:

(22)

Equations (21) and (22) could be interpreted as indicating
that each particle is obeying a Dirac equation in the field
of the other.

Equations (21) and (22) are reminiscent of a pair of in-
dependent single-particle Dirac equations with a common
interaction found by Sazdjian from quantized relativistic
Hamiltonian dynamics [Ref. 12, Eqs. (6.5a) and (6.25b)j.
However, the two Dirac-like equations (21) and (22) are
not independent. Equations (20), (21), and (22) are the
same equation, expressed in three different ways.

The full four-dimensional solution of the BS equation
(8) can be reconstituted from the three-dimensional solu-
tion 8 using

T = U+ Ue 8'e U, (23)

which is easily deduced from Eqs. (12)—(15). From Eqs.
(18), (19), and (23), it follows that the exact bound-state
vertex function is reconstituted (up to sign) from the
three-dimensional wave function by

(M +y p y—t)g( p; MB )

M+r. +r'T f 3 U(p, I;MB )g(1;MB ),
B 277 3

(21)

(M —I p —I T)g(p M )

m — -+'t~ p+~ ' f ",U(p, I;M, )q(t;M, ) .
8 2' 3

where s = —K and M~ is the bound-state mass. From
Eq. (14), it follows that the poles of W factorize similar-
ly:

I"(p;KB ) = —f U(p, 1;KB )Q(1;MB ),
(2~)

(24)

e(p™B) P( q MB )
W(p, q;E)

s MB S M
(19)

X f 3 U(p, l, MB)$(l;MB) .
(2m )

(20)

Equation (20) is the fundamental bound-state equation
which we shall work with in this paper. The function
U(p, q;E) can be regarded as a potential. Once U is cal-
culated from Eq. (13) to the required accuracy, Eq. (20)
can be solved to obtain energy levels using the conven-
tional techniques of quantum mechanics.

Each of the first-order operators on the right side of
(20) is nonsingular in the bound-state region. Either of
them can be exactly divided into the second-order opera-
tor on the left side of the equation. Therefore there exists
a pair of first-order equations equivalent to (20), and to

where s =E since (19) is in the c.m. frame.
From (11), (17), and (19), g(p;MB) evidently obeys the

homogeneous equation

(m —y p+y t)(M+I' p+I T)

B

where in the c.m. frame l =(1,0) and KB =(O, MB). The
normalization of g(p;MB) is determined by (19). Since I
is a four-dimensional vertex function, once it is calculated
by (24) it can be used directly in the calculation of
bound-state transition amplitudes from Feynman dia-
grams, as will be done in Sec. VI.

The function U given by Eq. (13) plays two different
roles. When specialized to the zero-relative-energy plane,
it serves as an interaction potential in the three-
dimensional Eqs. (17) and (20). In Eqs. (23) and (24) U
serves as the means to reconstitute the full four-
dimensional solution of the BS equation from the three-
dimensional solution. The value of the method of this pa-
per stands or falls upon the simplicity and speed of the
convergence of the series (13) for U in terms of the
correction R to the quasipotential approximation (8). In
the next section we shall examine the QED problem to
fourth order in the Coulomb gauge.

IV. TEST OF 4~3 MAPPING:
QED BOUND-STATE ENERGIES

In this section we test the formalism of Sec. III by us-
ing the three-dimensional equation (20) to calculate the
energy levels of the QED BS equation with a single-
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photon-exchange kernel in the Coulomb gauge. This ker-
nel is known to give energy levels correctly to order o. .

Assuming opposite charges —e +e, the kernel will be

Ucc Ic + RIc=Ic SIc Ic S0Ic (29)

is easily calculable, since Ic does not contain k . One
finds

I(p q K) Ic+I
where

(25) 2 OpO 2 Oj0
Ucc(p, q;E)= f ~ R(1;E)(2~)' (p —1)' (1— )'

OpO
Ic =——e (26) where

Ir:—+e (y. I —y kI k),
k

(27)

R(l;E)= [(nN+L y I )(sinH, +sin&ad)4EL
—2nN +L (y N —1 n )(c os9, —cosOz ) ]

with k =p —q, k =k —(k ), and k —=k/ k~.
In the method of Salpeter, in which Casimir energy-

projection operators naturally emerge, first-order pertur-
bation theory on the terms Ic and Iz- alone are sufhcient
to give results correct to order o: . In the quasipotential
formalism we must allow for the possibility of a next-
order correction to the potential U in the homogeneous
equation (20). From Eq. (13) the correction to U would
be

I@RI=Ic e RIc+Ic e RIr +Ir e RIc +Ir e RIr . (28)

In Sec. V we shall show that the last three terms of (28)
do not contribute to fourth order.

The first term

(31)

in which, referring to Eq. (2),

T.L—:I +P; tanO, =—,tan9r =—;
n—:m —y. l+y t, X—:M + I ./+ I T . (32)

To leading order, neglecting y I, I .I, higher orders in
(1 +/3 )/p, and the small components, the expression
(31) for R(1;E) is a constant (1/2E) —,'(1+@ ) —,'(1+I ),
making Ucc proportional to an iteration of the Coulomb
potential.

Then in configuration space, with U =Ic+Iz-+ Uc~,
the eigenvalue equation (20) reads

( V'+P')P(r) = ——

m ——y V+yt M+ —I V+I T1 0 1 0

I

2M~

0 0 2o&oa+ 1( &+ & )a 1 I+y 1+I a
r 2 r 2M& 2 2 p. 2 (33)

The first interaction term of (33) is the usual zero-order
Coulomb potential. The second is the usual Breit interac-
tion. The third term, eff'ectively (I/2M&)a /r, is the
potential given by the corrected Coulomb term Ucc cal-
culated above. In the present formalism, this potential
Ucc contributes to the lowest-order fs and hfs on an
equal footing with the Coulomb potential and Breit in-
teraction. [Technically Ucc is a "subtracted box" poten-
tial, which should be accompanied by the corresponding
crossed diagram. By a calculation similar to that leading
to Eq. (30), the crossed Coulomb diagram is easily shown
to give zero contribution to fourth order. ]

Equation (33) is an equation for the eigenvalue P,
which must be inserted into (2) to get the bound-state en-
ergy. We shall now obtain an equation for the large com-
ponent of P, using momentum space to allow a clearer
comparison of various terms. Let u, d represent Pauli
upper and lower components relative to y; similarly for
U, D and I . Then

„.(p)+0(
2m

X pQ„D(p)=
2M P„v(p)+0(a g„v) (34)

1 0 0 —a.
r', r similarly .0

Using (34), Eq. (33) gives an equation for the large
component of the wave function accurate to order a:

Qdv(p)= g v(P)+O(a g„v),2m

in the c.m. frame. The Pauli relations (34) are direct
consequences of the pair of equivalent first-order exact
"Dirac" equations (21) and (22), with the usual represen-
tations



1398 JOHN H. CONNELL 43

—e (m +t)(M +T)
2k aP

(36)

e 1 1 p I ie kXI
2 M2 k2 4 k2

cr X
2 M2

(37)

e 12VT�-

[=2ikX�

(o+X)+(k.ok X —k o"X)2

4mM k2

+4[1 (k. l )
—]I,

1
Vc& =Fourier transform of— (39)

2M y.

The terms Vo, Vc, VT, and Vcc come, respectively, from
the Coulomb potential on the large component of t/t, the
Coulomb potential on the small components of ttt, the
Breit interaction, and the Coulomb correction potential
Ucc

Keeping only Vo in (35), the eigenvalues of the result-
ing Coulomb Schrodinger equation are Po=zatM/n,
n = 1,2, 3, . . . , where, from (2) and (36),

(p'+ p')t/. U(p)

d I= —
2/2 f ( Vo+ Vc+ V2-+ Vcc )(p, I )ttt„U(I )(2~)

(35)
in which, with k=p —I,

2
(Vscalar) + e + P

4 ' M' k'

4 3 ' + ' (4a„).
n m M

1 1

m M

—8 3
X +—

21+1 n
(45)

[Note that the Born approximation between normalized
free particle spinors, another standard way of calculating
Fermi-Breit terms mentioned in Sec. I, gives a term
+e (1/m +1/M )/g instead of (44). However, the two
versions have identical expectation values. ]

Another difference is that here (as in most quasipoten-
tial approaches) the relativistic kinematics is automatic,
as the eigenvalue P is simply substituted in the expres-
sion E =(m —P )'~ +(M —

/3 )' to obtain the bound-
state energy. In the Breit-Salpeter approach a kinetic-
energy operator (m +p )'~ +(M +p )' is obtained,
whose fourth-order expansion must be included. Its ex-
pectation value is

2 2

+o(~') .
4@2 mM

From (40), the eigenvalues Po are then

(40)
This term does not occur in our formalism.

Finally, the Coulomb correction term occurs here but
not in the Breit-Salpeter equation. It is

2 2

p, =
n 4n2 mM

+O(cz tM) .
1 a p exp 1

(2M~ r~ mM n' tt+ 1
(46)

The other terms in (35) will give a fourth-order contribu-
tion to p and can be calculated from first-order perturba-
tion theory. Then from (2), (35), and (41), the bound-state
energy to fourth order is

2 4 2

Mii =(m +M) — ~ + ~
1 —5

2n 8n

+(v, +v, +v„) . (42)

(Vscalar) e 1 + 1 p I
m M

We are now able to compare our results with the stan-
dard results of the Breit-Salpeter perturbation prescrip-
tion. (Salpeter s equation is equivalent to the Breit equa-
tion through fourth order. )

In V&, the spin-orbit term agrees with its Breit coun-
terpart, but the scalar terms differ. Their expectation
values are

In spite of the differences in details, the atomic energy
levels to order a are obtained correctly from each of the
following.

(i) The standard Breit-Salpeter prescription, which uses
the Bohr levels, Vc with (44) for its scalar part, VT, and
the p kinetic-energy correction (45).

(ii) Our method, using the expansion (42) for the ener-

gy, Vc with (43) for its scalar part, VT, and Vcc (46).
For completeness, we also quote those parts of the

energy-level expression (42) which agree with the Breit-
Salpeter method:

~4 ~ 1 5 Io
( csin orbit+ V ) —~ P —

( I )
n3 2(2l +1)

—', , S=1
p

to M 2 S =0

1 o4p3
3

1 1+ 4&~o- +m2 M2 2l+1 n

+&~o
mM n 2l+1

(47)

(43) in which
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:-(l,j)=

1
2 1+4" (l=j —1, S=l),I+1 mm 2l+3

—
—,'+ —,'[1+41(l + 1)(1—4p /mM)]'

l(l +1)
( I =j, S mixed),

1 p 1———4 (I =j+1, S =1).
l mM 2l —1

ture of U must be considered more carefully.
In such a bound-state problem, assume that the dom-

inant binding interaction I~ is local and instantaneous, as
in the Coulomb gauge kernel. Neglect other terms (such
as IT in Sec. IV). Then in Sec. IV we have seen that the
largest part of the relative energy integral of the correc-
tion R is I/2E. For the dominant part of U, (13) then
reads

AV=I,+I, U.
2E

(49)

Then the bound-state masses are given to order o. by Eq.
(42) with ( VC+ VT+ Vcc ) replaced by the sum of Eqs.
(43), (46), and (47).

These energy levels agree with a standard reference:
for positronium without the annihilation term (Ref. 20,
Sec. 23); for M —+ ~ (Ref. 20, Sec. 17); for I &&M, to or-
der a (m /M) for the hfs of the hydrogen atom with a
Dirac magnetic moment for the proton (Ref. 20, Sec. 22).
We see that the bound-state equation (33) does give the
energy levels expected from single-photon exchange in
the Coulomb gauge at an accuracy of a .

V. TECHNICAL NOTES

In this section we discuss (A) the existence of solutions,
(B) the small radius r, (C) one mass large, (D) the correc-
tions involving IT.

A. Existence

Bodwin, Yennie, and Gregorio' have objected to the
use of the homogeneous wave equation (20) on the
grounds that the iteration solution of its originating inho-
mogeneous equation (17) will diverge if U(p, q;E) is the
Coulomb potential —e /(p —q) . In fact at large p, the
approximation SD in (17) approaches —y pl p/2E, an
operator of constant magnitude, and a power-counting
argument' implies the divergence of (17). We shall illus-
trate the large-~p~ argument of Ref. 16 in configuration
space at small r, to make it easier to discuss. With 0 the
Coulomb potential and So majorized at large p by 1/2E,
when (17) is Fourier transformed and solved by iteration
the function 8'is majorized by

2
1 1 (x 1 a1+ + + ~ ~ ~

2E 2E r 2E r
(48)

B. Small r

Nevertheless, suppose we da want to consider Eq. (20)
at distances of order a (Bohr radius). (In the quark
model, a may be of order —,

' instead of „', . ) Then the na-

which indeed is divergent for r &cx/2E, in accordance
with Ref. 16.

However, Eq. (48) converges for r )a/2E, and a/2E is
less than e times the Bohr radius. The correct results of
Sec. IV indicate that it is not necessary to claim that (20)
is valid for such small r, and also that it is possible to use
the correction series (13) for U, as long as perturbation
theory is used.

In Sec. IV we used the first two terms of the iteration
solution of (49) with IC = air;—the exact solution of (49)
1S

U=
—Q

r +u/2E (50)

Clearly
~

U~ &2E always, and when U is substituted into
(48) instead of air th—e series will converge for all r.

It follows that substitution of the dominant binding
part of the BS kernel into (13) to get a more exact func-
tion U at small r, as the formalism does actually require,
eliminates the objection of Ref. 16.

From this simple model it appears that the use of Eqs.
(17) and (20) with U artificially restricted to be Ic (as sup-
posed in Ref. 16) would introduce a spurious singularity
at small r, which more exact solutions of (49) eliminate.
In bound-state problems which are not as well under-
stood as QED, based on a BS equation with a local (in-
stantaneous) binding kernel, consideration would evident-
ly have to be given to using an exact solution of (49) for U
from the outset.

C. One mass large

1+r'
m + —y V —y +(m —

}33 ) g(r) =~—y P(r)
l m r 2

(since the transverse interaction, the Coulomb correction,
and the term I -p are all suppressed by further powers of
1/M). This is a Dirac equation for the electron of mass
m, with a coupling constant (p/m)cz. Evidently the ei-
genvalue P is (p/m)cpm/n to leading order, which is
apln as it should be. So our formalism gives the hydro-
gen fs (to order a m) but with the correct (reduced mass)
Bohr levels.

D. Transverse correction terms

We want to show that the last three terms of (28) do
not give an a contribution to the energy. The transverse
term Iz. [Eq. (27)] contains 1/k =1/(k —k ), so (31)
cannot be used to simplify R =S —So. To the order

A nice and easily understood aspect of Eq. (33) is the
hydrogen-atom limit, when one mass is large but not
infinite. (The following paragraph is a summary of re-
marks in Refs. 8 and 16.)

Equation (33) with M ))m, in the first-order form (21),
1s
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needed, the numerator of S is

1+ 1+r'— 2m ~ +y'I' 2M —r'l'
2 2

(51)

VI. TEST QF 3~4 MAPPING:
QED BOUND-STATE TRANSITIONS

In this section we verify the correctness of the recon-
struction (24) of the four-dimensional vertex functions
from the three-dimensional wave functions by calculating
the low-energy transition amplitude for photon emission
by an atom such as hydrogen or positronium directly
from the Feynman triangle diagram, and showing that
the expected result of nonrelativistic quantum mechanics
is obtained.

Consider the decay of a bound state of four-momentum
K,- into a bound state of four-momentum Kf accom-
panied by a real or virtual photon of four-momentum
k =K; —Kf. It is sufficient to consider a photon emitted
from the I particle, of charge q.

The current matrix element (without external kinemat-
ic factors) can be written from the Feynman triangle dia-
gram as

d l,-

jF,~„=—iq J 41 f(lf Kf)g(xfKf+lf)(2'�)'
X y 'g (x, K; + I; )G (XK —I )I, ( I;;K, ),

(52)

in So the I terms are missing. The terms of (28) have
their expectation values taken between large-component
spinors, given by the projection operator

—,'(I+@ )—,'(1+1 ).
In (28) the terms IC e RIT and IT e RIc contain y'1 ~

once. This mixes the largest and smallest components of
the external wave function, reducing the order below e".

In the remaining term IT eRIT, y'I occurs twice. But
a y'r~ always occurs between the projection operators in
S and So and the external wave function, mixing upper
and lower components and reducing the contribution of
any projection operator in S and So below a . The only

part left is y I I in (51), which is not reduced in magni-
tude by (y'I J) . The contribution to the energy of this
piece is the expectation value of the integral of a product

{)2of e /(P —I), e /(I —
q ), 1/(Denominator of S), and I

in which P=—(p, O), q—= (q, O). For m =M and small p, q,
this expectation value is Eq. (4.13) of the paper of
Karplus and Klein, which they show to be one of the
contributions of order a .

(54)

where

Q(l;)=Q(1; +M ),
I; +/3;

I, „„,=T;—Q(l, )= — +O(a p) .
2M

(55)

Substituting (54) into (52) requires the substitution of
(55) into the initial g propagator in (52), giving

m —y I, +y't
g(x, K, +I;)=~ [1+0(a )] .

m I2+P2
(56)

Thus after the operation f dl; /2~, the three right-hand
terms of (52) become

~ (m y I, +)"—r, )(M+r I, +r'T, )

g, Gr, =~~
Ul (I; +/3, )2M

«;((I;,I „„„);K,),
in which terms of relative order o, are neglected.

The variables p, I; are of order ap, and I, „„,is of order
a p. Then l, „„,can be replaced by 0 in the vertex func-
tion 1,, for in the integral (25) giving I, , we have

1/[(p —I )
—(I; „„„)] = [1+0(a ) ] X 1/(p —I )

by the usual expansion. The advantage of this is that in
situations where p =0 in the rest frame, our wave func-
tion P and vertex function I have a simple algebraic rela-
tionship. Equations (20) and (24) show that in the rest
frame, where K~ =(O, M~), and with P =(p, O), it is exact-
ly true that

(I —y-p+) r)(M+r p+r T)
2M ( +P)

(58)

Using (58), and the relation M~,. =m +M+0(a p), the
expression (57) with I; „„,=0 simplifies to

[g;GI;]' ' =i [1(t;(I;;M~;)]'' +0(a g;),

Consider Eq. (52) in the rest frame of the i bound state.
The simplest way to estimate the integral jdl, /2' is to
find the residue of the pole of G near the origin, as the
near poles of the two propagators g;,gf are both on the
other side of the l, contour. That is equivalent to treat-
ing 6 as

M+r I, +r'n(I, )6 (x, K, —I, )
=2~i 5(I," I, —„„,) 20(I, )

XfKf —If =X,K, —I; .

The loop integral variable could have been lf.

(53)

where g, 6 are the I,M particle propagators, and I I, I;
are the bound-state vertex functions. The momenta are
parametrized as in Secs. II and III. Either subscript, i or
f, can be used for the variables in the propagator G of the
nonradiating M particle, as evidently

where henceforth the superscripts i c.m. , f c.m. denote
quantities evaluated in the i,f rest frames.

To treat the first two terms I fgf in the expression (52)
similarly, the variable off

' must be used instead of
I,' ' . We will simplify the problem by assuming that in
the i rest frame, the f bound state recoils with a speed of
order o.c at most. That assumption is consistent with the
purpose of this section, which is to test whether the eval-
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uation of (52) using our formalism agrees with standard
nonrelativistic quantum mechanics. From Eq. (53) and a
Lorentz transformation, the f rest frame relations
lip ™l=o(ai), Iif ' l=o(a'i) are then consistent
with the corresponding i frame relations used earlier.
This allows us to treat I fgf in the f rest frame in the
same way that g;GI; was treated in the i rest frame. In
the same way (59) was obtained, one finds

Qf(lf Mf )(M —I lf I Tf )

[I fgf ]f ' =2M

Then (59) and (60) can be substituted into the Feynman
integral (52) to give

dI 1 C. m.
i

Feyn
—2qM 3(27r )

l/ff (If Mf )(M r lf I—Tf )

(lf+f3f )

Xy"[it, (l, ;M;)]' '
(61)

Because the bound states' relative speed is O(ac) at
most, to lowest order it is true that
lff ' =I,' ' ' —(p/m)k and also the spin operators are
the same in both frames, as expected in nonrelativistic
quantum mechanics. The counterpart to Eq. (34) for g
can be used to express g(lf '

) in terms of the large
component Q„U(lf

' ). Also, it follows from Eq. (17)
that to lowest order the normalized wave functions P are
given by p(p) =1(„U(p)/(2M& )' . Finally, inserting ki-
nematic factors using box normalization, the matrix ele-
ment must be divided by I /(2Ef V)'~ (2M~; V)', which
is 1/2(m +M) V to lowest order.

Using the preceding paragraph, to leading order the
current matrix element (61) becomes, in the i rest frame,

j,=— f P I — k 1 ——+—kXa P;(I),1 q dl — p k i

Vm (2 ) m 2 2

(62)

(63)

The result (62) agrees with a standard reference ' for
M~ oo; for general m, M we have done a nonrelativistic
calculation of the matrix element of the current operator
qit(r)y'g(r) and found results identical to (62) and (63).
Thus the 3~4 mapping, which reconstructed the
bound-state vertex functions, has been verified to give
correct results in the case of low-energy QED bound
states. This is the final step in establishing that the for-

malism described in this paper can calculate bound-state
energies and transition amplitudes correctly.

VII. CONCLUSIONS

For the Bethe-Salpeter equation for two spin- —,
' parti-

cles, this paper has explored in a straightforward manner
the consequences of the Todorov approximation, in
which the peak in the pair of propagators of the bound
particles in the relative energy variable is approximated
by a 6 function.

Todorov's derivation of his approximation was on the
basis of simplicity and elastic unitarity; in Sec. II we gave
an alternative derivation which may have had some his-
torical interest.

The "4~3—+4"-dimensional formalism laid out in Sec.
III was of a standard kind once the starting approxima-
tion is accepted. Section V gave two arguments for the
validity of the method: that it works in perturbation
theory, and that a more exact expression for the potential
U in the bound-state equation eliminates convergence ob-
jections expressed in Ref. 16.

The Coulomb-gauge single-photon-exchange kernel
used as a test of energy levels to order o. iri Sec. IV shows
the Coulomb correction potential Ucc=(1/2M~)a /r
coexisting an equal basis with the more familiar Coulomb
potential and Breit interaction. As explained in Sec. IV,
the crossed Coulomb diagram which should accompany
such a "subtracted box" term gives a zero contribution to
fourth order.

In Sec. VI it was shown that the reconstructed vertex
functions do give the low-energy bound-state dipole ma-
trix elements correctly when substituted in Feynman tri-
angle diagrams. This result verifies the "3~4" part of
the method.

Two features of the method worth remarking on are
the following. (a) Equations (21) and (22) show each par-
ticle obeying a Dirac equation in the presence of the oth-
er, even though the equations are the same equation in
diA'erent guises. Of course the Dirac limit (one particle
infinitely heavy) is automatically reached in this method.
(b) The term (I/2M&)a /r in the full (not Pauli re-
duced) equation (33) shows that the subtracted Coulomb
box diagram really contributes at the a level in a formal-
ism without Casimir energy projection operators. As a
matter of fact very few BS reductions other than in Ref.
16 seem to have been done without Casimir operators.

In the quark model of mesons no bound-state equation
seems to have come to the forefront at present. ' Subjec-
tively, we feel most comfortable with a method that
comes directly from a well-used equation of standard
quantum field theory such as the BS equation. In the fu-
ture we hope to investigate whether the present paper's
methods provide any new contribution to the quark mod-
el.
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