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We consider a model of nonrelativistic charged matter interacting with a massive Abelian gauge
field and a neutral scalar field in (2+1)-dimensional space-time. As in the model considered by
Jackiw and Pi with a pure Chem-Simons interaction, the model admits classical static self-dual
solutions. These solutions are nontopological solitons which may be threaded by a number of vor-
tices. Furthermore, these self-dual classical solutions are zero-energy configurations.

I. INTRODUCTION

There has recently been much revived interest in
(2+1)-dimensional Abelian Higgs models in which a
Chem-Simons term is contained in the gauge action. '

Such models may be considered as Geld-theoretic models
for anyons" or as e6'ective theories (of the Landau-
Ginzburg type) for anyon superconductivity. ' While
there have been many variations on this theme, a com-
mon thread has been the analysis of classical vortexlike
solutions and the associated role of self-duality. These
Chem-Simons solitons will presumably play an important
role in the complete understanding of realistic models of
fractional statistics and anyonic superconductivity.

Originally, ' the relativistic Abelian Higgs model had a
Chem-Simons term added to the usual Maxwell kinetic
term for the gauge field. More recently, ' ' ' relativis-
tic models in which the Chem-Simons term accounts for
the entire gauge field action have been considered. For a
specific form of the Higgs potential such models admit
static self-dual vortexlike solutions. ' The nonrelativistic
limit of such theories has also been discussed, revealing a
rich structure related once again to self-duality. A rela-
tivistic theory with both a Maxwell and a Chem-Simons
term in the gauge field action has recently been analyzed
by Lee, Lee, and Min. In this paper we shall investigate
the role of self-dual solitons in a theory in which a
charged nonrelativistic matter field interacts with a mas-
sive gauge field, having both a Maxwell and a Chern-
Simons term in the action.

Before turning to this model we first brieAy summarize
the approaches and results in other related theories. One
important issue in these (2+1)-dimensional matter-gauge
field systems is whether to take the gauge Geld action to
be given by a Maxwell term, a Chem-Simons term, or
both. ' As mentioned above, Paul and Khare initially
considered both. ' However, since the Chem-Simons term
is of lower order in space-time derivatives, it dominates
the large-distance properties of the theory and substan-
tially modifies the characteristics of the classical solu-
tions. This led Hong, Kim, and Pac and Jackiw and

Weinberg" to consider a truncation in which the Chern-
Simons term accounts for the whole gauge field action.
They found that for a specific form of the Higgs potential
the model admits static self-dual vortexlike solutions.
These self-dual Chem-Simons vortices difI'er in several
respects from the familiar Nielsen-Olesen vortices. '

First of all, they are necessarily charged, due to the
Chem-Simons Gauss law relating the magnetic field and
the matter charge density. Second, the radially sym-
metric solutions exhibit an unusual magnetic field profile
which is concentrated on a ring at a finite distance from
the origin. Third, being charged, the Chem-Simons vor-
tices always have a nonvanishing (fractional) angular
momentum. The specific form of the Higgs potential
which admits static self-dual solutions has two degen-
erate minima: a symmetry-breaking minimum and a
symmetry-preserving minimum. Correspondingly, the
theory has two types of classical solutions: (i) topological
vortices with quantized magnetic flux, and (ii) nontopolog
ical solitons with nonvanishing but not-necessarily-
quantized magnetic Aux.

The nonrelativistic limit of these nontopological soli-
tons has been studied by Jackiw and Pi. In the nonrela-
tivistic limit this theory provides a second-quantized
description of point particles moving (nonrelativistically)
in 5-function potentials and interacting via a Chern-
Simons term. The matter equation of motion becomes a
gauged nonlinear Schrodinger equation which can be in-
tegrated with a self-dual ansatz. In fact, the nonrelativis-
tic charge density for static self-dual solutions satisfies
the Liouville equation, the solutions of which are known
analytically. ' An interesting feature of these nonrela-
tivistic self-dual solitons is that they saturate the lower
bound 6 =0 of the static energy functional.

We now recall that self-dual equations also arise in the
Abelian Higgs model (with only the standard Maxwell
gauge action) when parameters are chosen to make the
vector and scalar masses equal. This is the Bogomol'nyi
model' and provides a relativistic version of the phe-
nomenological Landau-Ginzburg model for a system on
the boundary between type-I and type-II superconductivi-
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Given this ubiquitous role of self-duality, it is natural
to ask if self-dual solitons exist when the gauge field ac-
tion contains both a Maxwell and a Chem-Simons term.
(Note that non-self-dual solitons also exist in such mod-
els, and have been extensively studied in Refs. 2, 8, and
9.) At first sight this does not look promising as self-
duality plays no obvious role when one simply adds a
Maxwell term to the actions considered in Refs. 3 and 4
(relativistic case) or in Ref. 5 (nonrelativistic case). How-
ever, an important clue towards the answer was provided
by Lee, Lee, and Weinberg, ' who observed that the rela-
tivistic Chem-Simons Higgs model ' admitting self-dual
solitons is the bosonic portion of a model with N=2 su-
persymmetry.

This has led Lee, Lee, and Min to consider the bosonic
portion of an N=2 supersymmetric model with gauge
field action consisting of both a Maxwell and a Chern-
Simons term. The requirement of N =2 supersymmetry
prescribes the matter content of the theory, the cou-
plings, and the potentials. An important novelty is the
appearance of a neutral scalar field (with mass equal to
the gauge field mass) in addition to the usual charged sca-
lar field. In this paper we shall consider this model of
Lee, Lee, and Min in the nonrelatiuistic limit for the
charged matter.

This paper is organized as follows. In Sec. II we define
our model and consider various important physical limits
of parameters in the Lagrangian. In Sec. III we discuss
the equations of motion for our model and show that
with a static self-dual ansatz these reduce to two coupled
non1inear equations for the charge density and the neu-
tral scalar field. In the pure Chem-Simons limit in which
the Maxwell term is removed from the action, the neutral
scalar decouples and the equation for the charge density
reduces to the Liouville equation as found directly in the
Jackiw-Pi model. In Sec. IV we show that the static en-
ergy may be written as a sum of manifestly positive
terms. The minimum (6'=0) of the energy is attained
when these terms vanish. This gives (first-order)
Bogomol'nyi equations' which are in fact equivalent to
the (second-order) equations of motion supplemented
with the self-dual ansatz. In Sec. V we discuss the
asymptotic behavior of the coupled equations derived in
Sec. III, and use this to deduce important global proper-
ties of the solitons such as charge, Aux, and angular
momentum. Finally, we conclude with some discussion
and some comments regarding future directions of inves-
tigation.

II. THE MODEL

We use the convention that A = 1 and keep explicit the ve-
locity of light c since we are interested in the nonrelativis-
tic limit c~~ . Our convention for the metric is
g„=diag(1, —1, —1); e" is the totally antisymmetric
tensor, with sign convention fixed by e ' =1. (We shall
use Greek letters for space-time indices and Latin letters
for spatial indices. ) N is a real, neutral scalar field, while

P is a complex, charged scalar field. The coupling to the
Abelian gauge field A„ is given by the usual covariant
derivative

D =a+ —'A
v ) c

The gauge action involves the field-strength tensor

F„=B„A —8 A„

(2.2)

(2.3)

Xcs= e" F„A +(D—„P)"(D"P)

and contains both the usual Maxwell term [first term in
(2.1)] and the Chem-Simons term [second term in (2.1)].
The strength of the Maxwell term is governed by the
gauge coupling e [with dimension mass X (velocity) ]
while the strength of the Chem-Simons term is governed
by the Chem-Simons coupling v [with dimension (veloci-
ty) ]. Note that since we shall restrict our attention to
the classical theory, gauge invariance is guaranteed
without any quantization condition on the dimensionless
parameter ac . [Even in the quantum theory such a con-
dition would not be necessary when the gauge group is
U(1).]

The model (2.1) is the bosonic portion of a model with
N=2 supersymmetry and admits static self-dual soli-
tons. The role of N=2 supersymmetry is to prescribe
the matter content and the couplings so as to guarantee
the existence of self-dual solitons. Evidence of a deep re-
lationship between N=2 supersymmetry and self-duality
has been known for some time in other related contexts. '

The model (2.1) interpolates between the model of Hong,
Kim, and Pac and Jackiw and Weinberg with pure
Chem-Simons interaction and the Abelian Higgs model
at the self-dual point, ' with pure Maxwell interaction, as
we now show.

In the pure Chem-Simons limit e ~ ~ with K fixed,
both the Maxwell term and the kinetic term for the N
field disappear from the Lagrange density. Moreover,
this limit requires the evaluation of N at
N= —(1/ac)~P~, as can be seen from the last term in
(2.1). The resulting Lagrange density is given by

Our starting point is the (2+ 1)-dimensional relativistic
Lagrange density

K C
(2.4)

2
F„F"+ F." F„A +(D„p)*—(D"p)

e
2

+ a Na&N ~y~' N+2e' " c' KC

(2.1)

and coincides with the model of Hong, Kim, and Pac
and Jackiw and Weinberg. In the pure Maxwell limit
K—+0 with e fixed the Chem-Simons term disappears
from the Lagrange density and the N field must be shifted
by —(1/ac)u, N=n —(1/vc)u . Further, upon taking
n =0 we arrive at the Lagrange density of the Abelian
Higgs model with parameters such that the scalar and
vector masses are equal, m~;ggs

=
mphQfoz eU /c 2.
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F Ft' +(D p)*(D"p) — (lpl —
U )4e' 2c

(2.5)

F F" + e—" F A + 8 NB"N1 v & va 1

4 2 Pv 4 Pv 2e2 P

m~ c~N~+g*i(t3, +i A )f —(D;f)*(D;f)
2e

This is the Bogomol'nyi model' which describes a system
on the boundary between type-I and type-II superconduc-
tivity and admits self-dual solitons.

We now turn to the nonrelativistic limit of the model
(2.1). To this end we note that the theory (2.1) involves
tie mass scales. Actually all three fields A„, P, and N
are massive but the (topological) vector mass m ~ generat-
ed by the Chem-Simons term' is equal to the mass of the
neutral scalar N:.

I~le'Ply=
3

—m, mg =m~=

I~le�'

c
(2.6)

', (lg I')' —~(2m+m~ )IWI'N—

(2.7)

where we have introduced r=sgn(t~). Note that we have
defined m and m~ to be positive. To consider the nonre-
lativistic limit we first substitute in (2.7)

This shows that in the limit c ~ oo (with tr and e fixed)
both the photon and the neutral scalar become massless.
The mass of the charged scalar instead remains constant
if we accompany the limit c~~ with the limit v ~ ~
such that U /c is constant. Accordingly, a nonrelativis-
tic expansion can be made only for the charged scalar t)It.

First of all we rewrite the matter Lagrange density in
terms of the masses m =m& and mz.

&'„„„=', I(&, + A, )yl' —(D, y)*(D,y)+ ', a„Na~N
C 2e

1—m'c'lyl' — m' c~Ni

e m&
p —~ 1+ pN,

8M. 2C2
(2.10)

which provides a second-quantized description of a Axed
number of nonrelativistic particles moving in 6-function
potentials with strength (e /4m c ) and interacting with
massive relativistic photons and neutral scalars. In the
next sections we will perform a classical analysis of the
equations of motion following from (2.10) and we will
show that (2.10) admits static self-dual solitons.

In the pure Chem-Simons limit e ~ m (and therefore
m„~ Oo) with tr (and therefore m) fixed, the neutral sca-
lar N has to be evaluated at N= —(1/2mctr)p and the
Maxwell term and the kinetic term for N disappear from
the Lagrange density. This leaves us with

Xcs= e" F„—A + /*i(Bt +i A o )f
4

2m ' ' 2mc
I
~

I

(D;g)*(D;g)+ (2.11)

which is the Lagrange density of the nonrelativistic
Jackiw-Pi model, with self-dual solitons governed by the
Liouville equation.

III. EQUATIONS OF MOTION
WITH STATIC, SELF-DUAL ANSATZ

In this section we analyze the equations of motion for
the "nonrelativistic" Maxwell-Chem-Simons model de-
scribed by the Lagrange density (2.10). Varying with
respect to the fields g* and N we obtain the equations of
motion

1 2 - 2—
(e

—imc tq+ imc tq s
)

&2m
(2.8)

mz
i(t3 +i Ao)f+ D D P ~ 1+ Ng

2m 2'

and drop all terms which oscillate as c —+~. Keeping
only dominant inverse powers of c gives

„„,~/*i(t)t+i Ao)g — (D;g)*(D;g)
2m

4c It~lm'~
pg=0,

1 pl g c mz
m c N2+ ~ 1+ p=0

2m

(3.1a)

(3.1b)

+1' "i(8t —i Ao)p — (D, p)*(D,p)

2e' " 2e'

where p is the nonrelativistic number density p=g*P.
Varying with respect to the gauge Aelds A„ leads to the
equations of motion

2 Pl g
q (p+p) —w 1+ (p+p)N . (2.9)

Sm 2C2 2'

Here p and p are the particle and antiparticle densities,
respectively, p=g*P, p=i)'j*g. Particles and antiparti-
cles are separately conserved by the interactions in (2.9).
Therefore we may work in the zero-antiparticle sector by
setting /=0. This gives us a Lagrange density

1 v 1BF" +—e ~F =—J
e 2 ~ c

where J is the (conserved) matter current

J =(cp, J')

(3.1c)

(3.2)
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Note that the time component (v=O) of (3.lc) is the
Chem-Simons modified Gauss law

Given the ansatz (3.5), the equations of motion
(3.4a) —(3.4e) reduce to

0;E'—e vB =e p (3.3)

1 Ply Ply—Aog+ D;D, g el+—. NQ —
2 pQ=O,

4c~K~m'

(3.4a)

( —V~+ m„c)N + r 1+ p=O,
2m

(3.4b)

CPl g
V Ao+cm„rB+

~ ~

p 0,
EPl g

(B +lid, )(B+ mc„rAQ)= [g[(D, +iD2)f]*2Km

(3.4c)

—4*(D i
—&D2 W ]

where B is the magnetic field B= —e'~B, 3 and E' is the
electric field E'= —i3;A —(1/c)B, A'. [The e (rather
than the familiar e) on the right-hand side of (3.3) is sim-

ply due to the fact that we have absorbed the coupling
constant e in the gauge field, according to (2.2).]

We shall seek static solutions to the equations of
motion, in which case (3.1) simplify to

1 Pl g—Ap+ B—& 1+ — N-
2Plc 2m

Pl g
2 p =0, (3.9a)

4c iKim'

m~c mg
(
—V +mac )N+ r 1+ p=O,

)K/ 2m

CPl gVA +cm rB+
~ ~

p

mg
B+cm~~dp+ p=o .

2Ix~m

(3.9b)

(3.9c)

(3.9d)

Note that Eq. (3.4a) becomes (3.9a) since
D;D;P=+(I /c)BQ when the self-dual ansatz (3.5) is
satisfied. Also, given (3.5), Eqs. (3.4d) and (3.4e) may be
combined and integrated to give the single equation
(3.9d). These equations (3.9a) —(3.9d) must of course be
supplemented with the self-duality relation between B
and p given by (3.8).

This system of equations (3.8) and (3.9a) —(3.9d) may be
further simplified by simple algebraic manipulations. In
fact, as we have five equations relating four fields we ex-
pect further reductions. For example, combining (3.9a)
and (3.9d) we find a linear relation between N and Ao:

(3.4d)

le g
(a, —ta, )(B+cm„rA, )= I1([(D, tD, )P]*-

2Km
4*(Di+iD—2)4] .

Pl g1+~
2Pl

p o

1+
2Pl

(3.10)

(3.4e)

Note that the combination of (3.4c) with (3.4d) and (3.4e)
exhibits the massive nature of the photon. %'e can fur-
ther simplify this system of equations by making the self-
dual (anti-self-dual) ansatz

Inserting this into (3.9b) we find that consistency with
(3.9c) and (3.9d) demands that the + ( —

) sign corre-
sponding to self-duality (anti-self-duality) must be corre-
lated with the sign ~ of the Chem-Simons coupling con-
stant ~ as

(D, +iD2 )/=0 (3.5)
(3.1 1)

for the gauge fields 3; and the nonrelativistic charged
matter field P. Suck an ansatz is motivated by previous
work in other (2+1)-dimensional matter-gauge field
systems involving Chem-Simons terms where self-duality
has been found to play an important role. It is of course
clear from Eqs. (3.4d) and (3.4e) that the ansatz (3.5) will
simplify the equations of motion considerably. Further-
more, we shall see in the next section that the self-dual
Bogomol'nyi equations (3.5) must be satisfied for a static
solution of minimum energy.

Expressing the charged nonrelativistic matter field f as

(D, il.D2)$=0, — (3.12)

and the 3 p and B fields may be eliminated from the equa-
tions of motion (3.9) leaving the two coupled equations

[i.e., self-duality (anti-self-duality) requires K to be nega-
tive (positive), just as in Ref. 5]. This correlation then
implies that N= —rAO, and that Eqs. (3.9b) and (3.9c)
become identical' [using (3.9d)].

With this sign correlation the ansatz (3.5) may be con-
veniently written as

i co/c 1/2

the self-dual (anti-self-dual) ansatz (3.5) implies that

(3.6) m&c Pl&
( —V +m„c )N= —r 1+ p, (3.13a)

3 = —8 su+- —e'~B lnp .J (3.7) m&
P lnp = p+ 2am ~ % .

m /Kfc
(3.13b)

B=+—V lnp .
2

(3.8)

Thus the magnetic field is related to the nonrelativistic
number density p as These equations may of course be further combined to

yield a single highly nonlinear equation for the nonrela-
tivistic charged matter density p:
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27 lnp=-
c/~[

m2 c2+ V~
mg

2m
m2 c2 —V'2

A

Too= (E2+B2)+ (g N)21 1

2e 2e c

+ (B,.N )'+ m '„c'N'+ [D,@I'
2m

mg

c /lc) c /~/ 2m, =, (m „'c')'
mg e+~ 1+ Np+ 2 2p2m Sm c

(4.2)

(3.14)

2V' lnp+ p=O . (3.15)

It is interesting to note that in the pure Chem-Simons
limit m~ ~ ~ (with ~l~~ and m fixed) this equation
reduces directly to the Liouville equation' cm&

V Ao+ (I~B+p)=0 .

Thus the static energy may be written as

(4.3)

With static fields, B,N=O and the electric field is just
E'= —8;3, where 3 is expressed in terms of the mag-
netic field B and the number density p via Gauss' law [see
(3.4c)]

This is not altogether surprising since in this limit the
Maxwell term and the N field disappear from the
Lagrange density (as discussed in Sec. II) leaving the non-
relativistic Lagrange density of the Jackiw-Pi model, in
which the static self-dual ansatz leads directly to the
Liouville equation (3.15) for the matter density p.

We shall postpone a detailed discussion of the equa-
tions (3.13a) and (3.13b) until Sec. V where we will show
that the asymptotic behavior of solutions may be deduced
and is sufficient to determine such global quantities as
charge and Aux.

IV. SELF-DUALITY AND
MINIMUM ENERGY CONDITIONS

] cmg 1g=c f d x B —(~B+p) (~B+p)2e' p2

+ N(m~c —V )N+ ID, QI

mz e+r 1+ Np+ p . (4.4)
8m 'c'

We now note the identity

~D; g~
= ~(D, +iD2 )g~ + m e' 8;J + Bp, —1

c
(4.5)

where J' is the spatial part of the conserved current (3.2).
The conservation law (or continuity equation) for this
current

B,p+8, J'=0 (4.6)
In this section we show that in the static case the ener-

gy of our system with Lagrangian (2.10) may be written
as a sum of manifestly positive terms. Thus the energy is
bounded from below by zero. Clearly this lower bound is
saturated when each of these terms vanishes separately.
We will see that these conditions for minimizing the stat-
ic energy functional lead to (first-order) Bogomol'nyi'
equations which are the same as the (second-order) static
equations of motion with self-dual ansatz (3.5). Thus, just
as in the Jackiw-Pi model (nonrelativistic, with no
Maxwell term), the static self-dual solutions correspond
to zero-energy configurations.

Given the Lagrangian (2.10), the total energy is the
spatial integral of the energy density cT

implies that in the static case J' is transverse: J'=e'~B.j.
Thus for sufficiently well-behaved currents we can neglect
the second term in (4.5) when it is integrated over all
space in the energy.

Before using the identity (4.5) in the expression (4.4) for
the static energy 6 we note that the expression for 6 in-
volves r=—sgn(v). Thus in inserting (4.5) into (4.4) we can
choose to correlate the + sign with ~ in one of two ways.
Motivated by the preceding section we choose ~= +. In
fact, this choice will lead to an expression for 6 which is
a sum of manifestly positive terms, each of which van-
ishes when the equations of motion together with the
self-dual ansatz are satisfied —had we chosen the other
correlation (r=+) this would not be the case. Thus, with
this choice we write

C= fd'xcT (4.1)

fd'x ~D, g~'= fd'x ~(D, irD2)g~' — —r fd'x Bp, —

where the time component of the nonrelativistic energy-
momentum tensor is so that the energy is given by

(4.7)

e=c f d'x 1 mac8 1—
2e p2

1 cmw 1 1 ~ 2 2 1B 7m„cB p
——

p p+ N(m~c —V' )N+ ~(D, —irD2)g~
V& 2~&~

2

Bp+w 1+ — Np+ p2mc 2m 8m c
(4.&)
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We can now complete the square in the N field to obtain

fd x~(D, i—rDi)g~ +
2 fd x N+r 1+

~ ~ 2 p2m 2e 2m (m ~~ c —V2)

+c fd'x 1 B
2e

em& mz 1X(m„c —V' ) N+r 1+ 22 2P2m (m&2ci —V2)

2 2mac
2~x~ V2

B vmgcB p p p
— Bp

2

em& mg+ p — 1+ pgm'c' 2 libel

1

2
(4.9)

cmg mg 11+ p(m2 c2 —V2)

The first two terms in (4.9) are manifestly positive, the first being a square and the second a quadratic form of the posi
tive operator (mac —V' ). Remarkably, the rest of (4.9) is also manifestly positive, as is clear when it is expressed as a
quadratic form of the positive operator [(m z c —V ) / —V' j. In fact,

r

f d x~(D, i'~)g—~
+ f d x N+r

2m 2e

2 2 2 cmg mg
X(m„c —V ) N+r 1+

22m (m ~ ci—Vi)

2mm c +V
m2 c2 —V2 P

m 2 c2 —V2

—V2

mgB+r 2mmgc +V
m c —V

p (4.10)

This expression (4.10) for the static energy functional
proves our claim that it may be written as a sum of mani-
festly positive terms. The Bogomol'nyi' minimum-
energy conditions are now seen to be

(D, i rDi )$=0—, (4.11a)

(4.11b)

p=O .

V. ASYMPTOTICS AND GLOBAL
PROPERTIES OP THE SOLITONS

2 2 2 cmg mg
(m~c —V )N+r 1+ p=0,

2m

m~ 2mm~c +VB+ 22 (4.11c)
2m ~w~

Note that (4.1la) is the self-duality condition (3.12) with
the consistent choice (3.11) for the sign of the Chern-
Simons coupling parameter ir. Equations (4.11b) and
(4.11c) are identical to (3.13a) and (3.13b), respectively,
with the relation (3.8) between the magnetic field B and
the charge density p implied by (4.11a). This shows that,
while in Sec. III self-duality was a convenient ansatz for
simplifying the static equations of motion, here the condi-
tion of minimum static energy forces the self-dual (anti-
self-dual) condition (4.11a). We may then use the results
of Sec. III to see immediately that the minimum (static)
energy configuration, given by the conditions (4.11),
satisfies the equations of motion. We shall call nontrivial
solutions of (4.11) static Maxwell-Chem-Simons solitons.

1r )) X= —wio=-
mgc

1 + p . (5.1)
m„c)ref 2m

Inserting this in (3.13b), we obtain the Liouville equa-
tion'

2V' lnp+ p=0,
c

/

a.
i

(5.2)

which, as expected, coincides with the number density
equation in the Jackiw-Pi model.

The most general radially symmetric and positive solu-
tion of (5.2) with p vanishing at spatial infinity involves
two parameters ro and n (which can be chosen to be posi-
tive):

such as charge, magnetic Aux, and angular momentum.
At the end we will specialize to radially symmetric solu-
tions.

The starting point for the asymptotic analysis is the
system of coupled equations (3.13) (we recall that
N= rAO). The—key observation is that the Chern-
Simons term is lower order in space-time derivatives with
respect to the Maxwell term and therefore dominates the
long-distance physics. For large r—:~x~ we should there-
fore recover the equations of the Jackiw-Pi model. In
fact, for r ))1/m~c the Laplacian can be neglected with
respect to the mass term in (3.13a) and therefore N is pro-
portional to p:

In this section we discuss the asymptotic behavior of
the static self-dual solutions. This will enable us to derive
certain global quantities characterizing these solitons,

4n'c /~[p(r) =
p 2

7l n

+
ro

(5.3)
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Using (3.8) and (5.1) this implies the following asymptotic
behavior

r~oo: P
1= ——N-r0

B-r
Ei xir —e—2

(5.4)

E' 2
An immeaiate consequence of these asymptotic behaviors
is that the electric field does not contribute to the in-
tegrated Gauss law,

f d x c);E'=0,

and therefore we obtain the usual relationship between
Aux and charge dictated by the Chem-Simons part of the
Gauss law (3.3) [note that the 1/e in the definition of the
magnetic Aux N is due to our absorbing the coupling con-
stant e into the gauge field, according to (2.2)]

27TC E'n+—
2

Q=2~cl~le n+— (5.8)

where n is the number of zeros of lgl in the finite plane
(counted with multiplicity). This second type of solution
can be viewed as a composite of the "bare" soliton with n
vortices located at the zeros of

l
ij'jl.

The total angular momentum of the solitons is the sum
of the contributions from the nonrelativistic matter g and
the gauge field A;. In fact, the momentum density of the
neutral scalar N vanishes for static solutions, so

discuss radially symmetric solutions.
The Aux and charge of this second type of solution can

be computed by adding to the contribution from spatial
infinity the contributions of all the zeros of lgl in the
finite plane. These are obtained by encircling the loca-
tions of the zeros with infinitesimal lines, integrating
[—(1/e) A;] along these lines, and adding the contribu-
tion from the rest of the finite plane [where
B=(rc/2)V lnp] of which the infinitesimal lines form
now the boundary. Thus the contributions to Aux and
charge from zeros of lP in the finite plane arise purely
from the vorticity, giving a total Aux and charge of

1 Jde

Q=e d xp.
(5.6)

(5.9)

This is a consequence of the electric field being short
ranged due to the damping caused by the topological
mass m „=

l
Icl e /c. The magnetic field is also short

ranged for the same reason; however, the gauge-variant
potential A; is long ranged, giving a nonvanishing contri-
bution to the magnetic Aux. '

We must distinguish two types of solutions to the cou-
pled system of equations (3.13). The first type is when

lpl =p' has no zeros in the finite plane. In this case B is
given everywhere in the finite plane by (rc/2)V lnp and
the only contribution to the Aux and charge comes from
spatial infinity:

The momentum densities II& and O'A are given by

II~= — [g*(D;g)——(D; g)*g]=c Imf*D, g, (5.10a)

O' = — F iF'1
A 2 je

(5.10b)

rr&= ~"a p . (5.1 1)

An integration by parts (with no boundary term since p
vanishes more rapidly than r at spatial infinity) then
leads to

Using (3.6) and (3.7) we can rewrite the matter momen-
tum density of the static self-dual solutions as

e= —r —,Q =2~c llcle —.
27TC 6

2 2
(5.7)

vc
Q (5.12)

These are the "bare soliton" solutions. A second type of
solution arises when lPl has zeros in the finite plane. At
the locations of the zeros V lnp becomes singular. How-
ever, singularities in the magnetic field can be avoided by
choosing the phase co in (3.7) to be discontinuous, so that
singularities in —c), co cancel those in (rc/2)e'~c). lnp, and
the total gauge field 2, and the magnetic field B are regu-
lar. Such cancellations require a discontinuity in cu of
( r2vrcn ) when an nth-orde—r zero of lpl is encircled. To
ensure single valuedness of /=exp(iso/c ) lPl when a zero
of lpl is encircled, one must then require the quantization
of n in integer units. This shows that zeros of lpl in the
finite plane lead to a nonvanishing vorticity. We will give
a detailed example of this mechanism below, where we

cF„=— d x B(x'E') .
1

e
(5.13)

This gives the total angular momentum of the soliton as

1C Q— 1
d xB x'E' (5.14)

In the pure Chem-Simons limit e ~ oo (v fixed) the
gauge contribution gz vanishes, as is clear from (5.14).
This is because there is no energy-momentum tensor as-
sociated with the Chem-Simons term, it being indepen-
dent of the metric.

where Q is the total charge (5.8). The gauge field contri-
bution to the angular momentum can be written in com-
pact notation by using Fij = —e'iB:
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We now discuss radially symmetric solutions. In this
case the field P takes the form

ei(co/c)9 1/2( (5.15)

1 4S cia.
ir)):p(r) =

mac

and the solution for r))1/mac takes the form (5.3). In
the pure Chem-Simons limit e =m„c/~a~~ cc (ir fixed)
this solution extends all the way to r =0 and absence of
singularities and single valuedness of P require
lim, n =S, with S =integer) 1 and co= —rc(S~ oo—1)0. However, since n is independent of e [clearly
e =mac /~v~ does not enter (5.2)j and assuming smooth-
ness of the limit e ~ cc, the solution for r ))1/m„c is

given by

of p between r =0 and I' = ~ would cause a singularity in
3;). Therefore the fiux and charge of the radially sym-
metric solitons are given by

e= —r 2S, Q =2~ce I~I2S .
2'7TC

(5.21)

bare 1

cfp

Note that the matter contribution to the angular momen-
tum of the "bare" soliton (S = 1), 8&"'=4~c x., is "dual"
to the angular momentum 8~ of an elementary matter
particle' in the sense

S=integer~ 1 . (5.16)
VI. CDNCLUSIQN

In the region r «1/mac instead, the mass term is negli-
gible with respect to the Laplacian in (3.13a). Therefore
N( = —r Ao) vanishes with two powers more rapidly than

p for r~0; for r &&1/mac, r &&1/mc, the inhomogene-
ous term in (3.13b) can be neglected, leaving the Liouville
equation

2
T lnp-

2m cv~
p=0

with positive, radially symmetric solution

(5.17)

4M c~~~ 2m
p

p mg
(5.18)

where M can be chosen to be positive. In order to avoid
singularities the scale r, has to be chosen
r& =O(l/mac, 1/mc) or bigger, leaving

2~ —2r«, : p-r
mac mc

2M —2

2M
0

Ei i 2M —2

(5.19)

; x~
A; = c3;n)+rce'i (M——1) .

l"

To avoid a singularity at the origin we require M 1. A
singularity in A, can then be avoided by choosing

co= —rc(M —1)0, (5.20)

and single valuedness of g given by (5.15) requires M to
be an integer. Moreover, since co is independent of r we
have to identify M with the integer S characterizing the
solution for r &) 1/mac. Note that, as we have argued in
general before, the solution is characterized by the num-
ber e determining the behavior at spatial infinity, in this
case e=2+2S, and by the number of zeros in ~g~, in this
case S—1 zeros all located at the origin (additional zeros

To conclude we first briefly summarize our results. %'e
have considered a nonrelativistic limit of the relativistic
model of Lee, Lee, and Min which itself is the bosonic
portion of an X =2 supersymrnetric theory. This relativ-
istic theory describes a charged scalar field interacting
with a massive Abelian gauge field (having both a
Maxwell and a Chem-Simons term in the Lagrangian)
and a neutral scalar field of the same mass. In this paper
we have analyzed the nonrelativistic limit in the charged
matter sector. A self-dual ansatz plays a natural role in
the analysis of this nonrelativistic theory and reduces the
equations of motion to two coupled nonlinear equations
for the number density and the neutral scalar field. In
the limit in which the Maxwell term is removed the neu-
tral scalar decouples and the remaining equation for the
number density is just the Liouville equation, as found
directly with the pure Chem-Simons coupling by Jackiw
and Pi. In the full Maxwell-Chem-Simons theory the
static energy functional is shown to be a sum of manifest-
ly positive terms. Minimizing the energy leads to a self-
dual configuration which also solves the second-order
equations of motion. Finally we have discussed the
asymptotic behavior of the important fields in the static,
self-dual case and thereby determined the charge, mag-
netic fI.ux, and angular momentum of these Maxwell-
Chern-Simons solitons.

This model raises a number of interesting questions
which deserve further investigation. First of all, it would
be important to have a more clear physical understanding
of the relationship between the %=2 supersymmetry
condition (in the origin model of Lee, Lee, and Min ), the
self-duality condition in the static theory, and the vanish-
ing of the static energy in the nonrelatiuistic theory (both
with the pure Chem-Simons coupling and with the
Maxwell-Chem-Simons coupling discussed in this paper).
On a more fundamental level, the quantum significance of
these classical soliton solutions in the nonrelativistic
theories remains to be understood. This may also have
important implications for the theoretical analysis of
quantum phenomena in planar condensed-matter systems
where the charged particles are nonrelativistic.
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