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We give a formulation of gauge theories in a six-dimensional superspace in which the additional
two dimensions are anticommuting. We write down an action that is gauge invariant under gauge
transformations in six-dimensional space and has invariance under rotations in this space. This ac-
tion, when reduced to four dimensions, naturally contains the composite operators and their sources
that one introduces in order to discuss the renormalization of gauge theories using the Becchi-
Rouet-Stora transformation. It is shown how the six-dimensional theory can be reduced to yield the
usual results of four-dimensional theory.

I. INTRODUCTION

The renormalization of gauge theories has been studied
extensively. ' In the renormalization of gauge theories
and especially that of gauge-invariant operators, a
great simplification results when one takes into account
the Becchi-Rouet-Stora (BRS) symmetry, as this enables
one to formulate the Ward-Takahashi (WT) identities
(which are a result of underlying gauge invariance) in a
compact and mathematically convenient form. ' A brief
analysis of the formulation of WT identities is given at
the beginning of Sec. II.

In the formulation of WT identities using BRS invari-
ance, one has to naturally consider two composite opera-
tors (in linear gauges), viz. D„pc~ and ,'f ~rc~cr which—
occur in the BRS variations. As the Green's functions of
these composite operators enter the WT identities, the ac-
tion for the gauge theories has to be modified by intro-
ducing sources for these composite operators. The WT
identities for gauge theories and for insertion of gauge-
invariant operators are then cast in a very simple form:

0'r=a,
where 0' is a nilpotent differential operator, 0' =0. (We
suppress here the details which are given in Sec. II.) The
presence of a nilpotent operator is suggestive of its rela-
tion to an anticommuting variable 0 through a possible
relation of the kind 9'=3/c)8, for then 0' =0 would be
automatically guaranteed. This suggests that we try to
formulate gauge theories in a superspace.

With this aim, in this work we shall attempt to formu-
late Yang-Mills theories in a six-dimensional superspace
in which the two extra dimensions are anticommuting.
(The choice of the superspace is justified by the results
and by the fact that the two composite operators D„~c&
and ,'f trc~cr must naturally —arise in this formulation. )

The aim is to formulate the gauge theories in this super-
space in such a manner that the whole action including
the source terms for the composite operators is accomodat-
ed in a single superspace action.

To this end, we first formulate a "larger" theory con-
sisting of superfields A„(x,A. , O) (p, =0, 1, . . . , 5) and

g(x, A. , O) defined on the six-dimensional superspace
(x, i, , 8). This theory has a generalized gauge invariance
in this superspace (except for the gauge-fixing term), and
the Lagrange density is a scalar under rotations in the
six-dimensional superspace (with a metric). In addition, a
superfield K„(x,A, , O) of sources is also introduced. This
theory, when broken up in terms of the component fields
in four-dimensional space, can be shown to be related to
the usual Yang-Mills theory. This formulation thus ex-
hibits an underlying superspace symmetry of the Yang-
Mills theory.

We shall briefly present the plan of the paper. In Sec.
II we summarize the results on the formulation of WT
identities using BRS invariance and introduce superspace
notations. In Sec. II we shall introduce the superspace
action of a "larger" theory and simplify it in the four-
dimensional notation. In Sec. IV we shall establish the
correspondence between the generating functionals of the
superspace theory and the usual Yang-Mills theory.

The final aim of our work is to establish the WT identi-
ties for the Yang-Mills theory in terms of the generating
functional of the superspace theory, where we expect Eq.
(1.1) to be reexpressed in a simpler form. This has appli-
cations in a simplified treatment of the renormalization
problem of gauge theories and of gauge-invariant opera-
tors. This part of the work will be presented in subse-
quent work. ' In this work we shall be content with es-
tablishing the contact between the superspace theory and
the usual Yang-Mills theory with composite operators in-
troduced.

II. PRELIMINARY

A. Review of gauge theories

The unrenormalized but dimensionally regularized
Green's functions of gauge theories are derived from the
effective action (in linear gauges) in the usual notation:

X„[A,c,g]=Z, I A] ,'g, f d —x—IBA(x)]'.
+ f d x a"g (x)D„~c&(x), (2.1)

where
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Xo[ A ]= —,' f—F„,(x)F "'(x)d x, (2.2)

5A„(x)=D„~c~(x)5A,

5c (x)= —,'gof ~—rc~(x)cr(x)5A, (2.3a)

which is the gauge-invariant action, and c and g are the
ghost and antighost fields.

It is well known that the above action X,s is invariant
under the BRS supersymmetry transformations:

(2.4). In Eq. (2.4) it has not been necessary to introduce a
source for the gauge-fixing term f [A] because in linear
gauges f„[2] is not a composite operator. But one can
introduce a source for it (which becomes necessary when
dealing with bilinear gauges. Then

S[A,c,c,g, K, l, t)=S —,' J—dx[f (A)+t ], (2.5')

where an additional field-independent term
2—

—,
' fd x t (x) has been added for future convenience.

g (x)= —iloB A (x)5A . (2.3b)
B. Notation

(2.4)

Here ~ and l are two new sources for the composite
operators mentioned above.

This action without its gauge-fixing term, i.e.,

S=S+—,'rlo Jd x[0 A (x)]:—S+—,
' Jd x f [2], (2.5)

has the following properties.
(a) On account of the BRS invariance of the two com-

posite operators mentioned above, S is invariant under
the BRS transformations of (2.3a), just as

+s,'rlof d —x(i3 3 ) is.
(b) It has a simple property:

5S 65 6S 6S
5A„(x) 5ir„(x) 5c (x) 5l (x)

(2.6)

Its (renormalized) analog is preserved under renormaliza-
tion to all orders.

(c) When gauge-invariant operators are included in ad-
dition to S, the necessary counterterms satisfy

O'O[A, c,g, K, l]=0,
where 9' is expressed simply in terms of S:

6S 5 6S 6
5A „(x) 5ir„(x) 5i~„(x) 5A „(x)

5S 5 6S 5
5c"(x) 5l "(x) 5l (x) 5c (x)

.d4X

For these reasons we shall be interested in the super-
symmetry of S rather than that of X,s only.

We now wish to modify slightly the form of S of Eq.

It is known that the discussion of the renormalization
of X,s. (alone or with additional gauge-invariant terms)
involves the discussion of the renormalization of the two
"external" composite operators D„c (x ) and

,'gof ~r—c~(x)cr(x)and therefore is more convenient to
consider instead of X,z..

S [ A, c, g, ir, l ]=L,s+ Id x s "(x)D„~c~(x)

+ d X —,gp~ X INC~X C~ X

We shall work in a space of six dimensions, four of
which x" denote the usual space-time, and k and 0 are
the other two anticommuting coordinates. Generally, we
shall use an overbar to denote things in six-dimensional
space. Thus x =(x",X, O). The superfields will be func-
tions of x.

Unless otherwise stated, we shall always use the left
derivaties when they are with respect to anticommuting
quantities. [The left derivative of a function X(x) with
respect to, say, X is defined by

BX(X)

c}k
(2.8)

We may for compactness write this left derivative by

We shall choose the metric in this space to be g„=g„
[0 ~ p, v ~ 3]; —

g45 =g54 = 1. Here g is the standard
Lorentz metric diag(l, —1, —1, —1), and the rest of the

g „'s not defined above are zero.
Any X(x) can be expanded in powers of k and O

(A, =O =0) as

X(x ):—X(x)+AX i (x)+OX s(x)+AOX is . (2.9)

All the coefficients (of l, A, , O, A, O) are functions of x only
and, evidently,

X i. =X i. ~ii 0=Xi, —OX i.s,
X s=X s~i O=X s+AX is ——X g

—AX si

and also

(2.10)

X(x )=X(x)+AX i +OX &=X(x)+AX i+OX s .

(2.1 1)

C. Gauge superfields

We shall introduce a gauge superfield on the super-
space A „(x)=(A„(x ),c~(x),c5 (X)) and assume that it
transforms like a covariant vector under coordinate
transformations in the superspace that preserve g x "x .
These transformations are elements of OSp (3, 1 2).] In
the coordinate frame in which the first four coordinates
in X are identified with the space-time, A „(x)

~ i & o can
be identified with the gauge field A „(x),while c4 (x) and
c ~ (x) will become related to the ghost field c (x).

The definitions of covariant derivatives and field
strengths can be generalized easily for these superfields.
Thus a gauge transformation characterized by
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infinitesimal parameters I co (x ) ] is defined by

A „(x)~A „' (x)= A „(X)

+ [o ~B„gf—~r A r(x ) ]co (x ) .

(2.12)

The field strengths defined by

F„(x)=c)„A,(x )
—A „(x)r) +gf ~~A ~(x) Ar(x)

(2.13)

are then covariant under the gauge transformation (2.12).
We note the slight modification in the second term on the
right-hand side (RHS) of Eq. (2.13) done in order to make
it applicable for anticommuting dimensions. [ A „(x)B,is
the right derivative. ] We note that while

F„(x) = F„(x—), p ~ 3, and/or v ~ 3,
as usual, we have

&o[A ] = —
—,'g" g

' F„(x)F i (x ) . (3.2)

[g is the inverse of g: g ~' g"', 0~p, v~3; g
=g&4= 1=—g .] Evidently, Xo[ A ] is Lorentz invariant
and gauge invariant in the generalized sense, and con-
tains Xo[ A ] as a part. We now proceed to evaluate it:

F;.=a, A:(x ) a.c, (X—)+gf ~rc~(x )A px)

We have thus, in addition to the gauge-invariant La-
grangian Lo and the ghost term (Bg);(Dc );, two addition-
al terms with sources K, and l for the two composite
operators. Our object in this section is to observe that if
certain identifications regarding 2„& and 3„0 are
made, the above action (with both sources a. and I) can be
expressed as a gauge-invariant, coordinate-invariant (in
superspace) action expressed in terms of the superfields
only.

Consider the expression

F„,(x)=F „(x), 4~@,v~5, (2.14)

III. SUPERSPACE ACTIONS

which is as it should be since p and v refer to anticom-
muting indices.

We shall also introduce the antighost field P(x ) and
assume that it is a scalar under OSp (3, 1 2) transforma-
tions.

+D ~c~ = —Fo, A. o. 4 0.4

F =A +D ~c~= —F5o oO o 5 o5

F;,=2c, ,+gf 'c,c,
i

F =2c +gf ~rc~ci',

F,5 =c~,+c, ,+f c,c)' =F

(3.3)

In this section we shall make an observation which will
have a suggestive significance regarding what will be
done in the later sections. Some of the details of the dis-
cussion in this section will have no direct use later.

As stated in Sec. II A, what enters naturally in the dis-
cussion of renormalization in gauge theories is

S[A, c, g, lI]
=No[A]+ f d x[ir "(x)D„~c~(x)

+ ,'g l (x)f ~rc~(x)c—r(x)] .

(3.1)

Then,

No[A ]=—
—,'F„(x)F"'(x) F4 (x)F, —(x)

,'Fqq(x )F55(x—)+,'F45(x)F54(x—). (3.4)

[Note that since F„(x) in the first term does not carry a
bar over it, p, v range only from 0 to 3. So also 0~ o. ~ 3
in the second term. ]

Using Eqs. (3.3), we get

X~[A ]=—'F„,(x)F" (x)—(A —+DJ c~)(A +DJ c~)—
—,'(2c +gf ~i'cocci')(2c +gf ~i'c~cf)

+ —,'(c4 +c5 z+gf ~~c~~cf) (3.5)

We now wish to make an observation. Suppose one
makes the following identifications.

(i) A, refers to the same anticommuting parameter that
enters the BRS transformations of Eq. (2.3):

Xo[A]= ~F F" +2A —sD ~c~

+c 'gf ~i'c~cr+ —,'c—
, 02 , g

where we have used

(3.8)

(ii) c4(x)=c, (x)= —c (x); (3.6) (f ~rc~c~) =0, (3.9)
i.e., if we let, in particular,

i„(X)= Dfc~(x ), —

c4 i (x ) =c
~ i (x ) = ,'gf ~~c~(x)c (x), —

we obtain

(3.7)

on account of the Jacobi identity.
Then, apart from the fact that all fields are functions of

x, the expressions (3.8) for %0[ A] and So of Eq. (3.1) are
identical if the sources (Ir„—B~P) and l are identified
with 2A & and c &, respectively.

Before discussing the significance of this observation,



1310 SATISH D. JOQLEKAR 43

we must make some technical comments.
(i) Equations (3.7) are consistent with

a
ax'

A (x)=0= c (x) .

(ii) In identifying l =c e, for example, we note that
l i is not independent, but determined by (3.7) via

czla A
=c w

= c gg.
This serves as a preliminary indication that it is possi-

ble for Xo[ A ] of Eq. (3.5) to generate the action of Eq.
(3.1); i.e., it has just the right operators in it. In Sec. IV
we shall actually derive a relation between the generating
functionals of the theory derived from Xo[A ] and the
usual Yang-Mills theory where this connection will be
shown explicitly to appear, but in a diferent way. [It
should be remarked that the identifications of Eqs. (3.6)
and (3.7) will have no direct bearing on the discussion in
Sec. IV.]

IV. RELATION BETWEEN GAUGE THEORY
AND SUPERSPACE THEORY

Xexp(iX[A, c,g, ~ ",I,j„,g,g, t ]),
where [see Eq. (2.5)]

X=S[A,c,c, —ir, —l, t]
+fdx[j "A„+g c +pg ]. (4.1)

We define the generating functional of the superspace
theory. Consider the generating functional

W[K(x), t(x)]=f [dA I Id(]exp(iS[A, (,K, l]),

the generating functional for the theory as formulated in
six-dimensional superspace. This is the relation of Eq.
(4.7) below.

We erst note that the generating functional of the ordi-
nary gauge theory is given by

W[j„,g, g, i~ ",l, t ]

DA DcD

The aim of this section is to establish the link between
the generating functional of the usual gauge theory and where (we set ilo= 1 for simplicity)

(4.2)

S[A,JK, l)=X~[A ]+f d x IK'(x)A, (x)+P(x)[B A (x)+ —,'P~(x)+t (x)]I, (4.3)

[dA I
—= [dA I [dc, I Idc ],

IdA ] =gdA„(x)dA„&(x)dA„&(x) (0~p, ~3), (4.4)

Idc5] =+dc~(x)dc~ &(x)dc5 &(X),

and similar definitions for [dc4I, Id/].
Here K ~(x ) is a supermultiplet (a contravariant vec-

tor) of sources on the superspace. As we shall show, it
essentially contains in it j„, v„, p, and l of Eq. (4.1).
t (x ) is a scalar [under OSp(3, 1~2)] source for the scalar
superfield P(x ).

We note that %0[A ] is (i) generalized gauge invariant
and (ii) generalized Lorentz invariant. The second term,
which violates both of these invariances, has a relatively
simple form and shall be shown to generate (i) a gauge-
fixing term, (ii) a ghost term, (iii) source terms for the
gague and ghost fields, and (iv) source terms for the com-
posite operators in (4.1). We shall be more precise about
these properties soon.

Before proceeding to prove the properties of W[K, t ],
we shall make two comments.

(a) A field over the superspace such as A „(x) contains
four independent fields over x for each a and p. [See the
decomposition of Eq. (2.9).] For each (a, p) we are in-
tegrating over only three independent fields for each x.
Thus W could be, in principle, a function of A „ie(x),
say, in addition to that of K and t. As we shall see, this is
not the case.

(b) For reasons of convenience, we have written the
measure as

dA„(x)dA„&(x)dA„&(x) (4.5)

even though A&(x), A„&(x), and A„e(X) contain in
them three, two, and two independent quantities in each,
respectively. Here it is assumed that the integrations
over 3 „& and 3„& are to be performed before integra-
tion over A„(x), etc. A„&& is always held fixed. Thus we
could have replaced (4.5) above by

dA„(x)dA „"e(x)dA „i(x) (4.6)

With the form (4.5), it is easy to show invariance proper-
ties of the measure, while the form (4.6) will be used while
performing the explicit integrations.

We shall now prove the following result, which relates
the generating functional 8 of the "larger" theory to
that of the ordinary gauge theory 8'viz. ,

W[K„&(x),K e(x), t (x),K "(x),K (x)]
= f [dK ][dK e]W[K,t], (4.7)

allowing one to deduce the properties of the gague theory
from that of W[K, t], which contains implicitly all the
extra sources, in a manner, so as to exhibit a gauge sym-
metry in superspace.

We shall first consider the g-integration.
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f Id((x)]exp i f d x I p(x)[B A (x)+ —,'pz(x)+r (x)]]4

= f [dg(x)]exp i f d x[ —PB„A g+P&(B.A +t )+ —,'(P&) +t gg ]

d x d ~x exp i dx — x+0 gx 0 Agx +tax

+ —,
' [Pg(x )] +Ps[8.A (x )+r (x )] I

X f dg q(x)exp i A. f—d x g q[B A s(x)+r g(x)]

Now the g z integration is

f [dg ~(x)] 1 ik f d—x g ~(x )(t &+8 A & ) = f [dg ~(x)]=(an infinite) const.

Here we have performed a symmetric integration over g &.

Thus the expression on the right-hand side of (4.8) becomes (= means up to a constant),

= f [dg]exp i f d x—P(x)[B A z(x)+t z(x )]

X f [d(,0]exp ~ f d xI —,'(p&) +p&[a A (X )+r (x) HB. A, (—x)—9r, (x)]]

~e perform the g & integration by completing the square. The result is

(4.8)

(4.9)

= f [dg]exp i fd'xI —p(x)[&@A g(x)+r;(x)] —
—,'[a A (x)+r (X)]'+e(a A +r )(a A;+&, )]

= f [dg]exp ~ fd'x[p[ rs —a A;—(x)]——,'[a A (x)+r (x)]'+g(a. A +r )[a.A;(x)+&,(x)]] (4.10)

The third term in the curly brackets vanishes because of the equation of motion for g(x).
Thus we get the expression for 8'.

~[&,t]=f [dA(X)][dg(x)]exp i f d x IXO[A ]
—

—,'[B.A (x)+t (x)] +K g(x)A, (x )

= f [dA(X)][dg( )]xpexi f d x[Xo[A(x)]—(A z+D ~c~~)(A z+D ~cI5)

—
—,'[8 A (x)+t (x)] +I7 '(X)A;(x)+17 '(x)A; (x)

—P[B.A z(x)+t z(x)]+pure ghost terms) (4.1 1)

We shall now perform the 3 & integration. We can safely omit terms proportional to 3 & that arise out of A
contained in A (x) [i.e., expanding by the use of A (x)=—A (x)+RA &+HA ~]. This is on account of the equa-
tion of motion for A (x). To see this, we write the exponent as

S[A(x);A g, A s, . . . ]= S Af —
, A „q(x)d x +A, f A „g(x)d x .

5A„(x) 5A„(x)

Now,

(4.12)

f [dA(x)]e' = f [dA(x)]exp i S Af —
, A „z(x)d x6S

5A„(x)

while an equation of motion for A (x) is

1+iA, f A „&(x)d x
5A „(x)

(4.13)
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0= f [d A (x)]exp i S —Af A „q(x)5S
5A (x)

A „z(x)d x
5A ~(y) 5A ~(y)5A „(x)

(4.14)

Thus multiplying the above equation by A, , we learn that the second term on the RHS of Eq. (4.13) vanishes, proving the
earlier statement. This sort of result will be used again several times later. In short only the terms explicit in 3
matter. The result of the 3 z integration is

8'[K t]= f [dc j [dc, ][dgj[dA jf [dA ] + (A ( )+D ~c~)
a, a, x

Xexp i f d x I/0[A] D~—c~~(A +D ~c~~) ——'(8 A +t ) +K 'A, z
—PB A z

+K &A, —Pt &+pure ghost terms) „
C7, A.

Now we perform integration with respect to 3 &, yielding

W'[K, t] = J tdc~ ] I dc, j [dg][dA]

(4.15)

Xexp i f d x Xo[A]—
—,'(8 A +t ) —(K "+d"p)D„~c~&—

—,'(2c4~+gf ~rcfc&~)

X(2c +gf irc~cf)+ —,'(c +c +gf ~~c~c() +E g'A„

C}Pt~ + (E~ c~ —K~ c
Qg A =0=A (4.16)

Next, we integrate with respect to c 4 z. [Again, we recall that the terms proportional Ac 4 z arising out of expanding
c4 (x ) are irrelevant on account of the equation of motion for c& (x).j Performing the c 4 & integration and then the c ~ &

integration successively (and, of course, using the equation of motion for c ~), we arrive at

W[K, t]=f [dA dgdc4dc, ][dc~ z][dc5 z]

Xexp i f d x[X [A] t (8 A —+—t ) (K "+—KP)(D„~c~)+ ,'(c 9+c—z+gf~~c~c()'

+K gA j t + (K c—)+K c —'gK f ~rc~c-C}p, O
, 0

4A, 50

(4.16b)

We change the variables to P=c& z
—c, z and 2g=c4 z+c5 z and perform the straightforward Gaussian integration

over q. One thus obtains

W' [E,t]=f [dc dc dA dgdg]

Xexp i f d x I%0[A(x)]——,'(8 A (x)+t ) [K "(x) +8"P—( )x] D~( )xc~~(x)+K g(x)A (x)

g(x)t s(x)+K s(x)c—4(x)+K g(x)c~(x) —,'gK (x)f ~~c~(x—)c((x)

,'gf P~c~(x )cj(x )(E—(—x)
—8K +RE )

+ —,'P(K —OK —
A,K ) j „ 4, A. 5, 0

(4.17)

The terms containing g explicitly (only which matter in the integration over g on account of the equations of motion for
c4 and c&—the proof is a little more tedius, which is needed also in the rj (integration) are

f [dg]exp i f d xP(x)[K (x)+A(K q(x)+K ~(x))] =+[5(K (x))+A[K ~(x)+E g(x)]5'(K (x))j
a, x

Thus,
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W[K, t]=+5(K (y)) J(dc~dc, dA dg) [1+,'gi—X[K i (y)+K s(y)]f ~~c~(y)cf(y)I
a,y

Xexp(i[2[A, c„(,K",K,K g",K ti; t—s]+ JK ~ (X)c~x I ), (4.18)

where X was defined in (4.1). Note that here the field arguments of X are functions of x„only while the sources in X are
functions of x generally.

In particular, performing an integration over K @ and then over c4,

dKg 8'K, t = 6 K y O'K;Kg, 't, K ",K (4.19)
a, y

i.e.,

dK4 dK4, W K, t =W K x,K,' x, —t, x,K &X,K" X, t

Thus the result of Eq. (4.7) is proven.

(4.20)
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