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Attractive or repulsive nature of Casimir force in D-dimensional Minkowski spacetime
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The dependence of Casimir energy (associated with a massless scalar field) on spacetime dimen-
sionality (D) is shown to be strongly entangled with the type of geometric bounds and the kind of
macroscopic boundary conditions imposed on the field. In the case of a massless scalar field satisfy-
ing Dirichlet boundary conditions in the presence of a hyperparallelepipedal cavity with p sides of
finite length i. and D —p —1 sides with length much greater than I., a new compact integral formu-
la, more suitable to analyze the nature of the Casimir force, is obtained. The force is attractive if p
is odd or for very large even values of p, irrespective of D. For each small even p there exists a criti-
cal spacetime dimension D, (p) such that the force is repulsive if D &D, and attractive otherwise.
As a consequence, the instability of the semiclassical Abraham-Lorentz-Casimir model of the elec-
tron is proved to depend on the spacetime dimensionality.

I. INTRODUCTION

The question whether the Casimir effect for different
geometries and spacetime dimensions gives rise to an at-
tractive or repulsive force between the configuration
boundaries that confine the field (and its physical conse-
quences) is up till now unsolved and will be discussed in
this paper.

Actually, in the general case of a D-dimensional space-
time the sign of the Casimir energy may depend on (i) the
spacetime dimensionality, (ii) the type of boundary condi-
tions, (iii) the number (p) of independent directions with
finite extension of the space region that constrains the
fields, (iv) the ratio of these finite characteristic lengths,
(v) other topological features of spacetime (e.g. , compact-
ness), (vi) the spacetime metric, and (vii) the temperature.

In this paper the consequences of (iv —vii) will not be
discussed and the interested reader is referred to Refs.
1 —10. However, it is useful to note that in Ref. 1 it is ar-
gued that the Casimir energy associated with an elec-
tromagnetic field quantized inside a perfectly conducting
box of sides L, , L2, and L3, may change sign depending
on the relative lengths, which indeed suggests a strong
dependence on p. In Ref. 2 a similar behavior is shown to
occur in the case of a massless scalar field in a three-
dimensional parallelepipedal cavity with Dirichlet bound-
ary conditions.

That there is a dependence on the geometric shape of
the cavity is evident from early exact computations of
Casimir energy at zero temperature, associated with
massless scalar and electromagnetic fields, for a few
different kinds of geometric configurations, such as paral-
lel plates, " ' a cube, " a cylinder, ' ' and a spherical
shell' in four-dimensional Minkowski spacetime.

The search for a unification scheme of forces in
higher-dimensional spacetime renders of physical interest
the question of what one can learn about particular

features of the Casimir effect in going to spaces with an
arbitrary number of dimensions. For a massless sca-
lar field quantized inside a box with p sides of finite
characteristic length of order L and D —1 —p sides with
characteristic length k))L, the sign of the Casimir ener-

gy density FD' depends crucially on the boundary condi-
tions. In the case of the Neumann and periodic bound-
ary conditions it is straightforward to see that ED~' is al-
ways negative. For Dirichlet boundary conditions, nu-
merical computations for different values of D and p up
to D =6 seem to indicate that the sign of Fz~' depends on
whether p is even or odd.

The main aim of this paper is to throw some light on
this kind of dependence and it is organized as follows: in
Sec. II the expression for the Casimir energy density cD'
in a D-dimensional Minkowski spacetime is obtained in
terms of a sum of Epstein functions. In Sec. III the sum-
mation is performed yielding a new compact integral rep-
resentation of ED~' which is more suitable to discuss its
sign. In particular, the above conjecture that the sign of
FD' depends on whether p is even or odd is discussed and
demonstrated to be only partially true. Indeed, when the
number of finite and equal edges of a rectangular box (p)
is odd it is analytically shown that cD'(0 for any D.
However when p is even we get a new and surprising re-
sult, namely, either the Casimir energy is always negative
irrespective of the value of D (this happens only when

p =30) or there exists a particular critical value of space-
time dimension (D, ), which depends on p, such that for
D (D„FD' 0, and for D ~ D„cD' is shown to be always
negative. Numerical results, giving an account of the
dependence of D, on p, as well as the Casimir energy den-
sities for several combinations of D and p are given in
Table I. Some concluding remarks are presented in Sec.
IV. In particular it is argued that, as a consequence of
the new results mentioned above, it comes out a new in-
sight on why, in a four-dimensional Minkowski space-
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TABLE I. Casimir energy densities for massless scalar fields satisfying Dirichlet boundary conditions inside a hyperparallelepi-
pedal cavity with p-even unit sides and u sides much greater than 1 in a D-dimensional spacetime with D =p+ u+ 1. D, is the criti-
cal dimension for each value ofp.

D,

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

4. 1X10-'
6.2 X10-'
1.1X10
2.2X 10
4.4X 10
9.4X 10-'
2.0X 10
4.5X 10
1.0X 10-'
2.2~10 '
5.0X 10
1.1X lo-'

2.3X10
3.0X10-"

—1.1X 10

4.8X10
5.0X 10
6.8X10
1.0X 10
1.8X10
3.2 X10-'
6.0X 10
1.1~10-'
1.9X10

2.4X 10
—4.4x10 "
—6.9X 10
—5.6X10 "
—4.4X10-"

8. 1X10
6.2X10-'
6.4X lo-'
7.8X 10
9.8X10-'
1.0X10-'

—1.6X10-"
—8.4X 10-"
—5.4X10-"
—3.1X10-"

1.2X10-'
4.7X 10
7.3X10-'

—6.4X10-'
—2.7~10 '
—1.0X10-'

—1.9X 10
—3 9X10
—7.0X 10

7
9
11
12
14
16
17
19
21
23
24
26
28
30
31

time, the semiclassical Abraham-Lorentz-Casimir model
of the electron fails. All these results, for the sake of sim-
plicity, were obtained in a D-dimensional noncompact
(Minkowskian) manifold where rectangular cavities are
constructed to trap the scalar field.

Useful mathematical results are given in the Appendix.

II. CASIMIR ENERGY OF A HERMITIAN
MASSLESS SCALAR FIELD IN A

D-DIMENSIONAL MINKOWSKI SPACETIME

In this section some problems concerning the zero-
point energy in quantum field theory are brieAy discussed
and the expression of the Casimir energy density is ob-
tained for the simple case of the scalar field.

To quantize a classical field theory in a canonical
quantization scheme one essentially needs to know the
operator algebra, the dynamical equations, and how to
construct physical states (including the vacuum state). In
such a scheme, the ordering of noncornmuting operators
in the field Hamiltonian is not fixed a priori, giving rise to
zero-point energies which are divergent. Thus, one may
wonder how zero-point fluctuations and the associated
energy should be interpreted.

This problem may be circumvented by arguing that ac-
tually one does not measure absolute energy values, but
only energy differences. This is exactly what is done
when Wick's normal ordering is imposed on the field
operators. Following this prescription, an infinite
amount of energy is subtracted from the vacuum state in
such a way that the net energy results to be zero. An im-
portant argument supporting this procedure is based on
the demonstration that the expected value of the energy-
momentum tensor in the vacuum state should be zero to
ensure that the correct commutation relations of the Lie
algebra are indeed satisfied by the generators of the Poin-
care group. This result clearly depends on the fact that

a vacuum state is defined on a space with no bounds. But
what happens when fields are to be quantized in a
confined spatial region? How does one interpret zero-
point fluctuations and the associated energy in such cases
where the Poincare symmetry of spacetime is globally
broken?

The interest in these questions was sharpened after
Casimir's work. In 1948, he showed that neutral per-
fectly conducting parallel plates in a vacuum attract each
other. Experimental verifications of this effect (known as
the Casimir effect) show how vacuum fiuctuations may
give rise to measurable quantities and, therefore, are evi-
dence that, in general, the vacuum state energy of a quan-
tized field may not be well defined by normal ordering.
Then the above vacuum state definition is to be revised.

As stressed in Ref. 30, Casimir adopted a new concept
of vacuum energy by assuming that "a meaningful
definition of the physical vacuum must take into account
that in a real situation quantum fields always exist in the
presence of external constraints, i.e., in interaction with
matter or other external fields. An idealized description
of such circumstances is obtained by forcing the field to
satisfy certain boundary conditions". In other words, ac-
cording to Casimir, the energy of the physical vacuum
state is defined as the field energy in the presence of the
negative of its value in the absence of such conditions
(this is what is often called the Casimir energy). So, it is
clear that the Casimir energy may, in principle, depend
on the particular choice of the geometry defined by the
confining configuration, on the topology of space where
the field is given and on the type of boundary conditions.

In Minkowski spacetime such a scheme can be imple-
mented for simple geometric configurations as mentioned
in Sec. I. Different renormalization techniques are used
in those calculations and can be classified as particular
cases of two general methods. Qne of them is the
Careen's-function method' ' ' and the other one is
based on the direct evaluation of an infinite sum over all
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2 2

4(x,x') =0 . (2.1)

If the field is confined in the interior of a (D —1)-
dimensional rectangular cavity with edges L„
L2, . . . , LD, , it can be expanded over the complete
orthonormal set of mode solutions I P„,P„* I as follows:

normal modes, allowed for those particular geometries,
which can be implemented by using a cutoff
method, "' ' the g-function technique' ' ' or a
dimensional-regularization procedure. Although the
Green's-function method is known to be more fundamen-
tal, it presents technical difhculties for parallelepipedal
geometric configurations (p )2), which are swept away
by the g-function techniques. Hence the latter method
will be adopted throughout this paper.

A Hermitian massless scalar field 4(x,x') defined in a
D-dimensional Minkowski spacetime should satisfy a
generalized Klein-Gordon equation (in Cartesian coordi-
nates with A'=c =1)

quantization scheme a„n . . . , and a„n . . . „are
1 2 D —1 1 2 D —1

creation and annihilation operators of field quanta with
energy spectrum co~„) given by ([n I stands for a short
notation of n in& nlrb i)

n1n

L1

'2
n 2'+
L2

'2
nD+ - +
LD

t 2 1/2

(2.4)

Different boundary conditions can be imposed on the
surface (BQ), such as Neumann (fi', 8'4(x)~zn=0 where &

is a unitary vector orthogonal to the surface BQ) or
periodic conditions (as in a torus). Since, for both condi-
tions, the Casimir energy density is shown to be always

negative for any value of D and p, the link between the
attractive or repulsive nature of the Casimir effect and
the geometry will be discussed hereafter only for Dirich-
let boundary conditions.

Let us brieAy review how the Casimir energy inside a
(D —1)-dimensional rectangular box is obtained from the
divergent expression

nl n2 nD 1=1
(a

1n2 nD —
1 n1 2 D —

1

En(L„L~, . . . , L~, )

+at . . . eh* . , ) .
n1 n2 nD 1 n1 n2 nD

(2.2)

1

2

nl n2
. .

nD 1=1

2
n 2'+
L2

'2

Imposing Dirichlet boundary conditions on the box sur-
face BQ, i.e., 4(x) ~z,i=0, we have

nD+ ~ ~ ~ +
LD

' 2 1/2

(2.5)

n1 n2 nD

n, ~ n2m.=f„„.. . „(x ) sin xisin xz
1 2 D —

1 L1 L2

In the limit

L1,L2, , p p+1, p+2, , D

nD 1'X X sin
LD —1

XD —1 (2.3)

where the n are positive integers. In the canonical

and, for simplicity (without loss of generality for our pur-
pose) assuming L, =Lz ——. —Lz =L, we d—efine the en-
ergy density (energy per unit hyperarea) sg'(L) as a func-
tion of the number p of finite-length edges:

E(p)
sg'(L) =

(L;)
i =p+1

1

(2+ )D
—

P
—i

D —p —1

2

f drr i' r +
n n n =1

1 2 p

n1m

L

'2

+ ~ ~ ~ + npK

L

2 1/2

(2.6)

This divergent density may be regularized using the techniques of Refs. 14 and 15 giving the finite value for the Casimir
energy:

Lp —D p —1

E '(L)=, g ( —1)~+'C~(&7r)i I A(1, . . . , 1;D —q),
2

(2.7)

where there are p —
q (1, . . . , 1) as arguments of the Epstein function defined as

A(a„az, . . . , ak, 2s)=
n n . . n = —oo

1 2 k

(a, n]+a~n~+ . . +a/, nk) (2.8)

for ak )0 and the prime means that the term n1 = n 2
= . . =nk =0 has to be excluded.
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For p = 1 the same result as published in Refs. 23 —25 is obtained:

c.'''(L) = —(2+Fr) DL ' Dl (D /2)g(D)

where g(D) is the Riemann zeta-function.

(2.9)

III. THE SIGN OF THE CASIMIR ENERGY DENSITY

One can see from Eq. (2.7) that it is not straightforward to ascertain the sign of the Casimir energy density. To carry
on this discussion it is convenient to use the following integral representation for the I functions:

u 'r(s) = f dt e "'t'
0

to write

r(s)~(1, . . . , 1;2s)=f d« -'
0

= f "dt t'
0

nl

exp[ —(n, + +nk)t]

k

(3.1)

yielding

Ip —D p —1 oo

—.D'(L)=, y ( 1)~—+'cq(&~)~ Df-dt(&t p-~-' 2 y e-""+1
0

n =1

p

(3.2)

Now, performing the sum over q and expressing the integrand in terms of the elliptic 8 function 93(O, e '), it results
from Eq. (3.2) that

Lp —D
E'~'(L) = 7r "f"dt( l/t )

1/2 p
7T

1/2 p

0(Oe ')—
3 ' t

(3.3)

and this new formula allows one to disclose the relation-
ship between D and p, and the sign of the Casimir energy
density.

It is convenient to study separately the case where

p =odd and p =even.
For odd values of p it is obvious that Eg'(L) &0 for

every p (independently of D), since 83(O, e ') ) 1 and the
integrand is always negative between the integration lim-
its.

When p is even the above argument clearly does not ap-
ply. Numerical calculations show that, in this case, the
energy density is positive for D ~6. However, using
Eq. (2.7) for p =2, it can be shown that the energy densi-
ty becomes negative for integer values D ~7. Its behav-
ior for an arbitrary p =2j will be discussed now and this
situation will be shown to be no longer valid for a certain
large value of p. Defining

1/2 2j 1/2 2J

g(t)= 1— 1 — —"

(3.4)

an analysis of this function shows that it has only one real
root to (the same for every j)0, lying between 0.6~ and
~), it is positive for 0 ( t ( to and negative for to & t ( ~,
and that f 0 dt t g(t) does exist whenever a ) (p —1)/2.

A qualitative study of the integral of Eq. (3.3) is de-
tailed in the Appendix and the results are surnrnarized

here:

(a) lim f dt t"+ g(t)= —ca
kazoo 0

(b) For az) a, ) (p —1)/2, if f dt t 'g(t) &0
0

then f dt t g(t) &0;
0

(c) lim f dt t'~ "~ g(t)= —ce .
p 2j~oo 0

So, since the energy density, given by (3.3), for p even is
proportional to f o dt t g(t) we can conclude that in this
case either Eg' is always negative (for p ) 30 as suggested
by numerical calculations given in Table I), which comes
from (c), or, from (a) and (b), there exist a critical value of
the spacetime dimension D, for which

P+ & &D &D, =&DP'&0,

D D, =FD &0 .

The values of D, for p even, 2 ~p ~ 30, with the respec-
tive energy density values are given in Table I.

IV. DISCUSSIONS

In spite of an impressive literature on the Casimir
effect, the query whether its attractive or repulsive
character changes by going to higher dimensions had
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never been elucidated for Dirichlet boundary conditions.
In this paper the nature of the Casimir force associated
with a massless scalar field trapped inside a rectangular
box (with p finite and equal edges and D —p —1 infinite
edges) in D-dimensional spacetime is discussed for
different values of p. For Dirichlet boundary conditions
(BC's), a very peculiar dependence between the nature of
Casimir force and the value of p and the spacetime di-
mension is shown to exist. When p is odd the force is al-
ways attractive whatever the value of D. For p even and
not very large, there does exist a critical spacetime
dimensionality (D, ) for which the force is repulsive if
D & D, and it is attractive if D ~ D, . On the other hand,
if p is large enough ( ~ 30 as suggested by Table I) one is
sure that the Casimir force is always attractive. In addi-
tion, since any configuration with even p & 30 has D, & 30
(see Table I), and from further numerical calculations for
p ) 30, one can infer that the nature of the Casimir force
does not depend anymore on p and D for D + 30; it is al-
ways attractive. It is important to stress that these re-
sults could only be obtained by using Eq. (3.3).

That several physical effects may be qualitatively
different by varying the spacetime dimensionality is not a
new feature. So, in a certain sense, the Casimir effect
can be considered as another example, but it is important
to make the exception that its dependence on D is strong-
ly entangled with the dependence on the geometric
bounds (p) and on the kind of macroscopic boundary
conditions imposed to the field. A further unexpected
dependence of the Casimir effect on the number of space-
time dimensions comes from Ref. 4, where it is shown
that the zero-point energy, associated with a massless
scalar field defined in an M XS manifold, is well
defined if D is odd, but, when D is even this energy is log-
arithmically divergent. This is perhaps the first example
in the literature where "physics seems to prefer D odd. "

The results obtained in this paper permit us to under-
stand why the old semiclassical Casimir model for a spin-
less electron is unstable in a four-dimensional space-
time. In such a scheme, despite the criticism of the
Casimir model, we believe it is useful to deepen our un-
derstanding concerning its instability. In a few words,
the main point of this model is the suggestion that there
should exist a stress of quantum electromagnetic origin
(Poincare stress) to assure the stability of the Abraham-
Lorentz electron, modeled as spherical conducting shell.
However, in 1968, the Casimir energy for this
configuration was found to be positive, ' giving rise to a
repulsive stress (to be added to the Maxwell stress), con-
trary to what was expected by Casimir (an alternative
stable model for the electron was proposed in Ref. 37).

The bridge connecting our results for scalar fields with
the electromagnetic case is the useful formula relating the
Casimir energy associated with a massless vector field, in
the presence of a rectangular cavity with walls of infinite
conductivity and with p equal finite edges, and the
Casimir energy of a scalar field satisfying Dirichlet
BC&s, 23

'sg'(L) =(D —2)Fti'(L)+pcii ) (L) .

Use will also be made of the well-known fact that if we

deform a spherical shell of radius a into a cubic shell of
length L with L =2a the magnitude of the Casimir ener-
gy almost does not change, as shown in Refs. 1 and 38,
allowing us to replace hyperspherical shells S" by hyper-
cubes with n +1 sides and use the above formula. In the
four-dimensional spacetime it is easy to see from this
equation that the Casimir energy of an S electron is posi-
tive. Does this result still hold for higher-dimensional
Rat spacetimes? The answer is no, and it can be shown
that the zero-point electromagnetic energy could assure
the electron s stability in higher-dimensional spacetimes
if two Casimir-like models for the electron are assumed.

As a first example, the electron could be modeled by a
hyperspherical shell (S ) with p =D —1, and
p —1 ~p =30 for D even and p ~p =30 for D odd. In
such a situation we can infer from our results that (' )sg)
is always negative and, therefore, the electron could be
stable. Note that, in this case, the condition of stability
will be satisfied only for a particular electron radius.

Another possible model could be an infinite pipe with a
geometry S XIR in a D-dimensional M XIR man-
ifold, where S is contained in the observable three-
dimensional space. In this case p =3 and we have

'Et, '(L) =(D 2)EO'(L—)+3r )(L) .

Looking at this equation it becomes clear that, for
D —1(D, (p =2) (which is 7), if the positive contribu-
tion of the second term of the right-hand side is greater
than that of the first term (always negatiue as proved in
this paper), the Casimir model for the electron is invali-
dated. This is indeed the case for D &8, generalizing
then the proof given in Ref. 19 for D =4 (where both
models coincide).

If, instead, D 1)D, (p =2—) both ZD'(L) and rD(') l(L)
are always negative, which can give rise to a stable semi-
classical model for the electron. Thus, the critical dimen-
sion for the electromagnetic case (with p = 3) is D =8.

In conclusion we have shown that the Poincare stress
could have a quantum electromagnetic origin only if we
lived in a higher-dimensional Aat spacetime.

As a last remark, we would like to note that, although
in the classical level the electrostatic energy inside a cavi-
ty does not depend on whether Dirichlet or Neumann
boundary conditions are imposed to the field, the quan-
tum zero-point energy strongly depends on the choice of
the macroscopic boundary conditions.

The results presented in this paper, together with other
open questions stressed in Ref. 30, compel us to share the
opinion that the Casimir effect is still, in essence, a poorly
understood phenomenon.
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APPENDIX

Proof of (a): For k )0 and E )0
t( +cf dt t"+"g(t)= f dt t +"g(t)+ f dt t +"g(t)+ f dt t + "g(t)

& f dt t +"g(t)+ f dt t +"g(t)

&t,"f dt t g(t)+(t, +e)'f dt t g(t)=(t, +c)"
0

tp

tp+C

k

a —b

where
toa=—f dtt g(t))0

0

and

b=——f dt t g(t)&0.

Thus

lim dtt +g t & lim tp+8"
kazoo 0 k —+ oo

tp

tp+C
a —b

Since E is arbitrary, it can be conveniently chosen to make (to+8) greater than the coefficient of the integral of Eq.
(3.3) and, therefore, the renormalized energy Eg'~ —~ in this limit.

Proof of (b): For k =a&—a )0,

f dt t 'g(t)= f dt t +"g(t)+ f dt t +~g(t)
0 0

&t,"f dt t g(t)+t,'f dt t g(t)&t,'f dt t g(t)&0.
0

Proof of (c): We want to discuss the behavior of the integral below with p:

I = dt t't' " 'g(t)+ dt t'i' " 'g(t) .
P 0

For 0&t &tp,

g(t)=
1/2 p

2h(t)+1
1/2 p

'771—
1/2 p 1/2 p

2twhere h(t) =g„" &e
" '. So

f dt t" " 'g(t) &277'"to" I, &277'"t'" —f dt t" ' "g(t)~ .
0 0

1/2 p
J71—
t

For t ) tp, we used the mean value theorem
1/2 p

=2ph(t) 1—
1/2 'p —1

+6, , 2h(t)

with 0&0, &1. So

t' '
i (t)~&2 t' "' 1—

1/2 p —1

h(t) .

For t )4~) tp,

t ~ ~g(t)~ )2 ~ph(t)tIi'

Thus

dt t'I' ' ~g(t) ) dt t'~ ' ~g(t)~ &
q f dt t h(t)

4~ pp 2

dt t'I' " 'h(t) &2p(4&7r)~ ' f dt h(t) .
64~ 64~
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Thus

I (2rrp~2t~~z 2p—(4&7r)p ' dt h(t),
p 0

6477

I (2(4&rr)P 4 P+t —2' '
p f dt h(t)

p 647'

Then, for p (even) large enough,

f dt t(P —I)/2 (t) (0
0

and Fg'(0 for any D ~p —1 [this result does not depend
on the coefficient of Eq. (3.3)]. In this case there is no
critical D since all EDP (for D =p+ l,p+2, ) are nega-

—(p)

tive.
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