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The treatment of kaon decays using chiral symmetry yields predictions for the form factors in
K~mnev I.n a.ddition, the large-X, limit of QCD implies that a particular combination of low-
energy constants should be suppressed. We present the chiral predictions for EI4 decays at next-to-
leading order in the energy expansion. By combining the phenomenologies of KI4 and ~m scatter-
ing, we test these predictions and provide a determination of the parameters in the chiral Lagrang-
ian of QCD.

I. INTRODUCTION

In this paper we describe the analysis of the reactions
labeled (Refs. I—4) K«, that is

where t =e,p. While at first sight this would seem simply
one of many kaon decay modes, it in fact has some spe-
cial significance in the theory of chiral symmetry. It
is the simplest process which can test predictions which
follow in the limit of large numbers of colors (large
X, ). "' The theory of chiral symmetry allows the
description of the couplings of kaons and pions using a
set of nonlinear Lagrangians, with coefficients which are
to be determined phenomenologically. However, in the
large-N, limit, certain linear combinations of these
coefficients are suppressed, as they correspond to extra
quark loops. An illustration of allowed and disallowed
diagrams for the K14 process is given in Fig. 1. Although
similar diagrams could be drawn for pionic processes,
such as mn scattering, the constraints of chiral symmetry
are such that these diagrams cannot be disentangled us-
ing reactions which involve only pions, and one must
consider kaonic reactions in order to perform the separa-
tion. The scattering of K~ or KK could in principle be
used, but these reactions are poorly known and occur at
too high an energy to be useful. The only purely phe-
nomenological constraint on the large-N, predictions of
which we are aware comes from K14 decay. It is therefore
worthwhile to provide as complete an analysis as possible
of this reaction in order to both explore the limits on the
large-N, result and to provide additional input to the
chiral Lagrangian.

The predictions for the K14 form factors at lowest order
(i.e., order E ) in the energy expansion of chiral symme-
try were first given by Weinberg. The experimental re-
sults are 30—50% above the lowest-order predictions.

The required additional contributions must come from
higher orders in the energy expansion. We provide this
next-order treatment by including loop diagrams as well
as tree-level effects from the order-E chiral Lagrangian.
The latter are parametrized by a small number of low-
energy constants. However, only three of these play a
significant role. Two of these low-energy constants ap-

FIG. 1. Allowed (a) and disallowed (b) diagrams for the %14

process at large N, . Dashed lines denote axial-vector currents;
wavy lines: gluon exchange.

43 1991 The American Physical Society



128 RIGGENBACH, GASSER, DONOGHUE, AND HOLSTEIN 43

pear in the analysis of ~~ scattering. The third is first
seen in K&4 decay. One combination of these low-energy
constants is predicted to be suppressed at N, —+ ac. A re-
sult of our analysis will be that a small nonzero value for
this combination is favored phenomenologically, but with
experimental errors which allow it to vanish at the 1 stan-
dard deviation level. Overall a good description of K&4

decays and ~~ scattering is obtained.
The plan of the paper is as follows. In Sec. II, we

define the form factors and review the experimental re-
sults. Section III is devoted to an explanation of the
large-N, prediction, and the calculation of the form fac-
tors in chiral perturbation theory is performed in Sec. IV.
In Sec. V we discuss the threshold form factors, whereas
the phenomenology of %&4 and ~m scattering is con-
sidered in Sec. VI. After the algebraic part of the work
described in this paper was finished, we received a paper
by Bijnens' which also treats K&4 in chiral perturbation
theory. We comment on the comparison of our work and
his in this section also. Finally, we end with a summary
and some comments on how future rare-kaon-decay ex-
periments could help to test the chiral and large-N, pre-
dictions more exactly.

II. FORM FACTORS AND EXPERIMENT
IN Ei4 DECAYS

We begin by defining the hadronic matrix element for
the decay

which are related to s, s&, and 0 by

t+u =2m +m& —s +s&,
(6)

4m
1/2

t —u= — 1— [(mg- —s —s&)
—4s s& j' cos8

There may also be other K&4 decays: namely,

E —+~m e v, KL~m ~e v.+ 0 0 + 0 + (7)

These involve the same form factors as displayed in Eqs.
(2) and (3). Let us denote by A +, A, and A the
current matrix elements of the processes (1) and (7).
These are related by isospin symmetry:

w -+=~~+ ~ -'. (8)

where F denotes the odd part of the form factor F
Together with the isospin relation Eq. (8) one finds that
the nonvanishing parts in the form factors for the decays
Eq. (7) are fixed by the form factors of K+~~ n+e+v:

This relation also holds for the individual form factors.
Each of the form factors may be decomposed into a piece
which is symmetric or antisymmetric under t~u. Be-
cause of Bose symmetry and of the AI= —,

' nature of the
current one has

FOO GOO HOO R 00 0
(9)

F =G =H =R =0,

K+(k)~w+(p+ )+~ (p )+e+(p, )+v(p ), (1) If =I+, I=F,G, H, R (10)

which may proceed through either the vector or axial-
vector current. In the following we disregard all isospin-
breaking effects. The vector-current matrix element has
the form

(sr+(p )~ (p )out~ V ~K+(k))

, e...teak'(p++p-) (p+ —p-)~
Pl~

while that of the axial vector is

(~+(p+)vr (p )out~A„~K+(k))

[F(p, +p )„+G(p+ —p )„
flZ

for all combinations aside from those detailed in Eq. (9).
The form factors may be written in a partial-wave ex-

pansion in the variable 0, such that the dependence on
0 is transferred into a dependence on the relevant ~m

partial-wave number. When the hadronic current is com-
bined with the leptonic current to form the full matrix
element, the effect of the R form factor becomes propor-
tional to the electron mass, and hence unobservably
small. We will not consider R further. The F form factor
starts out with an S-wave contribution, while G and H
have the P wave as the lowest nonvanishing partial wave:
s.e.,

i6& s6&F=fse +fze cos8 +D wave,

+R(k —p+ —p )„] . (3) ibp ibadG=ge +D wave, H=he +D wave .
The four form factors F, G, R,H are functions of three
variables, which may be chosen to be

s =(p~+p )

&i =(p, +p. )'=(k p+ —p —)', —

where 0„ is the angle in the m.~ center of mass between
the ~+ direction and a unit vector along the direction of
recoil of the m.m system. Below we will also use the vari-
ables

t =(p+ —k), u =(p —k)

Here 5; is a strong final-state phase from scattering of the
two pions. The form factors fs, fp, g, and h are real in
the approximation considered here. [The expansion (11)
is valid only if D-wave contributions in the final state are
absent. The partial-wave expansion of the form factors in
the general case is considerably more complicated. ' ]

Experimentally the study of K«decays is dominated by
the work of Rosselet et al.," which measures the m+~
final state with good statistics. We therefore concentrate
on K+~m. +m. e v, and compare directly with the re-
sults of Ref. 11.

Despite the good statistics, the experiment has not
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been able to separate out the full kinematic behavior of
the matrix elements. Therefore certain approximations
and/or assumptions have had to be made. For example,
no dependence on s& was seen within the limits of the
data, so that results were quoted assuming that such
dependence is absent. Similarly, fp was found to be com-
patible with zero, and hence set equal to zero when the
final result for g was derived. A dependence on s is
seen, and is treated in the following manner. One defines
reduced form factors g:—g Ifs and h—:h Ifs such that
the decay rate has the form

d&=~f (s„)~'d&(g(s ), h(s ), . . . ), (12)

where the ellipses denote the kinematic variables
s, s&, . . . . No linear dependence on s„was seen within
the errors for g and h. Therefore g, h were assumed to be
constant, and all remaining s dependence was assumed
to be in fs, which was parametrized as

fs(q )=fs(0)(1+Afq ),
q =(s —4m )/4m

(13)

Under the assumption of constant g, h, this means that g
and h must share the same s behavior:

g(q )=g(0)(1+Agq ),
h(q )=h(0)(i+A, zq )

(14)

with the same X, i.e., A,f =A, =A,
&

=A, . Finally all D-wave
contributions were assumed to be absent.

These approximations to the form factors do not agree
completely with what is found in the theoretical predic-
tions. Dependence on s& and nonzero values for fJ, and D
waves all occur in the theoretical results. In addition the
s dependence is in general expected to be difFerent in fs,
g, and h, although it can be forced to be identical if this is
required. Such differences then cause some minor
difficulty in comparing theory and experiment. In our fits
we attempt to duplicate the experimental procedure as
best we can in order to extract the low-energy constants
that we are after, see Sec. VI.

The experimental results are then summarized by the
following numbers:"

fs(0) =5.59+0.14,

g (0)=4.77+0.27,
h (0)= —2.68+0.68,
k=0.08+0.02 .

(15)

We have used
~ V„, ~

=0.220 in transcribing these results.

III. CHIRAL EXPANSION AND LARGE N,

D„U=B„U—iR „U+iUL„,
U =exp(i i"P"/F ),, y =2BOM,

(16)

Here P", A = 1, . . . , 8, are the fields of the pseudoscalar
octet, L„(R4) are the left-handed (right-handed) exter-
nal gauge fields, M =diag(m„, md, m, } is the quark mass
matrix and 80 is a constant. In the remainder of this pa-
per we work in the isospin limit m„=md. At order E
we can then equate

F„=F, m =28om,

mx =Bo(m, +m), (17)

Transition amplitudes are found (at this order) simply by
expanding X2 in powers of the fields, and taking tree-level
matrix elements.

At order E, the possible structure is somewhat more
elaborate. Generalizing momentarily to Xf Qavors, the
chiral Lagrangian has the form

At low energies, QCD reduces to a theory of pions,
kaons and g's interacting with each other and with the
gauge bosons. These interactions are strongly con-
strained by the chiral symmetry of QCD. All such in-
teractions are described by an expansion in powers of the
energy, and the lowest-order coefficients are uniquely pre-
dicted in terms of the pion decay constant, F =93.3
MeV, and pion and kaon masses. At the next order in
the energy expansion, there exist relations between pro-
cesses parametrized by a small set of low-energy con-
stants. This procedure, chiral perturbation theory, is best
described in terms of nonlinear effective Lagrangians. At
lowest order, called O(E ), the chiral Lagrangian is

F2 F2
X2= Tr(D„UD"U )+ Tr(y U+yU ),

%~=K, [Tr(D4UtD„U)] +K2Tr(D„UtD U)Tr(D"U D U)+K3Tr(D4UtD„UD U D„U)

+K4Tr(D" U D UD„U D U)+L&Tr(D4UtD„U)Tr(ytU+yUt)+L5Tr[D4U D„U(g U+ U g)]
+L6[Tr(y U+yU )] +L7[Tr(y U yU )] +LsT—r(y Uy U+yU yU ) iL9Tr(R„D4U—D U

+L„D"U D "U) +L,OTr(U"R„UL4 )+H, Tr(R„R4 +L„L")+H2Tr(y y), (18)

where L„and R„are the field-strength tensors for L„, R„. In the case of three flavors one of the first four operators
is redundant, and X~ starts out as

%4=L, [Tr(D"U D„U)] +L2Tr(D„U D U)Tr(D" U D'U)+L3Tr(D"U D„UD U D, U}

+L4Tr(D"U D U)Tr(y U+yU )+
where

(19)
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+2E4yL2E2+K4yL33 —2%4 (20)

In the case of two flavors, two more low-energy constants
may be eliminated as being redundant. Most important
for our purposes is the fact that, among L„L2,L3, only
the combinations L2 and (2Li+L3) enter into the em
scattering amplitudes. At order E one must include
both loop diagrams, formed using X2, and tree diagrams
from Xz and X4. In addition one includes the effect of
the axial anomaly by using the Wess-Zumino-Witten
anomaly Lagrangian. ' The parameters L &, . . . , L &o are
in general divergent (except L3,L7). They absorb the
divergences of the one-loop graphs. Consequently they
will depend on a renormalization scale p which, of
course, drops out in all observable quantities. The renor-
malized parameters L are defined by

L f

L2
L3
L4
L,
L6
L,
L t

Lo

0.9+0.3
1.7+0.7

—4.4+2. 5
0.0+0.5

2.2+0.5
0.0+0.3

—0.4+0. 15

1.1+0.3
7.4+0.7

—6.0+0.7

TABLE I. Values of the low-energy constants at the scale
p=m„ from Ref. 7(a). That analysis is based on the large-X,
suppression of 2L ", —L2,L4 and L6.

10 L;"(m„)

r,Lr+ & pd
—4

16~
1 1——[ln(47r)+ I '(1)+ 1]

d —4 2

K3K4L5, Ls,L9,L,O=O(N, )

K„K2,L~, L6=0(1) .
(21)

with I; being pure numbers given in Ref. 7(a). The low-

energy constants L;" cannot be determined from symme-
try requirements alone —chiral symmetry only relates
different processes, it does not provide the absolute nor-
malization. However, most of the new coupling con-
stants can be determined from low energy
phenomenology. ' " Furthermore, progress has been
made in understanding their origin and their magni-
tude. ' ' We are now able to estimate several of the cou-
pling constants occurring at order E on theoretical
grounds, such that essentially parameter-free predictions
can be made at this order of the chiral expansion.

The analysis of Ref. 7(a) makes use of the large-N,
suppression of the coupling constants 2L~ —L2, L4, L6,
see below. Since the value of the coupling constants is of
importance later in this article, we quote in Table I the
values L,"(p ) at the scale p =m „according to that
analysis.

The large-N, limit enters in the following way. A trace
in the chiral Lagrangian comes from a summation over
the 1Vf Aavors of quarks. Operators with two traces re-
quire at least two quark loops in order to get two summa-
tions over the flavors, while those with one trace require
only a single quark loop. However, the large-&, limit
(with a,N, fixed) has the feature that processes with extra
quark loops are suppressed by powers of 1/X, . '
Therefore the coefficients of double trace operators, i.e.,
K„K2,L4,L6, are suppressed by 1/N, compared to the
single trace coefficients K3,K4, L5,L„L9,L,O ~ (L7 is an
exception "due to the g' pole contribution, as the g'
mass vanishes in the large-N, limit. ) The single trace
terms enter at order 2V, so that the precise expectation is

IV. CHIRAL PREDICTIONS FOR THE FORM
FACTORS

The chiral representation of the form factors at order
E was originally given by Weinberg:

m~F =G= — =3.74, H=O .
&ZF.

(23)

(Unless stated otherwise, we use in all numerical calcula-
tions mz=mz+=493. 7 MeV, m =m + =139.6 MeV,
F =93.3 MeV. ) At order E, loops with Xz and tree-
level contributions from X4 both enter. We have used the
general one-loop Lagrangian given in Eqs. (8.12) and
(8.13) of Ref. 7(a) for the evaluation of F and G. We write
the result for F in the form

F(s, t, u )= — [1+F+(s,t, u)+F (s, t, u )2F

+O(E )],
F (s, t, u ) = U~ (s—, t, u ) +PF—(s, t, u ) + CF—

(24)

and will use below an analogous expression for the form
factor G. The superscript + ( —) denotes a term which is
even (odd) under crossing t++u The -co.ntributions
UF (s, t, u ) denote the unit—ary corrections generated by
the one-loop graphs which appear at order E . They
have the form

The ordering (21) and (22) has gone into the determina-
tion of the couplings L; in Ref. 7(a). In particular, the
value L3=( —4.4+2. 5)X10 used in the evaluation of
g~3~ to one loop in Ref. 7(c) is based on the large-N,
suppression of L2 —2L&. %&4 decays make it possible to
test the ordering (22) which cannot be probed using only
pions.

If one now specializes to the case of 3 Aavors, one sees
from Eq. (20) that the large-N, limit requires

UF+(s, t, u ) =F [bo(s )+a~(t)+a~(u )],
UF (s„,t, u ) =F [b~(t ) —bF(u ) ]

(25)

Li,L~,L3 =O(N, ), L~ 2Li =O(1) . —(22) with
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3s m„
b,o(s )=—,'(2s —m )J" (s )+ Jzz(s )+ J"„„(s )

aF(t) =
—,', [(14m++ 14m —19t )Jz (t )+ (2m+ + 2m —3t )J„"&(t) ]

+ —,', [(3m~ —7m +5t )K~ (t )+(m~ —5m +3t )K„~(t)]
—

—,
' I9[L~ (t)+L„~(t)]+(3m~—3m 9t—)[M~ (t)+M"„~(t)]],

bF(t)=aF(t) —
—,'(mI;+m —t)J~ (t) . (26)

The loop integrals J" (s ), . . . which occur in these ex-
pressions are listed in the Appendix. The functions Jz&
and M~& depend on the scale p at which the loops are re-
normalized. The scale drops out in the expression for the
full amplitude, see below. The imaginary part of
F b, o(s ) contains the I=0, S-wave sr' phase shift

4m
1/2

50(s ) = (32mF ) '(2s —m ) 1— +O(E )

(27)

9

P~(s, t, u)= g P; F(s„,t, —u)L;",F 7T' ' F2 i, F (28)

where

P,+F =32(s —2m ),
P 2+F =8(2m+ +2m —t —u )

=8(mz+s —st ),
P3+F =2(2m~ —6m +4s —t —u )

=2(mz —8m +Ss —s&),

as well as contributions from KK and gq intermediate
states. The functions aF(t) and bF(t) are real in the
physical region.

The contribution P~ (s, t, u ) is a polynomial in s, t, u,
obtained from the tree graphs at order E . We And

P9+~ =2( —m~ —2m +s + t+u ) =2s&,

P3 F= —2(t —u )

4m„
1/2

[(mz —s —sI )
—4s si ]' cos8

CF =(256vr F )

2 2 2

X 5m-ln 2
—2mKln 2 3mnln 2

(30)

CF =0.

The corresponding decomposition of the form factor G,

G —= UG+PG +CG, (31)

has the explicit form

UG (s, t, u)=F [b, ,(s )+aG(t)+aG(u)],

UG (s, t, u)=F [bG(t) bG(u)]—

The remaining coefficients P,—. F are zero. The symbols I.,"
denote the renormalized coupling constants discussed
above.

Finally we come to the contributions CF—which con-
tain logarithmic terms, independent of s, t, and u:

P~+F = 32m P+F =4m (29) with

b, ,(s )=2s [M" (s )+—,'M~~(s )],
aG(t) =

—,', [(2m++2m +3t )Jz (t )
—(2m++2m —3t )J„"z(t)]

+ —,', [( —3m~+7m —St )K~ (t )+(—m~+5m —3t )Kq~(t )]

——', IL~ (t)+L„~(t)—(m~ —m +t)[M~ (t)+Mq~(t)]],

bG(t) =aG(t )
—

—,'(m~+ m —t )J~ (t ) . (33)

1/2

5I(s )=(96~F ) '(s —4m ) 1— +O(E )

(34)

The imaginary part of F b, ,(s ) contains the I=1, P
wave phase shift

9

PG = g P, G(s, t, u )L,"—
F2

(35)

as well as contributions from KK intermediate states.
The functions aG, bG are real in the physical region.

The polynomials
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TABLE II. Determination of the low-energy constants from various sets of data. The column labeled TEB indicates the possible
inclusion of theoretical error bars applied to the analysis as described in the text. The running scale is taken at p=m„. Error bars
correspond to an increase of g by 1.

Comments

{a}fs(0),g(0), Ag

(b) fs(0),g(0), Ag

(c) n{s ),g(s ) fs(0)
(d) n(s ),g(s ) fs(0)
(e) fs{0),g{0),AJ, 50 —5I
(f) fs{0),g{0),kt, 50 —5)
(g) fs{0),g{0),At, scattering lengths
(h) fs{0),g{0),kt, scattering lengths

TEB

No
Yes
No
Yes
No
Yes
No
Yes

10 L'

0.69+0.30
0.69+0.54
0.70+0.23
0.66+0.74
0.68+0.30
0.57+0.53
0.66+0.30
0.91+0.47

10 L"

1.99+0.32
1.99+1.15
2.04+0.34
2.04+ 1.81
1.97+0.32
2.38+1.10
1.90+0.26
1.62+0.37

10 L3
—3.21+1.05
—3.21+1.50
—3.35+0.92
—3.27+3.49
—3.13+1.06
—3.08+ 1.50
—3.13+0.94
—3.76+1.31

P3+G = —2(2mx +2m „t—u )—
= —2(mx-+s —st ),

P+ =4m5, G m

P9+G=2( —mx —2m +s +t+u)=2s&,

P~ G =8(t —u )

4m
1/2

= —8 1—

X [(mx —s —sI ) 4$ st ] cosO

P3,6=4P2, a . (36)

The remaining P;—6 vanish. The logarithms contained in
CG are

C+ g+ (37)

The form factor H starts only at O(E ). It does not ap-
pear in the Lagrangian of Eqs. (18) and (19), but arises
from the Wess-Zumino-Witten Lagrangian for the axial
anomaly. ' It is related by an SU(3) transformation to
the anomalous @~3m coupling. The prediction is

&2m~2H= =2.65
8m' F

in excellent agreement with the experimental value. To
the order we are working, we do not consider loops or
higher-order corrections to this result. The form factor
H gives rise to an interference term —GH*+G*H in the
decay distribution d I . We have checked that the sign of
this term, evaluated according to our phase convention
for H and G, agrees with the one given by Rosselet et al.
(Ref. 11, Table II).

The results for E and 6 must satisfy two nontrivial
constraints: (i) Unitarity requires that F and 6 contain,
in the physical region 4m„s ~mz, imaginary parts
governed by S- and P-wave arm scattering [these imagi-
nary parts are contained in the functions b,o(s ), b, , (s )];
(ii} the scale dependence of the low-energy constants L;"
must be compensated for by the scale dependence of Uz G
and CzG for all values of ts, u, m, mx(Since we

work at order E, the meson masses appearing in the
above expressions satisfy the GeH-Mann —Okubo mass
formula. ) We have checked that these constraints are
satisfied. Furthermore, our expressions agree algebraical-
ly with the ones given by Bijnens. ' (In order to compare
with the latter, the pion decay constant F must also be
expanded around the chiral limit m„=md =m, =0. )

V. EXPANSION OF FORM FACTORS
AT THRKSHOLD

In the chiral predictions of the form factors, one strik-
ing feature that emerges from Eqs. (29) and (36) is that
the only important dependence on the low-energy con-
stants is through L„L2, and L3. Furthermore, L, and
L2 are absent in the isospin even part G+. The inhuence
of L4, L5 is proportional to m and hence is too smal1 to
be of much importance. This means that we are not able
to test the large-N, prediction that L4/Li ——0. In addi-
tion, the constant L9 enters only in the sI dependence,
which again is not large and which has been dropped
from the experimental analysis. We proceed by fixing
L4, L5, and L9 at the values found in other processes, as
quoted in Ref. 7(a) [i.e. , L~=0 from the Zweig rule, L5
from Fz /F and L9 from the electromagnetic charge ra-
dius of the pion, see also Table I].

Before describing the detailed comparison with the
data, we discuss the form factors at threshold, because
the results can be presented simply at this kinematical
point. We define the projected amplitudes

1f(q, s&) = —,
' d(cos8 )ReF(q, st, cosO ),

(39)
s —4m

4m

and similarly for g(q, st ). Taking the real part ReF elim-
inates the phase at this order in the 1ow-energy expan-
sion. We renormalize all of the low-energy constants at
the scale p =m „and write the form factors as

f(q, sI)=f(O, s, )[1+A&(sI)q +O(q )],
(40)

g(q, s, )=g(O, s, )[1+A, (s, )q +O(q )] .

First we consider the threshold form factors
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&ZF.
(0,0 = 1+Xf+ [32m+i+4(mx+4m )Lz+(m++12m )L3+16m+4+2m+~]+O(E )F2

g(0, 0)=
2F

1+X — [(mx+4m )L3 —2m+~]+O(E )F2 (41)

—0.051
—0.030
KK, gg
Km, Kr]

loops

—0.007
+0.007

tadpoles
loops

The constants Xf,X contain loop and tadpole contribu-
tions:

=0.185 =0.127,
X =0 023 (42)

Yf(s, )

Y (si)

=0.11 —0.034 ( —0.029) =0.076 (0.081),

(44)

=0.042 +0.003 (+0.001) =0.045 (0.043),
KE,gg

loops Km. ,Kg
loops

8m
Af(s, )= Yf(si)+ (16L",+4L2+5L3)+O(E~),F2

8m
L3+O(E ),A, (si)=Y (si)—

(43)

where Yf, Y contain loop contributions:

where the pieces denoted by "tadpoles" come from the
logarithms collected in CF, CG defined in Eqs. (30) and
(37). It is seen that the major portion of the one-loop
correction Xf is due to ~m. final-state interactions. As
emphasized in particular by Truong, ' this is a rule rather
than an exception: Pions in I=O, S-wave final states
tend to produce potentially large corrections to the
lowest-order term in many hadronic processes.

Inserting into Eq. (41) the values for L," from Table I
one finds f(0,0)=4.85, g(0, 0)=5.03. The increase from
the tree result f„„=g„„=3.74 to g(0, 0)=5.03 is dom-
inantly due to the effect of L3, as the loops do not con-
tribute to the amplitude g(0, 0) according to Eq. (42) and
the dependence on L~ is weak due to the factor of m„.
(Pions in the I=1, P wave interact weakly. An analo-
gous result holds for the I=1, P wave in elastic ~~
scattering. '

) At s&=sf'"=(mx —2m ), the results
change little: Xf~0.129, f(0,0)~5.05, and
Xs~ —0.003,g(0, 0)~5.14. Now we consider the slopes
A,f, A, . we find

The numbers in parentheses denote the values at
s&=s& '". Again the largest contribution arises from m~
interactions. The values of L„L2, and L3 from Table I
give

A,f =0.06 (0.07), A, =0.12 (0.12) . (45)

Note that the loop efFects almost saturate the experimen-
tal value for A,f at p=m„This lea. ves little room for fur-
ther contributions due to the low-energy constants L;.
This combination of constants must then not be very
large, and in practice A,f is a strong phenornenological
constraint on L;. As can be seen from Eq. (45), the values
from Table I satisfy this constraint already.

VI. CGMPARISGN WITH EXPERIMENT

We will see that chiral perturbation theory can easily
account for the K&4 data. In order to make this statement
more precise, there are several ways that we can ap-
proach the data. At the simplest level, we can fit the ex-
tracted values of the threshold form factors and slopes

f, (0), g(0), and Af. In the data, a dependence on s& was
not seen, although of course there is a small dependence.
We take this into account by squaring the amplitude,
averaging over s&, then taking the square root:

max
2

1/2
I 1f dsi —,' f d(cosO )F(s ,si, cosO )

S(

1 d
f (0)d 2fsg

q =0

(46)

and similarly for g, A, . [In this article, fs(0), g(0), and
h (0) always denote the form factors evaluated at q =0,
see Eqs. (13) and (14).] This most nearly approximates
the experimental situation. [Recall that the experimental
analysis assumed that the slopes of fs(s ) and g(s ) were
the same, i.e., A,f =A, . We will not include X in our

l

fitting procedure, but will treat it as a prediction, testing
the level of equality of Af and A, . ] However since the
experimental form-factor analysis did not conform exact-
ly to the structure of the chiral predictions, we can also
attempt to compare our results more directly with the ex-
perirnental data. The primary data consists of the num-
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bers of events grouped into bins of energy, n (s ), plus the
absolute normalization which is basically fs(0) and the
P/S wa-ve ratio g(s ). We can form these quantities
from theory and compare to the experimental results for
these variables. Our two options then are to use the sets
Ifs(0),g(0), kf ] or In(s ),fs(0),g(s )] for comparison.
Given a perfect analysis, the two approaches should of
course be the same, and the use of the two addresses the
question of the compatibility of the chiral and experimen-
tal analysis. Fortunately we will see that very similar re-
sults emerge from both options.

A second issue is the question of the way to quantify
the theoretical uncertainties in the analysis. Chiral per-
turbation theory is unique in the low-energy region, being
a technique which is a controlled expansion. As such, it
contains in its framework ways to estimate the uncertain-
ties from the next order in the expansion. In this paper
we are computing effects at order E and order E, so
that corrections arise from order E and yet higher or-
ders. Such corrections could infiuence the determination
of the L; coefficients. For example, if the data had
infinite precision a naive fit to L&,L2, L3 would yield
values with infinitesimal error bars. However, this would
not be a true estimate of the uncertainty in L, , as correc-
tions to the theoretical analysis from order E could shift
the values by more than an infinitesimal amount. We at-
tempt to quantify this effect by including theoretical error
bars in our fits. These are not required in order to obtain
a good description, but are a fair estimate of the nature of
the energy expansion. In those analyses labeled as con-
taining theoretical error bars, they have been included in
the following manner. Observables are generally of the
form a,„,=a&(1+c4+c6+ ) where az is the lowest-
order result (i.e., order E ) and c~ is a correction which
we are computing at order E . We will use c4 to estimate
the next-order correction c6, using the expectation that
c6=0(c„)=O([(a„„,—a2)/a2] ). Thus the theoretical
prediction would be of the form

a,„„,=a2(1+c4+c4 )

2

L3=0

6.0- e xpt.

40-

ref.7
L„=O
tree+loop (L,=Q)

tree
L2=0

3..0 I I I I I I

280 300 320 340 360 380

$ s [MeV]

7.0-

form factors defined in Eq. (46) practically coincide with
the measured ones. Nevertheless the total decay rate cal-
culated with these form factors is —10% below the mea-
sured value, which seems to indicate that the smearing
over s&, cosO described above does not correspond to the
experimental analysis. We have noted, however, that the
published experimental values" of f, (q ),g(q ) also pro-
duce too small a value for the decay rate:
I „,=2.94X 10 sec ' instead of I,„,=3.26X 10 sec
(Note that the experimental value I',„,was used to nor-
malize the form factors. ) We do not understand this
discrepancy.

The results of our procedures to fix L, , L2, and L3 are
displayed in Table II and Fig. 2. The first four rows in
the table list the determination of the low-energy con-
stants L &, L2, L3 which follows from @14 data alone. The
error bars correspond to an increase in y by one. We see
that there is good agreement with the central values in all
cases. This indicates that the manner in which the

=a2 1+c4+ ey, pl
(47) 6.0-

It is the latter form which is used in our fitting procedure
where it is added in quadrature to the experimental error.
Our experience has been that the expansion in energy is
uniform and that this is a fair assessment of the next-
order term. The slope is a loop effect and there is thus no
order E correction to A,f, A.~ in our analysis. We have
assigned an error AA,f which is 40% of its experimental
value. [We have also checked in a few cases that the fol-
lowing procedure results in very similar error bars for
L&, L2, and L3. First we determined hL,' by assigning
no theoretical error. Then we did a least-squares fit by
changing the theoretical predictions by (a,„~,

—az) /az
in turn and then reading off the variation AL; finally we
added EI.,' and bI in quadrature. ]

There is a last point which concerns the total decay
rate I „,. Below we show that the coupling constants
L i L p and L 3 can be chosen such that the averaged

L,=—4.W (re&.7)
expt.
L3=—3.2 1

4.0 tree+loop (L.
,
=O)—

tree

3.0
280 300 320 340 360 380

/ s 'IMeV]

FIG. 2. The form factors fs(s ) and g(s ) according to the
chiral representation described in Sec. IV. Displayed are the
lowest-order result (labeled "tree") plus the experimental and
central values of fit (a) in Table II (solid and dashed line, respec-
tively). We also show the effect of the loop terms by themselves
as well as the effect of turning off each of the couplings
Ll, I.2,L3 in turn. Note that g(s ) does depend neither on L&

nor on L, 2.
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analysis is done makes little difference, and that the
theoretical error bars are not needed.

The figures give a better view of the results. On them
are displayed the lowest-order result (labeled "tree") plus
the experimental central value and the central values of
fit (a) in Table II. In order to see the decomposition of
the ingredients of the final results, we also show the effect
of the loop terms by themselves as well as the effect of
turning off each of the couplings L

& 2 3 in turn. Note that
the slope of the g form factor has not been included in the
fit and thus is a prediction. It matches very well with the
experimental constraint that g Ifs is a constant.

We already mentioned that the P wave -part f~ was
searched for but not found. We have evaluated fp from
the chiral representation (24) with the parameters corre-
sponding to Table II(a). In particular, we have set si =0,
F(s„,cos8 )=Fs+Fzcoso„+ . . The P wave te-rm Fp
indeed is very small, ~Fi ~

(5X10 ~F~~ over the whole
energy range 4m „&s„&mz.

As we have indicated, one motivation for our analysis
was to test the large-X, prediction (L2 —2L, )/L3=0.
From the values presented in Table II, we see that a small
nonzero value for this ratio is preferred, but that it is con-
sistent with zero within the errors. To make the error
analysis cleaner, we have repeated the fitting procedures
using the variables

Xi =L2 —2L )
—L3y Xq —L2,

X3 =(Lq 2Li )/L3 . — (48)

Xi =(3.82+0.89) X 10

X2 =(1.99+0.32) X 10

0 ] 9+0.16

without theoretical error bars and

(49)

The first variable was chosen because in the SU(2) limit it
measures the effect of the p in the I= 1, J= 1 mm scatter-
ing. The last is clearly the large-X, -violating combina-
tion. The resulting values [using fs(0),g(0), k,f ] are

X, = ( 3.82+2. 10)X 10

X~ =(1.99+1.15)X 10

X = —019+
3 —O. 80

(50)

with them. The result is that the large-X, prediction
works remarkably well, at the level expected, within the
error bars.

Having determined the low-energy constants, we are in
a position to study the predictions of chiral symmetry.
These same coe%cients govern mn scattering, and the real
test of the theory is that they are simultaneously compati-
ble with the ~~ amplitudes. The most straightforward
way to check this is to predict the ~m. scattering lengths.
While the direct data at low energy is poor, the scattering
lengths' have been obtained using the Roy equations to
constrain both the high-and low-energy data. ' The
chiral predictions were worked out in Ref. 5. If we use
our determination (a) in Table II, we obtain the predic-
tions of Table III, third column. For 13,l4 which occur
in al, b& we have used the central values I3 =2.9, I4=4. 3
from Ref. 5. We do not quote errors in the threshold pa-
rameters evaluated here, because we did not work out the
error matrix associated with the L; s. The predictions
are within 1 —,

' standard deviations of the measured values
in all cases. We have also checked that the same parame-
ters reproduce the full amplitudes within experimental
and theoretical uncertainties up to Qs =mz.

Instead of treating the ~~ data as predictions, one
could use them in a different manner to influence the
determination of the L, s. The motivation for doing this
is twofold: (i) it checks the consistency of the theory and
(ii) it provides the best determination of the low-energy
constants. Again, there are a few ways that we could
proceed. The Rosselet K&4 experiment itself provides the
only significant direct measurement of 50 5& at low ener-
gies. We can include this in our analysis as well. The re-
sult is the coefficients of (e) and (f) of Table II. [We did
not use theoretical errors in 50—

5&, because we expect
their effect, which is 0(m ), to be small in the energy

range considered here, Qs (380 MeV. j One sees that

TABLE III. Predictions of chiral symmetry following from the fit to the %14 data alone (column 3)
and the combined determination from ~~ and Kt4 data (last column). The first column gives the predic-
tion of the leading-order term in the low-energy expansion of the ~~ amplitude.

kg
a'0
go

2ao
bo
a',
g1

a',
2ap

Leading
order

0.16
0.18

—0.045
—0.089

0.030

Experiment
(Ref. 17)

0.08+0.02
0.26+0.05
0.25+0.03

—0.028+0.012
—0.082+0.008

0.038+0.002

(17+3)X 10
(1.3+3)X 10-'

K14 alon

0.06+0.02
0.20
0.26

—0.040
—0.069

0.037
0.0045

21 X 10
3.5 X 10

K14+am

0.06+0.02
0.20
0.26

—0.041
—0.070

0.036
0.0043

20X 10
3.5 X 10
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the same parameters describe the phase shift information,
with a good fit g /NDF =0.82 and 0.78. Instead of these
direct data, one may compare with the experimental
scattering lengths given in the second column of Table
III. The result is displayed in (g) and (h) of Table II.
[Here the y /AD~=1. 0 and 0.8. We did not associate
theoretical errors with the threshold parameters, because
these effects are O(m „)and thus very small. ] The agree-
ment of the chiral predictions described above is manifest
in the fact that the central values do not change much be-
tween cases (a), (b) and (g), (h). We conclude that the
theory is quite consistent with all sets of data.

The results of this analysis determine the value of the
coefficients in the purely SU(2) chiral Lagrangian. In the
notation of Ref. 5, the results of fit (g), (h) are

= —0.70+0.94 ( —0.97+1.22)

lp =6.31+0.49 (5.77+0.72)
(51)

X(ao, ao) =2ao —5ao —0.96(ao —0.3)—0.7(aoo —0.3)2

=0.69+0.04 . (52)

This is a well-determined combination which is indepen-
dent of the KI4 phase shift information. The results are
shown in the first two rows of Table IV, with the result-
ing scattering lengths and slope A, given in Table III (last

without (with) theoretical error bars. The central value
of these can be easily obtained from linear combinations
of L

&
L 2 L 3 . To obtain the quoted error bars we have

performed the fits using L3, l „l2 as the independent vari-
ables. The magnitude of the constant li is smaller than
the estimate from the ~m analysis of Ref. 13, while that of
l2 is essentially identical. Within the m~ system, the
difference between the two determinations comes from
differing treatment of the data at higher energies and is
within the uncertainty of the m~ data and of the energy
expansion. However, the study of the KI4 form factors
adds strong additional constraints and the coefficient sets
of this paper are to be preferred.

Finally, it is of interest to provide the best determina-
tion of the low-energy constants by including the max-
imum amount of data. This, of course, includes the EI4
form factors fs(0), g(0), and A, , as well as the direct
measurement of 60 —

5& in E&4 decay. We take the other
~~ information as the scattering lengths a ', , a 2, a 2, b 0 as
well as the universal curve' '

column). The g /XD~ is 0.9, the error bars again corre-
spond to an increase in g by one. For comparison we
display in the fourth row the values of Li L2 and L3
determined in Refs. 5 and 7(a) from the D wa-ve ~m.

scattering lengths and the large-X, suppression of
2L, L2—. (Here the error bars have a different origin and
meaning, see Refs. 5 and 7(a).)

The KI4 data on m.m. scattering is not yet precise enough
to address the question of alternate pictures of chiral-
symmetry breaking, which seem to prefer a value of
ao-—0.26 instead of the usual value of ao:0.20+0 01.
(The literature on the subject may be traced from Ref.
20.) The data of Rosselet et al. " lead to
a 0 =0.26+0.05, ' ' which is compatible with both
values.

The nice agreement between the values for L„I z, and
L3 found with these different approaches has implica-
tions on g —+3~ decays. Some time ago this process was
evaluated to next-to-leading order in chiral perturbation
theory. "With the exception of L3, all low-energy cou-
pling constants which occur in the final expression for the
matrix element can be absorbed into physical quantities.
In Ref 7(c). the value L3= —4.4X10, determined as
mentioned above from ~m. D waves and large-X, argu-
ments, was used to evaluate the decay rate of q —+3~.
The fact that K&4 data confirm this value according to
Table IV means that the notorious difBculty to explain
q~3~ in chiral perturbation theory "' ' cannot be
blamed on an incorrect value of L3 used in that calcula-
tion.

In Fig. 3 (curve 1), we show the form factors f&(s )

and g(s ) corresponding to the values in the first row of
Table IV. Numerically, these correspond to fs(0) =5.53,
g(0) =4.74, and Af =0.08, as well as the values quoted in
the last column of Table III. The agreement with the
data is excellent. To visualize the working of the large-
X, rule, we display also the form factors which result
from the same fit, however with the additional constraint
L2 =2L, (curve 2). Numerically, 2L, =L2 = 1.90,
L 3 3 74 g /XDF 0.95 or, equivalently l,= —0.78, i&=6.3. In Fig. 4 we also display the phase
difference 6z —

6& corresponding to the values in the first
row of Table IV, together with the data from Ref. 11.
The theoretical curve agrees with the measurements
within the error bars, although the data appear to be sys-
tematically on the higher side. Note that the values of
L, , L2, and L3 used here lead to ati =0.20 (see the last

TABLE IV. Determination of the chiral low-energy constants from the full set of low-energy data. First two rows: Values found
in the present analysis. Third row: Ref. 10, which is based on EI4 data alone. Fourth row: Values based on D-wave m.~ scattering
lengths and Zweig rule (Refs. 5 and 7(a)]. For error bars, see text.

No theor. error bars
With theor. error bars
K~& alone (Ref. 10)
~~ D-waves and
Zweig rule
[Refs. 5 and 7(a)]

10 L 1

0.65+0.28
0.88+0.47

0.55

0.9+0.3

10 L"

1.89+0.26
1.61+0.38

1.5

1.7+0.7

10 L3

—3.06+0.92
—3.62+1.31
—2.8+0.5

—4.4+2.5

—0.62+0.94
—0.81+1.23

—0.52

—2.3+3.7

6.28+0.48
5.76+0.71

5.55

6.0+ 1.3
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column of Table III).
While we were
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using the full chiral perturbation theory formulas, and
directly decide the quality of the fit and the favored
values of the low-energy constants. In addition, recall
that K&4 decay is the only available source of clean infor-
mation on ~~ S-wave scattering near threshold. Future
improvements in this area would also be welcome.

In conclusion, rare kaon decays provide a wealth of in-
formation on chiral perturbation theory, as well as con-
straints on fundamental interactions. It would be valu-
able to have a new study of K14 decays in order to test the
chiral and large-N, predictions more exactly.

in terms of the standard integral

Jp&(z ) = — f 1n ' dx,1 & g(x;z)
o gx;0

g(x;z ) =mp —zx (1 —x ) —bx,
6=mp mg

In particular one has

J"=J—2k, K= J, I.= J,
2z

'
4z

(A 1)

(A2)
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APPENDIX

The loop integrals J',M"„, . . . which occur in the
expression of the form factors F and G can be expressed

with

2
mp

m pin
32'lT p

J(z) =J(z) —zJ'(0) .

For mp =m& =m,

2
mg—m lnQ

1 a —1J(z)= o 1n +2, z (0,o+1
cr=(1 —4m /z)'

J'(0)=, k = 1n +11 1 1 m

96~2 m 2 32~2 p2

1 k 1
(z —2m' —2m )J+ J——+

12z 3z' 6 288~'
(A3)

(A4)

(A5)
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