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We construct the functional integration measure over four-geometries in the path integral for

quantum gravity by means of a geometric, manifestly covariant approach, similar to that used by

Polyakov for string theory. This generalizes the previous one-loop method of Mazur and Mottola

to all orders of perturbation theory. We compare this measure to that obtained by the gauge-fixed

method of Becchi-Rouet-Stora-Tyutin invariance exploited by Fujikawa and co-workers. The path

integral defined by these two diFerent procedures is one and the same.

I. INTRODUCTION

The path integral is a powerful tool in quantum field
theory. In addition to its conceptually simple appeal as a
"sum over histories, " it provides an equally good basis to
derive the perturbative Feynman rules or study nonper-
turbative aspects of a quantum theory. Moreover, since
it begins with the classical action, invariances of that ac-
tion should naturally reAect invariances at the quantum
level, as expressed by the corresponding Ward identities.

Unfortunately, the path integral has not always lived
up to this promise, particularly in the case of gravity.
The reason is that, in addition to the classical action, one
must specify the measure over the (functional) space of
metrics in the path integral. Because of the local symme-
try group of general relativity, one encounters the prob-
lem of overcounting of gauge-equivalent configurations, a
problem familiar in non-Abelian gauge theories. The
dynamical variables of the gravitational field are the
geometries of spacetime itself, and the local symmetry
group is the group of diffeomorphisms; so this overcount-
ing problem becomes more dificult, both technically and
conceptually, than in Yang-Mills theories. We should
emphasize at the outset that the problem of defining the
path-integral measure with which we are concerned is a
problem distinct from the ultraviolet nonrenormalizabili-
ty of the Einstein theory. If the Langrangian were
modified or a cutoff inserted by hand to control the diver-
gences, we would still be faced with the problem of the
correct measure over the space of metrics. The diver-
gences are strictly an ultraviolet problem, whereas the
question of the measure arises at any scale, including the
semiclassical (long-distance) limit of the theory.

The usual method of dealing with the overcounting of
gauge-equivalent configurations in gauge theories is to fix
the gauge and introduce Faddeev-Popov ghost fields. '

This procedure is well suited to perturbative calculations,
but has the disadvantage of obscuring the geometrical
significance and general covariance of the full theory.
The status of general covariance at the quantum level was
investigated by Fradkin and Vilkovisky, who made an
extensive analysis of the theory and concluded that the
measure must contain apparently noncovariant factors of
+,g"(x) and ii„&—g(x). Otherwise, they claimed

that the Ward identities are violated. However, the ill-
defined nature of infinite products of such factors at each
spacetime point makes the interpretation of this claim
problematic. The result is that the status of general co-
variance of the path integral for quantum gravity has
remained unclear. This is a prime example of technical
difficulties underlying an important conceptual issue in
quantum gravity, which underscores the need for a
different approach.

A major technical advance came with the application
to quantum gravity -of the supersymmetry of Becchi,
Rouet, Stora, and Tyutin (BRST), discovered originally
in gauge theories. Fujikawa realized that the gauge-fixed
path-integral measure is determined by the requirement
that it be invariant under BRST transformations. This
is a necessary ingredient in the proof that the Ward iden-
tities of the quantum theory are anomaly-free, which in
turn is necessary for the theory to be unitary. A method
of regularization that respects this supersymmetry was
subsequently presented in Ref. 5. Although this solves
the problem of the measure in principle, it involves the
full algebraic machinery of BRST, while the geometric
principle of general covariance is still far from being
transparent. Because of these features, it has not been as
widely understood or applied to questions of current in-
terest as it might be. As a concrete example, Fujikawa's
determination of the measure in the path integral should
be equivalent to determining the correct operator order-
ing of factors in the Wheeler-De Witt equation, which has
been much discussed recently in the context of quantum
cosmology and topology change. Yet no use of this con-
nection has been made. Again, pure technicalities have
served to obstruct the understanding and limit the useful-
ness of the path-integral approach.

Recently, a different approach to the path-integral
measure for quantum gravity was proposed. A covari-
ant measure for the Feynman integral over four-
geometries was constructed at one-loop order, by employ-
ing the same techniques used by Polyakov for string
theory, and suggested by the pioneering work of De Witt
more than a quarter century ago. As in string theory,
the Polyakov approach, though quite elegant and mani-
festly covariant, comes, so to speak, "out of the blue. " It
is not derived from any strictly canonical approach in
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which only physical excitations propagate. Hence it is
not manifest that it is equivalent to the Hamiltonian or
unitary gauge form of the theory (such as the light-cone
gauge of string theory). Nor is its connection with the
BRST-invariant construction of Fujikawa obvious, since
no gauge fixing or ghosts in the usual sense are used in
the geometric method of dividing out the gauge-orbit
volume.

Our purpose in this article is to extend the formal con-
struction of the generally covariant measure of Ref. 6 to
a/l loop orders and to connect it with the BRST-invariant
measure in the gauge-fixed path integral of Fujikawa. We
shall see that the two approaches yield the same answer,
thus indicating the correctness of geometric methods
while exposing the intuitive meaning of the more formal
BRST approach. Our construction is formal in the sense
that we do not consider explicit regulator techniques for
defining (for example) functional determinants. Rather,
we assume that all such formal quantities are defined by
covariant regulators such as those provided by the /-
function method. The geometric approach to path in-
tegrals has been discussed in Ref. 10 as well. The connec-
tion with canonical Hamiltonian methods and applica-
tions to problems of current interest will be left to future
publications.

The paper is organized as follows. In Sec. II we sum-
marize and compare the standard Faddeev-Popov quanti-
zation to the geometric method for the case of non-
Abelian gauge theory. This is intended partly as a
pedagogical review, in order to introduce notation and
make the paper reasonably self-contained. In Sec. III we
construct the measure for quantum gravity by defining an
inner product and volume element on the (co)tangent
space of spacetime metrics. The tangent-space measure
so constructed induces a functional measure on the full
space of metrics. This extends the approach of Ref. 6
and defines a path-integral measure for quantum gravity
that is fully covariant to all orders of perturbation theory.
No ill-defined infinite factors of ii„g (x ) and

+—g (x) ever arise in this approach. In Sec. IV the
geometric approach is compared to the usual gauge-fixing
procedure and the method of BRST invariance followed
by Fujikawa et al. ' The equivalence between the two
approaches is then evident. We work in D =4 Lorentzi-
an spacetime'Uimensions, except when otherwise indicat-
ed.

A „'-A„'~" = A „'+(V„O)'
AI' +g pl+f 1'jkA j gk

P P p (2.2)

A„'= 2 „'+a„' (2.3)

The gauge transformation (2.2) is defined to act only on
a„' while the background field remains fixed. Then the
path integration over the gauge-field configurations may
be thought of as an integration over the fluctuating quan-
tum piece alone:

[X)A' ]=[I)a„'] . (2.4)

"Fixing the gauge" means imposing a condition of the
form

(F a )':F'~ "a~ =—0, (2.5)

on the field configurations to be integrated over. The re-
sulting path integral is

Z= f [Xa„'][X)b'][2)c'][2)c']

Xexp[i [S;„,(A+a)+S r+S „]$, (2.6)

where b ' is an auxiliary Lagrange multiplier field and c '

and c ' are the Faddeev-Popov ghost fields. The gauge-
fixing and ghost terms in the action, respectively, are

S r= f d x b'(F a)',

S h
= f d x c '( F&& V ) '~c i, (2.7)

where (F&&V)' =F"' V„"~. Integrating over b' yields the
gauge-fixing condition (2.5) as a 6-function constraint.
Integrating over the ghost fields yields the Faddeev-
Popov determinant

The f 'J" are the structure constants of some non-Abelian
gauge group.

The gauge invariance of the classical action implies
that the path integral contains an infinite factor of the
gauge-orbit volume. Hence one should define the vacu-
um amplitude for the theory with this infinite factor di-
vided out.

The usual method of dealing with this formally infinite
factor is to "fix the gauge. " To do so, first decompose the
gauge field into a background piece (denoted by an over-
bar) and a fiuctuating piece:

h„p=det(Fo V) . (2.8)

II. YANG-MILLS THEORY

In this section we review the standard Faddeev-Popov
method for path-integral quantization and outline the
geometric method for the case of Yang-Mills theory.

A. Gauge-fixed approach

A remarkable property of the path integral (2.6) is its
invariance under the BRST transformations, defined in
the Yang-Mills case by

Qa„'=(V„c)'=B„c'+f""A'c",
Qc'= f' cc—

The Yang-Mills action

S;„,[ A ] =—,f d'x G„'.G '"' (2.1)

Qc '=b',
Qb'=0 .

(2.9)

is invariant under any non-Abelian gauge transformation,
the infinitesimal form of which is

2 0 (2.10)

It is easily verified with this definition that Q is nilpotent,
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=sdet 1+ = 1+str
&( ~l& ) 8( 4')

Q O'I&
(2.12)

by the antisymmetry of the structure constants
f'&"= f'—"&. Since the ghost plus gauge-fixing terms in
the action may be written as an exact form,

Ss„+Sst=gf d x c '(F a )', (2.11)

we immediately discover that it is BRST invariant by
(2.10). The original classical invariant action S,„,[A ] is
obviously BRST invariant since the BRST transformation
on the gauge potential has exactly the form of a gauge
transformation with the gauge parameter 0' replaced by
c . Thus the entire path integral in Eq. (2.6) is BRST in-
variant, provided that the measure is.

The BRST invariance of the measure may be verified
by a direct computation of the Jacobian of the transfor-
mation (2.9) on the set of fields 4:(a„'—, b', c', c '):

invariant line element ds as a certain (position-
dependent) quadratic form in the dx". The analogs of the
coordinate one-forms here are the small deformations
6A„' of the gauge field. The only Poincare-invariant bi-
linear inner product is

(2.14)

This natural, invariant quadratic form is completely
analogous to the invariant line element ds of finite-
dimensional Riemmanian manifolds and therefore in-
duces a natural, invariant volume form on the space of
gauge fields. In the present case the metric is Rat and in-
dependent of the point A „'(x ). Hence the invariant
volume form is just the product of coordinate
differentials. We may fix the irrelevant normalization of
this functional measure by a Gaussian normalization con-
dition:

since we may regard the BRST transformation (2.9) as an
infinitesimal one. The transformation on the antighost
and auxiliary fields do not contribute to the Jacobian, and
so the product of the last two measure factors
[2)c '][2)b'] is separately BRST invariant. The remaining
terms in the gauge and ghost sectors give

I& = 1+Tr, (f'&"c")—Tr, (f '&~c") . (2.13)

The two traces are over different spaces, viz. , vector
gauge fields and anticommuting ghost fields, respectively,
so that they do not cancel. However, each vanishes sepa-
rately by the antisymmetry off '&". Hence the Jacobian is
unity, and the functional measure is BRST invariant,
which is what we wished to prove. This formal BRST in-
variance is the key ingredient in the establishing of Ward
identities which are the reAection of the gauge invariance
(2.2) at the quantum level. These are essential also to the
proof of the renormalizability and unitarity of the theory.

B. Geometric approach

The standard gauge-fixing procedure reviewed above
has implicit in it the geometric structure of the space of
gauge fields. The choice of F really amounts to a choice
of a slice on the field configuration space. Given this
slice, one could introduce, for example, Gaussian normal
coordinates to establish coordinates on field configuration
space in a local neighborhood of the point on the slice.
This suggests that if one were to introduce a metric on
the space of gauge fields, then the path-integral measure
would naturally be the invariant volume form corre-
sponding to this metric, and the Faddeev-Popov deter-
minant would arise as a Jacobian of transformation to
these new coordinates on the field configuration space.
We shall see that this is indeed the case.

In the geometric approach we begin by regarding each
gauge-field configuration A„'(x) as a "point" in a con-
tinuous function space. In ordinary Riemannian
geometry one introduces the notion of a tangent space at
each point of the manifold with a corresponding co-
tangent space of coordinate one-forms dx". Then a
metric on the manifold may be introduced by defining an

f [2)5A„']exp ——(52, 5A ) =1 . (2.15)

Z [ 2 ]= [Vol( 9) ]
' f [2)a „' ]exp( iS,„„[2 +a ] ), (2.16)

with respect to this induced measure. Here Vol( 9)
denotes the (infinite) gauge-orbit volume that must be
vided out. However, instead of Faddeev-Popov gauge
fixing, we proceed by introducing the coordinatization of
the gauge field:

The measure defined in this way is manifestly Lorentz
invariant. Moreover, it is gauge invariant under (2.2).
This is because it is translationally invariant under
5A&(x)~53„'(x)+U&(x), for any 5A-independent shift
v, which eliminates the translation term in the gauge
transformation (2.2), leaving only the rotation, represent-
ed by the final term of (2.2). Since the inner product in
Eq. (2.15) is invariant under global gauge rotations, this
guarantees that the measure is as well and completes the
proof of its full gauge invariance.

A key point now is the observation that the metric and
measure defined on the tangent space at 3 induces a mea-
sure on the full space of vector gauge fields. The exten-
sion runs as follows: Let X' be the coordinates of any
manifold (for example, the space of gauge fields). Then
any tangent vector at a given point X ' may be written
V= V'8;

~, —;,and the V' are coordinates for the tangent
space to X'. If for all X' there is a measure on the
tangent space at X ' of the form f(X ')d V' 6 d V 6
then there is induced a measure on the original manifold
defined by f(X')dX' h dX h . . Moreover, the Jacobi-
ans of any change of coordinates on the tangent space
and the original manifold at X' are the same. In the
present case, the inner product (2. 14) defines a+at metric
on the function space, so that f(X')=const, and most of
the above remarks seem trivial. This will not be the case
in gravity, where their significance will be much more ap-
parent.

We may now define
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such as a covariant, background field gauge:

(F a )'=(V "a )'=0 . (2.18)

(2.17)

where A is an arbitrary element of the gauge group at
each spacetime point. By construction, the quantity a„' is

gauge invariant and Lorentz covariant. In order to speci-
fy the field coordinates completely, one still needs to fix a
condition on the a„' of the form (2.5). However, in the
present context this is not a gauge "fixing" that breaks
the gauge invariance of the theory, but rather a choice of
coordinates in a coordinate-invariant formulation. This
coordinate choice may depend on the background

I

[2)a„' ]=J[2)„'][2)0'],

in the tangent space

(2.19)

Note, however, the important point, that a„' is gauge in-
variant for any choice of condition on it. Hence gauge
invariance is assured by this construction from the start.

The task now is to express the gauge-invariant quantity
(2.16) in the coordinates (gauge) specified by (2.17) and
(2.18). We first compute the Jacobian of the transforma-
tion to the new coordinates:

1 =I [Xla „' ]exp ——(a, a )

J a„' 0' exp —— a, a +2 VOa + VOVO (2.20)

This integral may be computed by completing the square and using condition (2.15). We find that

J= [dets( —V' )detl), [5„—V'„(V'2) 'V ]] '~2, (2.21)

where the vector determinant is to be evaluated over the space of fields a ' obeying the constraint (2.18).
The vector determinant may be converted into a scalar determinant by the following manipulations. First of all, in-

troduce a complete orthonormal set of transverse vector modes [ v '" 'I with respect to the inner product (2.14):

( Ul(n l l(n') ) 5nn'

g U '"'(x)U '"'J(x')=[5 5"—(M )' ]5 (x x')=P "(x x') (2.22)

where

(M v)ij [V (V 2) —1V v]ij (2.23)

and P is the projector onto the space of transverse vectors. Then we may write the vector determinant as

Trii, (M )
det, v I 5„"—M„' I

=exp
k=1

(2.24)

where M is the operator (2.23) without the overbars. Now use

Trl), (M )"=
n&, n&, . . . , n&

=Tr), (MP )",

l(n) ) l(n2), , l(n2) l(n3), , l(ni, ) l(ni))

(2.25)

by (2.22). It is easily verified by a direct computation that

[(MP ) ]„=V„(V' ) '(1 —W)" '[V' —(V V)(V ) 'V'],
where 8 is the scalar operator defined by

W:—(V.V)(V' ) (V.V')(V )

(2.26)

(2.27)

The cyclic property of the trace may now be employed to derive the formal identity

Tr), (MP )"=Trs(1 —W)",

so that

(2.28)

(1—W)"
detl ~( 5„—M„' ) =exp —Trs g

/& =1
= exp I Trsin [ I —

( 1 —W) ] ]
=dets W, (2.29)
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and the full Jacobian (2.21) is given finally by

J= [dets( —V.V)dets( —V V)dets[( —V ~)

=dets '
(
—V )dets( —V V), (2.30)

because dets( —V V) =dets( —V V). The second factor in (2.30) is precisely the Faddeev-Popov Jacobian b,„p of the
gauge-fixing method for the specific choice of background gauge (F")'~=(V")'~, while the first factor is a constant, in-
dependent of the field point 3„,and therefore may be taken out of the path integral without affecting the result. It is
important to retain this factor if one calculates the effective action as a function of the background field, however.

Having determined the correct Jacobian of the transformation to field coordinates (a „,6j), we may now express Z in
the form

Z= [Vol(g)] ' f [2)g'] f J[X) a„']exp(iS;„„[A+ a])=det& '
( —V )f [2)a„']dets( —V.V)~ „—,e xp(iS;„„[77 +a ]),

(2.31)

where the integral is over the gauge-invariant field coordinate a„', and the gauge volume factor has been canceled ex-
plicitly. It is clear that this form generates the same Feynman rules as the gauge-fixed path integral (2.6), and that a
similar equivalence holds for other choices for F. In the present approach, however, the geometric significance of gauge
fixing as simply a choice of coordinates in a coordinate-invariant expression is manifest and proofs of gauge invariance
are unnecessary. Moreover, the nonperturbative aspects of the path integral and the correct normalization factor
dets '~

( —V ) are also apparent.
To one-loop order around the background field, we may replace V by V in the Jacobian factor and arrive at

Z'"[A ]=dets ( —V )deti, J' (
—V )e (2.32)

provided the background field satisfies the classical equa-
tions of motion V "E„=O. The factors of the deter-
minants in (2.30) are just those needed for unitarity at
one-loop order, since the transverse vector determinant
corresponds to the propagation of 4 —1 =3 modes,
whereas the scalar determinant enters with the opposite
power and hence subtracts one additional mode. This
leaves precisely the two physical propagating modes per
spacetime point, which we expect on the basis of the
canonical quantization of the pure Yang-Mills gauge
theory. Since the construction of the measure used in the
covariant approach [2)A„'] is identical to the BRST-
invariant measure of the first method, we are guaranteed
that the Ward identities of the covariant approach are
anomaly-free, and that the entire formal apparatus neces-
sary to prove the renormalizability and unitarity of the
theory are in place. With this warm-up in Yang-Mills
theory, we now apply exactly the same principles to the
construction of the covariant measure for gravity.

III. COVARIANT PATH INTEGRAL
FOR QUANTUM GRAUITY:
GEOMETRIC APPROACH

The action of classical general relativity is invariant
under general coordinate transformations x"~X~
=X"(x ), the infinitesimal form of which is

(3.1)

We shall construct the functional measure in the path in-
tegral for quantum gravity by requiring that it also be in-
variant under (3.1). This is accomplished by transcribing
the methods of Riemannian geometry on manifolds to the
function space of spacetime metrics.

The first step is to consider an arbitrary spacetime
metric g„(x ) to be the coordinate of a point in the func-
tion space of all metrics, denoted by A, . The infinitesimal
one-form 5g„(x )

—=h„(x ) lies in the (co)tangent space to
at the point g (x ). In ordinary Riemannian

geometry, the metric on a manifold is specified by
defining a scalar, bilinear in such coordinate one-forms,
and identifying it with the geodesic distance ds . In a
completely analogous manner, we may define a scalar
inner product which is quadratic in the tangent-space
one-forms of the manifold of functions JM:

(h, h )r= f d x& —gh„,(x)G" i' h (x) . (3.2)

The subscript T reminds us that this is an inner product
for tensors. Now the scalar ds =g„(x )dx "dx' is invari-
ant under the (passive) relabeling of the coordinates of
spacetime [Eq. (3.1)] that leaves the geometric spacetime
point unchanged. The corresponding (active) transforma-
tion of the metric on the spacetime manifold is

h„,(x )~h„(x )+V„g,+V,g„. (3.3)

This may now be regarded as a relabeling of coordinates
on A, which leaves the "point, " i.e., the geometry corre-
sponding to g„,(x ), unchanged. Hence we must require
that the measure be invariant under the transformations
(3.1) and (3.3) as well. Since h„,(x ) transforms covariant-
ly as a symmetric tensor under (3.1), G"'~ must trans-
form like a contravariant four-tensor. Like
g„(x ), G"'~ (g) has evident symmetry properties: It is

symmetric under interchange of its first or last two in-
dices, as well as interchange of the first two with the last
two. Finally, again like g„,(x), G" ~ (g) must be a pure-
ly local function of the coordinates of AL. That is, it
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should contain no derivatives of g„(x). The unique ul-
tralocal tensors with these properties are

—,'(g"'g"+g" g'), g" g" . (3.4)

G P vP(7 —1
(g isPg vTT +g P(Tg vP + Cg Pv P cT

) (3.5)

where C is an undetermined constant.
Having endowed the function space of metrics A, itself

with a metric, we are now in a position to define an in-
variant volume form on the space. In order to avoid con-
fusion, it is useful to introduce the vielbein field e„,
which converts spacetime vector indices to Lorentz in-
dices. If we then define the density

h „—=&ee"e„h„, ,

together with the relations

m n
gpv ep ev Imn

(3.6)

(3.7)

If we did not demand ultralocality, an infinite number
of tensors involving higher derivatives would appear in
this list. Using such tensors in the definition of the inner
product and functional measure ultimately would have
the effect of defining a different set of dynamical coordi-
nates for the theory. Since we assume that the metric is
the fundamental field coordinate, and derivatives of it in
the action introduce dynamics, we do not wish to intro-
duce derivatives and spurious dynamics into the essen-
tially kinematic definition of the inner product or func-
tional measure. In fact, this is the only principle which
justifies an otherwise quite arbitrary distinguishing of the
functional measure in the path integral from the action
functional. The real proof that these statements are
correct can come only a posteriori, when equivalence to
the canonical approach is demonstrated.

Restricting the metric on AL to be covariant and ul-
tralocal determines it (up to an overall irrelevant normali-
zation) to be

formal manipulations, this "definition" leads to ambigui-
ties for continuum functional integrals, because of the
ill-defined nature of the product at each spacetime point,
which also leaves the normalization of the measure
undefined. Instead, it is preferable to define the measure
by the Gaussian normalization condition

h„exp ——h h (3.12)

which is formally satisfied by (3.11). This Gaussian in-
tegral is well defined in the Feynman-Kac sense.

The overall constant in front of the supermetric (3.5) is
irrelevant, since it may always be reabsorbed into the
normalization integral (3.12). The constant C is not ir-
relevant, since it determines the signature of the metric
on A, . This may be seen by decomposing the arbitrary
tangent space tensor into its trace-free and trace parts,

hg
h TF+

PV PV 4
(3.13)

and operating on this decomposition with the metric G.
The (D+2)(D —1)/2 trace-free parts of h„ in D dimen-
sions are mapped onto h "",independent of C. Howev-
er, on the scalar trace mode, G has the eigenvalue
1+CD/2. Hence the signature of G depends on the
value of C: for C & —2/D the signature of G in the sca-
lar trace sector is positive, while for C (—2/D the signa-
ture is negative. If C= —2/D, the metric is noninverti-
ble and becomes a projector onto the trace-free subspace.
We leave the value of C undetermined for now and return
to this issue in Ref. 9 in connection with the conformal
factor problem.

For any value of C it is clear that the functional mea-
sure defined with reference to the inner product (h, h ) z.

is invariant under the infinitesimal general coordinate
transformation (3.1). Under (3.3),

and
5f„,= [g'a, +-,'(a,g') ]h„, , (3.14)

e:—det(e„) =&—g (3 8) so that

f d x h „G ""'(5~h„,)= —Jd x(5~h „)G ""'h„, ,
then the inner product (3.2) may be expressed in terms of
the fjat metric 7) „=diag( —1, 1, 1, 1) as

(h, h )r= Jd x h „G ""'h„, , (3.9)

where

(3.15)

by a simple integration by parts. This shows that the
operator

G mnrs 1
(

mr ns+ ms nr+ C mn rs) (3.10) Y„"—= 6~h„,
a

Bh
(3.16)

is independent of x.
Then, by analogy with the invariant volume

form on a pseudo-Riemannian manifold, g dx
=det(e„)ii„dx", we might try to define the invariant
volume form on the function space of metrics Af by

[2)h„]—=const X + dh

is anti-Hermitian and therefore traceless with respect to
the inner product (3.2). This is exactly the property need-
ed to prove that the Jacobian of transformation for the
measure under (3.3) is unity; i.e. , the measure (3.11) is in-
variant under infinitesimal coordinate transformations:

5&[2)h„]=det(1+ Y)[2)h„,]

=constX g e' " +" + dh„(x), (3.11) =(1+trY)[2)h„]=[2)h„] . (3.17)

in D spacetime dimensions. Although useful for some
Once we have a coordinate-invariant functional mea-

sure, we must extract the infinite gauge-orbit volume in
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h =h „+(Lg)„+(2o + ,' V)—.g )g„ (3.18)

an invariant way as well. To this end we introduce a
change of coordinates in the tangent space of Af at g„:

(F h ) =F h =0.
p pv (3.20)

The only condition on F is that the operator FoL be lo-
cally invertible, so that (3.1"8) can be solved uniquely for

where L, the "conformal Killing form, " maps vectors
into traceless symmetric tensors: g„=(FoL) ' (Foh ") (3.21)

(LC)„.-=V„C.+V„r.--,'(V,r')g„. (3.19)

Thus Lg spans all symmetric tensors which are gauge
transforms of h „",the traceless part of h„. The scalar o.

is the gauge-invariant piece of the trace, and h„ is the
gauge-invariant piece of h„". In Ref. 6, h„was chosen
to lie in the orthogonal complement to L, with respect to
the inner product (3.2), which required
(L h )„=—2V h„=0. Indeed, this is the simplest
choice for doing one-loop calculations, which involve
only Gaussian integrals, and justifies the notation h .
However, the choice of orthogonal coordinates on the
tangent space of JM is by no means necessary, and h„
may be required to satisfy an arbitrary coordinate (gauge)
condition:

Otherwise, the local coordinate chart (3.18) is singular at
the point g„.

Following the discussion in Sec. II for the case of the
non-Abelian gauge field, to extract the infinite gauge-
orbit volume generated by the gauge direction, g„, we
must find the Jacobian of the transformation to the new
field coordinates (h, g„,cr ):

[2)h„,]=J[2)h„][2)g„][2)o] . (3.22)

This is accomplished by substituting the decomposition
(3.18) into the inner product (3.2), completing the square
of the term quadratic in g„, and computing the Gaussian
integrals over each of the components, respectively:

1=f [2)h„,]exp ——(h, h )z-

r

=Jf [2)h, ]exp ——(h, (1 —M)h )z. f [2)g„]exp ——(g', b, g') „ f [2)o.]exp[ —8i(1+2C)(o., o. )z], (3.23)
L

where the vector Laplacian 5& is defined by

(b, , )„'—= (L L)„'= 2(5„V + ,'—V'„V +R„'—), (3.24)

(3.26)

the tensor operator M is given by

M„:—[L(h ) 'L ]„P = —2V„(h, ') PV' —2V (b, , ')„PV + „,V' (b, , ')qPV (3.25)

and g„'=g„+(6, 'L h )„ is the shifted vector obtained by completing the square. The notations (, ) ~ and (, )s denote
the covariant inner products on vectors and scalars, respectively:

(g, k) ~= fd'~& —g k„g"'k.

(cr, cr)~= f d4x& —g o'.
The remaining tensor and vector Gaussian functional integrals in (3.23) yield, for the Jacobian,

J= [deter (1—M)]' (detFb, , )'

where we have used

(3.27)

f [X)h„,]exp ——(h, h ) z =1,

f [2)g„]exp ——( g, g ) ~ = 1,
(3.28)

and discarded a (C-dependent) constant. The notation detj&. denotes the determinant over tensor modes satisfying the
condition (3.20). The tensor determinant may be simplified by introducing the projector onto the subspace obeying
(3.20):

popo' (& & r) [ gTF gTFFt(Fo Ft) 1FgTF] pvg4(x (3.29)

where
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5 "r —= —'(5~5 +5 5~ ——'g gr )P~ 2 P ~ P ~ & P~ (3.30)

is the trace-free part of the tensor Kronecker 5 symbol in D =4 dimensions. Then the tensor determinant in (3.27) may
be written in the alternative forms

Triz-(M )"
detiz-(1 —M ) =exp

=exp
Trr(MP )"

=exp
k=1

Tr i, ( 1 —8')"
k

=det~8 (3.31)

where the cyclic property of the trace has been used, and 8'is the vector operator:

W=(b, &) (FaL) (FoF ) (FoL) .

Combining the results of (3.27), (3.31), and (3.32) yields the Jacobian in the more transparent form

J=[deti, (FoF )] ' deti, (FOL),

(3.32)

(3.33)

in complete analogy with the gauge theory result (2.30). The second factor is the Faddeev-Popov determinant for the
gauge (3.20) on the trace-free components of h„, while the first factor is an h„-independent normalization factor that
makes no contribution to the Feynman rules. Note that the Jacobian factor has been derived by tangent-space
methods, involving only Gaussian functional integrals, but that this involves no restriction to one-loop order. The re-
sult (3.33) is valid to al/ orders of perturbation theory.

With the Jacobian (3.33), we now know how to factor the infinite diffeomorphism gauge group volume out of the co-
variant quantum measure (3.22) in a manifestly covariant way. If the action is independent of the vector gauge-orbit
parameter g„, integration over g„would simply yield the infinite volume of the diffeomorphism group, and so

[Vol(Q)] ' f [2)h„,]=[Vol(Q)] ' f [2)g„]f J[2)h„][2)o]

= fJ[2)h„][2)o], (3.34)

when integrated over functions independent of g„.
The final steps in constructing the covariant path integral for quantum gravity involves extending the integration

measure defined on the tangent space to a measure on the full metric. The extension of the coordinates on the tangent
space (3.18) to coordinates on AL is straightforward. We write

(F g )„=0,
(3.35)

where o. may be fixed by the requirement that g„have fixed constant scalar curvature R . This implies that o. must
satisfy the Yamabe condition

&[g,]=e R —6e [V' V o. +(V cr) ~ (V o)], (3.36)

where V V is the scalar Laplace-Beltrami operator of the metric g . The path integral for quantum gravity may be
written then in the succinct generally covariant form

Z= [Vol(Q)] ' f [X)g ]exp(iS;„„[g])

= fJ[2)g„][2)cr]exp(iS;„„[e g ])

=[detv(F&&Ft)] 'r f [X)cr][2)g„„]dt e(vF&& L)~ 2,exp(iS;„„[e g ]), (3.37)



1220 ZVI BERN, STEVEN K. BLAU, AND EMIL MOTTOLA 43

where (3.33) has been used.
If we set

gpv=gpv+"pv ~ (3.38)

5[(F.h )„]=f [2)b"]exp(iS t[h, b]),
Sst= f d x V —g bl'(F. h )„. (4.5)

the analogy with the gauge theory result (2.31) will be
evident. In both cases the a - or h -independent deter-
minant makes no contribution to the Feynman rules. It
arises only because

[2)h„]6(Foh ) = [det~(Fo Ft)] '~ [2)h ], (3.39)

when both the [2)h„] and [2)h„] measures are normal-
ized by Gaussian conditions (3.12) and (3.28) in their
respective spaces.

At one-loop order (around an arbitrary background
metric g ), (3.37) reproduces the results of Ref. 6. An in-
teresting aspect of the general formula for the path in-
tegral (3.37) is that it requires that the classical Yamabe
problem (3.36) be solvable for each g and g ." This
problem of classical Riemannian geometry thus takes on
an added importance at the quantum level, particularly in
the nonperturbative domain.

As in Sec. II, the identity

f [2)g'„]5[(Fh„'&')]5„p——1,
with

(4.2)

b„=det (F h'&')5
(4.3)

has been inserted into the path integral, and the volume
of the diFeomorphism group j[2)g„]been divided out.
The anticommuting ghost fields c" and c have been in-
troduced to express the Faddeev-Popov vector deter-
minant in the form

App: f [2)c"][X)c ]exp( iSs„[h,c, c ] )

Sgh= d x&—gc g &F V„+g F V& c" . (4.4)

The gauge-fixing 5 function has been enforced with the
aid of a local auxiliary field as well:

IV. BRST INVARIANCE OF THE MEASURE

The construction of the path integral in the last section
is manifestly invariant under coordinate transformations
of the underlying four-geometries contributing to the
Feynman path integral. In particular, the infinite gauge-
orbit volume has been divided out in a geometric fashion.
Let us compare this result to the more standard introduc-
tion of a gauge-fixing condition and Faddeev-Popov
determinant into the path integral. The comparison is
not quite as immediate as that for non-Abelian gauge
theory because the metric on the field space JR is non-
trivial.

The gauge-fixed form of the tangent-space path in-
tegral for quantum gravity is

Z= f [2)h„][2)c"][2)cP][2)b"]exp[i(S,„„+S„+St)] .

(4.1)

To show that this form for the path integral is BRST
invariant, introduce the BRST supersymmetry operator
for quantum gravity, defined by

Qhp c ~ggp +g Bc +gynic
Qc~=c'a,c~,

Q [(—g )~c "]= (
—g )~b",

Q[( —g)%~]=o .

(4.6)

This operator is nilpotent for arbitrary weighting power

Q
2 —0 (4.7)

This differs from the standard definition of the BRST
transformation (p =0), but is related to it by a
redefinition of fields. The covariant ghost plus gauge-
fixing terms in the quantum action may be written as an
exact form,

Ssh+S &=Q f d x&—gc "(F.h)„, (4.8)

c—:&ee„c",
b m +eemb&

p

(4.9)

with h „defined in Eq. (3.6). Then we regard the BRST
transformation as an infinitesimal transformation on the
set of field densities, 4:—(h „,c,c,b ). It is the Jaco-
bian of the transformation ql ~4+Q4 which we wish to
show is equal to unity:

provided that p is chosen to have the value —,'. Since
S;„„[g] is automatically BRST invariant if it is coordinate
invariant, the full quantum action is invariant under the
BRST supersymmetry (4.6), with this choice of p. There-
fore, the vacuum amplitude (4.1) will be BRST invariant
provided the product of the measure factors is invariant.

Now Fujikawa determined the measure by requiring
BRST invariance at the outset. However, we already
know that the coordinate-invariant measure on the space
of metrics At is determined by the inner product (3.2) and
(3.5) and the Gaussian condition (3.12). Formally, this
measure is equivalent to (3.11), which is the same factor
found by Fujikawa by requiring BRST invariance. Of
course, this is no accident: The factor in (3.11) required
for BRST invariance is the same as that required for gen-
eral coordinate invariance because the BRST transforma-
tion of h„, is just an infinitesimal coordinate transforma-
tion with c" replacing P. Hence the [2)h„] measure in
(4. 1) is the same as that defined previously by (3.12).

To prove the BRST invariance of the full functional
measure, the strategy will be as follows. We know from
our previous demonstration of the coordinate invariance
of measure [2)h„,] that it was convenient to introduce
densities with "internal" Lorentz indices. So we define

c =&ee„c",
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J& =sdet 1+ = 1+straQC aQ%

B% 8%
(4.10)

(h „,c )~(h „,c")~(h ' „,c")~(h ' „,c' ) . (4.1 1)

From the trivial antighost c" and the auxiliary field b"
transformation (4.6), the measure factors [2)c "] and
[2)bi'] are invariant. Thus we need be concerned only
with the submatrix of transformation with respect to h
and c™.

The subtlety now is that this submatrix must be evalu-
ated by holding one of these field densities fixed while the
other is varied, whereas the coordinate invariance of
[2)h„] made use of a variation of the density h „with
the vector P (not its corresponding density) held fixed.
This is easily handled by carrying out the transformation
from (h „,c™)to (h

' „,c ' )=(1+Q)(h „,c ) in the
following three steps:

In step 1, c is changed to c" with h „(and consequent-
ly h„) held fixed. In step 2, the BRST transformation is
applied to h „with the vector c" held fixed. The deter-
minant of this transformation is precisely the one we have
already computed to verify the coordinate invariance of
[2)h„]. Provided we replace the gauge function P by
the ghost field c" in Eq. (3.14), it follows that this second
transformation has unit Jacobian. Finally, we change
variables from c" into its BRST transformed density
c' =c +Qc™,keeping h

' „=h „+Qh „ fixed. Since
the Jacobian of step 2 is unity, the Jacobian of the full
transformation J& is given by the determinant of the
product of steps 3 and 1:

J& =sdet B(c "+Qc ")
Bc" "mn

~&™ h~.

—=sdet „(M„X„"), (4.12)

where

M„(x,y)=(e' e„—e[c~[B (e' e„)]+[8ci']e e' + ,'[8 c—~]e' e ])[5„—e(c~B 5„—[B„c'])]5(x,y), (4.13)

(4.14)Nt,'(y, z)= =e ' (y)e„"(y)5"(y,z),&c"(y )

ac "(.)
mn

and we have introduced the Grassmannian constant e in the BRST transformation to help keep track of signs. Follow-

ing Ref. 5, we may simplify the first matrix somewhat by rewriting it in the form

M„(x,y) =
j e ' e„—e(c 8 e ' e„+—,'e ' e„[B,c'])]5"(x,y ) .

Multiplying the two matrices together and using the identity

e' (x)e„(x)8"[e ' (x)ei'(x)5 (x,z)]+ j8"„[e'~(x)e„(x)]]e ' (z)e„"(z)5 (x,z)=5„B"5(x,z)

(4.15)

(4.16)

gives

Jg =sdet j 5„5 (x,z ) —e[c (x )8,5„+—,
' 5„(Bc ) ]5 (x,z ) ],

=sdet(1+ Y) (4.17)

with Ygiven by

Ym 5m[ (4.18)

The authors of Ref. 5 point out the difhculties with regu-
larization that arise if one tries to write the determinant
of the product of transformations in Eq. (4.12) as a prod-
uct of determinants. However, such a separation is un-
necessary from the present point of view since we are in-
terested only in the Jacobian of the full transformation.

which is exactly of the same form as the operator appear-
ing in Eq. (3.14). Therefore, it is anti-Hermitian, its trace
vanishes by an integration by parts, and we have secured
the desired result: viz. ,

(4.19)

Indeed, formal manipulations of the determinants of
infinite-dimensional matrices may lead to incorrect (i.e.,

noninvariant) results, unless an invariant regulator is
used during all intermediate steps and then removed only
at the very end of the calculation. Since "invariant"
means invariant under general coordinate and/or BRST
transformations, this requirement means that one can
never encounter the noncovariant factors of g obtained
by Fradkin and Vilkovisky, and that infinite factors such
as 5 functions of zero are automatically absorbed into the
normalization of the path-integral measure. Much of the
technical difficulty of the earlier literature on the path-
integral measure for the gravitational field is thereby
avoided.

Finally, we remark that the gauge-fixed amplitude (4.1)
is not quite in the same form as (3.37) because the covari-
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ant construction necessarily involves the separation of
the metric into its conformal and conformally equivalent
parts (cr and g, respectively), while no such decomposi-
tion has been introduced in (4.1). Thus the gauge-fixing
condition and corresponding Faddeev-Popo v deter-
minant refer to the metric exp(2o )g rather than just g
of the geometric approach. If the conformal factor is
separately defined by (3.36) and the gauge condition I',
then, applied to the class of conformally equivalent
metrics g, (4. 1) and (3.37) will agree completely.

To summarize, the general coordinate-invariant mea-
sure defined by the normalization condition (3.12), with
respect to the ultralocal metric on the space of metrics
6"~, defines a BRST-invariant measure for quantum
gravity after gauge fixing. Our construction of the mea-
sure is guaranteed to be covariant, provided a strictly co-
variant regularization technique is used systematically.
The densities appearing in the formal proofs of BRST in-

variance in Refs. 4 and 5 are seen to be precisely those re-
quired by general covariance with respect to the underly-
ing spacetime geometry. In addition, the geometric con-
struction of the tangent-space measure lifts immediately
to a measure on the full space of metrics in (3.37). Thus
the semiclassical aspects of quantum gravity may be ad-
dressed in this approach without explicit reference to the
cumbersome perturbative formalism of gauge fixing and
ghosts.

In order to remove all doubt of the correctness of this
measure for quantum gravity, the connection to the man-
ifestly unitary Hamiltonian form of the path integral
should be made, and the constant C appearing in 6" ~

should be determined by canonica1 methods. These is-
sues and their relation to the conformal factor problem of
the Einstein-Hilbert action we take up in a separate publi-
cation.
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