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The closed-universe recollapse conjecture is studied for the spherically symmetric spacetimes. It
is proven that there exists an upper bound to the lengths of timelike curves in any spherically syrn-

metric spacetime that possesses S'XS' Cauchy surfaces and that satisfies the non-negative-

pressures and dominant-energy conditions. Further, an explicit bound is obtained that is deter-
mined by the initial data for the spacetime on any Cauchy surface. The conjecture is further studied
for the spherically symmetric spacetimes possessing an extra spatial symmetry —the Kantowski-
Sachs spacetimes. It is proven, for example, that there exists an upper bound to the lengths of time-
like curves in any Kantowski-Sachs spacetime that possesses compact Cauchy surfaces and that
satisfies the non-negative-sum-pressures condition.

I. INTRODUCTION

One of the most striking possibilities raised by general
relativity is that our Universe may exist for only a finite
length of time. Indeed, if our Universe has S spatial to-
pology, is well represented as being spatially homogene-
ous and isotropic, and the matter content is ordinary,
then the lifetime of the Universe is known to be finite. '

But, what if the Universe is not well represented as being
spatially homogeneous and isotropic: Must its lifetime
still be finite? The closed-universe recollapse conjec-
ture' asserts that it must.

One version of the closed-universe recollapse conjec-
ture states, roughly, that all spacetimes that possess com-
pact Cauchy surfaces of an appropriate topology and that
satisfy an appropriate energy condition "expand from an
all-encompassing initial singularity to a maximal hyper-
surface and recollapse to an all-encompassing final singu-
larity. " However, there is a difficulty in formulating a
viable form of this conjecture: It is a simple matter to
construct spacetimes that possess S Cauchy surfaces,
contain ordinary matter, and yet do not possess maximal
hypersurfaces. For instance, take the past of any expand-
ing spatially homogeneous hypersurface of a k = + 1

Friedmann-Robertson-Walker spacetime with positive
energy density and pressure. Although one might think
that this spacetime, when continued to the future, must
eventually possess a maximal hypersurface, this is not the
case. The spacetime can become singular before attain-
ing a maximal hypersurface. '

Rather than attempting to place further conditions on
the spacetimes being considered to overcome this
difficulty, we choose to investigate the following weak
version of the closed-universe recollapse conjecture.

Conjecture. There exists an upper bound to the lengths
of timelike curves in any spacetime that possesses com-
pact Cauchy surfaces of an appropriate topology and that
satisfies an appropriate energy condition.

It should be noted that the existence of an upper bound
to the lengths of timelike curves does not necessarily
mean the existence of an "all-encompassing final

singularity" —the spacetime may be extendible. Howev-
er, the weak version of the closed-universe recollapse
conjecture would follow from the prior with the further
demand that the spacetime satisfy the timelike-
convergence condition (R,t,

t'tb~o for all timelike t')
and a genericity requirement. '

What Cauchy-surface topologies are appropriate for
the closed-universe recollapse conjecture? For the ver-
sion asserting the existence of a maximal hypersurface,
the appropriate topologies are '

g:-)gk ( S ' X S ),
where g denotes the connected sum, each:-, is a com-
pact orientable three-manifold with a finite fundamental
group, and k(S'XS ) denotes the connected sum of k
copies of S XS . So, for example, S and S XS are ap-
propriate. That Eq. (1.1) is the appropriate topologies is
seen as follows. First, any three-manifold X that admits a
Oat Riemannian metric q, b must not be allowed: The flat
spacetime (R X 2, —(dt ), (dt )b+q, b ) clearly admits
infinite-length timelike curves. Second, the scalar curva-
ture R associated with the induced metric on a maximal
hypersurface must, by the initial-value constraint equa-
tion and the non-negative-energy condition (G,bt't ~0
for all timelike t ), be non-negative. But, it is known that
the compact three-manifolds that admit Riemannian
metrics with R ~0 are rare among the compact three-
manifolds. In fact, any compact orientable three-
manifold with a metric having R ~0, must be either (i) a
three-manifold with a flat metric or (ii) one of those in
Eq. (1.1). Combining these two observations, we see that
the appropriate three-manifolds are those in Eq. (1.1).

Although the weak version of the closed-universe col-
lapse conjecture above does not require the existence of a
maximal hypersurface, we shall nonetheless regard the
three-manifolds, given in Eq. (1.1), as appropriate
Cauchy-surface topologies for this form of the conjecture.

What energy conditions are appropriate for the
closed-universe recollapse conjecture? It is known that
the non-negative-energy, timelike-convergence, and
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dominant-energy conditions together are not sufficient:
The k = + 1 Friedmann-Robertson-Walker spacetime
with scale factor a(t) = t satisfies all three conditions and
yet expands indefinitely. Although what energy condi-
tion is appropriate remains an issue to be resolved in the
study of this conjecture, three energy conditions which
have played a prominent role are the following.

(i) The dominant ener-gy condition:

G,I t'u ~ 0 (1.2)

for all future-directed timelike t' and u . For those G,b

possessing a timelike eigenvector (with eigenvalue —p)
and, hence, three spacelike eigenvectors (with eigenvalues

p&, k = 1,2, 3), Eq. (1.2) is equivalent to the condition that

p lp& I, k =1,2, 3.
(ii) The non negati-ve pressu-res condition:

G,~x'x + 0 (1.3)

for all spacelike x'. For those G,b as before Eq. (1.3) is

equivalent to the condition that pl, +0, k=1,2, 3 (non-
negative principal pressures) and p+pk ~ 0, k = 1,2, 3.

(iii) The non negative s-um press-ures -condition, which is
the special case of the one-parameter family of energy
conditions:

G„(t't'+ Ag') ~ 0 (1.4)

for all unit-timelike t', when A, =1. Note that for A, =O
and A. = —,', Eq. (1.4) is the non-negative-energy and
timelike-convergence condition, respectively. For those
G,b as before, Eq. (1.4) is equivalent to the condition that
(1—

A, )p+Xgk, p& ~0 and p+p& 0, k =1,2, 3. Note
that the null-convergence condition (G,bk'k ~0 for all
null k') follows, by continuity, from any of the above
conditions.

Both versions of the closed-universe recollapse conjec-
ture provide interesting possible extensions of the singu-
larity theorems. It is known, for example, that space-
times that possess compact Cauchy surfaces and that
satisfy the timelike-convergence and generic conditions
cannot be timelike and null geodesically complete. The
closed-universe recollapse conjecture asserts that with the
further restrictions on the topology of the Cauchy sur-
faces and the material content, not only are we
guaranteed that one timelike or null geodesic is incom-
plete, but, in fact, that all timelike curves are incomplete.

Here, we study the above conjecture for the spherically
symmetric spacetimes. In Sec. II, we prove the following
theorem.

Theorem 1.1. There exists an upper bound to the
lengths of timelike curves in any spherically symmetric
spacetime that possesses S'XS Cauchy surfaces and
that satisfies the non-negative-pressures and dominant-
energy conditions.

Further, we obtain an explicit expression for an upper
bound on the lengths of timelike curves in the spacetime
that is determined by the initial data for the spacetime on
any Cauchy surface. It should be noted that although the
recollapse of the dust-filled spherically symmetric space-
times (i.e., the Tolman spacetimes) have been studied by a
number of authors, none have provided a proof of

\

theorem 1.1 for these spacetimes with either S'XS or
S spatial topology. ' ' Theorem 1.1 resolves the issue
of recollapse for the Tolman spacetimes with S' XS spa-
tial topology and non-negative energy density.

In Sec. III, the above conjecture is further studied for
the spherically symmetric spacetimes possessing an extra
spatial symmetry —the Kantowski-Sachs spacetimes.
There the following theorem is proven.

Theorem 1.2. Only for X~ 1/&3 does there exist an
upper bound to the lengths of timelike curves in any
Kantowski-Sachs spacetime that possesses compact Cau-
chy surfaces and that satisfies Eq. (1.4).

In particular, this implies that the non-negative-sum-
pressures condition (X=1) is sufficient to ensure the ex-

istence of an upper bound to the lengths of timelike
curves in any Kantowski-Sachs spacetime with compact
Cauchy surfaces.

Lastly, in Sec. IV we make a few remarks regarding
possible extensions of these results.

The conventions used herein are those of Ref. 9. In
particular, our metrics are such that timelike vectors
have negative norm. Further, all metrics are to be C .

II. SPHERICALLY SYMMETRIC SPACKTIMKS

M=B XS

g, b =(ir*, h ),b+(ro ir, ) (ir2 A),b,

(2. 1)

(2.2)

where 0,b is a unit-metric on S and a& and mz are the
natural maps from M to B and S, respectively. By not-

ing that (M, B,ir&, S ) is a fiber bundle with total space
M, base space B, projection map m, , and typical fiber S,
we see that Eq. (2.1) follows from the fact that all orient-
able S bundles over 8 (which must have topology lR or
RXS') are trivial. '" ' That Eq. (2.2) holds locally about
any orbit is well known. ' The decomposition of g,&

must hold globally since we have demanded that the

We begin by reviewing a few of the basics of the spheri-
cally symmetric spacetimes. A spacetime (M, g,„) is said

to be spherically symmetric if it admits the group
6 =SO(3) of isometrics, acting effectively on M, each of
whose orbits is either a two-sphere or a point. Introduce
the non-negative scalar field r whose value at p EM is

such that 4m r is the area of the orbit through p. As
shown in the Appendix, the Cauchy surfaces of any glo-
bally hyperbolic spherically symmetric spacetime must be
difI'eomorphic to either R, S, RXS, or S'XS, with r
strictly positive in and only in the latter two cases. '

Thus, the spherically symmetric spacetimes have only
two possible compact Cauchy-surface topologies: S and
S'XS'

For any spherically symmetric spacetime (M, g,b) with

r strictly positive, we can construct a two-dimensional
spacetime (B,h, b ) where 8 =M/G and h' =(sr*, g )' (iri
is the natural map from M to M/G. ) It is straightfor-
ward to show that (B,h, b) is globally hyperbolic iff

(M, g,b) is globally hyperbolic. Further, if (M,g,b) is

globally hyperbolic, then from (B,h, b ) and r (viewed as a
field on 8) we can reconstruct the full spacetime by set-

ting
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spherical symmetry be a global symmetry —trying to put
a twist in the metric is not allowed.

Denote by D, that derivative operator compatible with
h, b, on B, and set

2m =r(l D—rD r) . (2.3)

2 ~ m 2
G =—D D r — h ——DDrab m p ab a b

I r

+(D D r —,'Rr)r—O,b, (2.4)

where R is the scalar curvature associated with h, b and
we have used the above decomposition to make an
identification between fields on M and fields on B and S .
From Eq. (2.4), we have

D, Dbr —
~ hab G 'a~a e,br 2

(2.5)

The Einstein tensor G b associated with the metric g,b is
then given by

then there would exist, in 8, a timelike geodesic having a
length greater than T. Along this geodesic, using Eq.
(2.5) and the non-negative-pressures condition, we have

d r a b m

dt 2 a b —
2

=t't DD r&-
r

inf(2m )
B

2r
{2.&)

where t' is the unit tangent vector along the curve and t
its parameter. But, it is a straightforward exercise to
show that it is impossible for r to satisfy Eq. (2.8) and the
inequalities 0(r ~supine(r), for a time T or greater. '

This establishes theorem 2.1.
Remarkably, we can, in fact, show that r is bounded

from above and that 2m is everywhere bounded away
from zero by a positive constant. We have the following
theorem.

Theorem 2.2. Fix any two-dimensional spacetime
(B,h, b) that possesses a compact Cauchy surface S and
any positive scalar field r that satisfies Eq. (2.5), with G,b

satisfying the non-negative-pressures and dominant-
energy conditions. Then

D, (2m)=r G "e,e„bD r . (2.6)

where e,b is either of the two volume elements on B con-
structed from h, b. Further, from Eq. (2.5), we have

r ~ max(2m ),
S

2m ~ min(r) )0 .
S

(2.9)

(2.10)

1/2
sup{r)

L(B,h, b) ~ ~
inf(2m )

(2.7)

Proof. Denote by T the right-hand side of Eq. (2.7).
Supposing, for contradiction, that Eq. (2.7) were false,

Notice that, in the vacuum case, m is a constant. It is
the mass parameter of that extended Schwarzschild
spacetime to which this spacetime is, by Birkhoff's
theorem, ' locally isometric. While it is tempting to in-
terpret m as a sort of quasilocal gravitational mass, since
there does not exist, currently, such a notion in general
relativity, it is difficult to justify such an identification. '

Nevertheless, the field m will be very useful in what fol-
lows.

We now begin the proof of theorem 1.1. Fix any spher-
ically symmetric spacetime (M, g,b) that possesses
S ' XS Cauchy surfaces and that satisfies the non-
negative-pressures and dominant-energy conditions.
Construct the two-dimensional spacetime (B,h, b), as de-
scribed above. This spacetime is globally hyperbolic with
compact S' Cauchy surfaces.

Denote by L (M, g, b ) the (possibly infinite) least upper
bound to the lengths of timelike curves in a spacetime
(M, g,b). Using the decomposition above, it is not
difficult to show that L (M, g, b ) =L (B,h, b ), and so
theorem 1.1 will be proven if we can show that L (B,h, b )

is finite. The strategy is to take advantage of the follow-
ing theorem.

Theorem 2.1. Fix any two-dimensional globally hyper-
bolic spacetime (B,h b) and any positive scalar field r
that satisfies Eq. (2.5), with G,„satisfying the non-
negative-pressures condition. If sup~(r) is finite and
inf~(2m ) is positive, then

In fact, it can be shown that Eqs. (2.9) and (2.10) hold
equally well when S is any Cauchy surface in the full
four-dimensional spacetime. Thus, we have the following
explicit bound on L(M, g,b ) that is determined by the in-
duced initial data on any Cauchy surface S, in M:

I /2
max(2m )

L(M, g,b ) ~ ~
min(r)

S

(2.11)

Theorem 2.2 follows at once from the following two
lemmas. Notice that the first does not require compact-
ness of the Cauchy surfaces.

Lemma 2.1. Fix any two-dimensional spacetime
(B,h, b ) with a Cauchy surface, S, and any positive scalar
field r that satisfies Eq. (2.5), with G,b satisfying the non-
negative-pressures and dominant-energy conditions.
Then

r ~max(sup(r), sup(2m)),
S S

2m ~
mi (ni fn(r), i fn(2m )) .

S S

(2.12)

(2.13)

Proof. It suffices, since we can always reverse the roles
of past and future, to establish these bounds for any
p ED+(S).

For the proof of Eq. (2.12), consider any point q, where
r reaches its maximum value on the compact set
C=J (p) AD+{S). If q E C AS, then r(p) ~ r(q)

~p s(ur)sIf q F CAS, .then D'r must be either past-
directed timelike, zero, or past-directed null, at q, for oth-
erwise there would exist a past-directed timelike direction
along which r would increase. We now show, in all three
cases, that r(q) ~ sups(2m).

First, if D r is past-directed timelike at q, then, by Eq.
(2.3), r(q) (2m (q). Consider the integral curve r of D'r
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starting from q. Using Eq. (2.5) and the fact that G,b

satisfies the non-negative-pressures condition, we have
(D'r )D, ( D —"rDbr ) )0, at q, showing that r is a past-
directed timelike curve without a past end point. So, by
global hyperbolicity, ~ must intersect S. Again using the
non-negative-pressures condition, (D'r )D, (2m ) ~ 0,
along r, so that 2m (q) ~ 2m (r PS ) ~ sups(2m ).

Second, if D'r vanishes at q, then so does
D, ( DrD—r). Using Eq. (2.5) we find that, at q, for
unit past-directed timelike t',

t't D, Db( Dr—D r)= +G "e,e„i,t't
1

2t'

7"+ (G "e,t')(G~~e bt")h„

(2.14)

The first term is manifestly positive; the second term is
non-negative by the non-negative-pressures condition;
and by the dominant-energy condition, there exist t' for
which the last term in non-negative. (Sketch of proof: If
G, vanishes, any t' will do. Otherwise, take t' to be in

the image of the past-directed timelike vectors under G, .
Then, use the fact that h, &

= —2k~, lb' where k, and 1b

are two linearly independent past-directed null vectors. )

Consider a past-directed timelike geodesic starting at q,
with initial tangent vector t' such that the last term, in

Eq. (2.14), is non-negative. Then, at q,
t'D, (r Db( DrD r )

—) & 0 and, by the non-negative-
pressures condition, t 'D, ( t Di, r ) (0. Hence, D 'r im-

mediately becomes past-directed timelike along the
curve. From our analysis of such points, we conclude
that r(q) ~ sups(2m ).

Third, and last, if D'r is past-directed null at q, then,
by Eq. (2.3), r(q)=2m(q). For D'r past-directed null,
(D'r )D, (2m ) ~ 0, by the non-negative-pressures condi-
tion. There are three cases as we move along the integral
curve r of D'r: (i) D'r becomes past-directed timelike;
(ii) we reach a point at which D'r vanishes; (iii) D'r
remains past-directed null and so, by global hyperbolici-
ty, ~ intersects S. In all three cases we conclude that
r(q) ~ sups(2m ).

Combining these results, Eq. (2.12) is established. The
proof of Eq. (2.13) breaks up into three cases.

First, if D r is zero, null, or past-directed timelike at p,
then, by Eq. (2.3), 2m (p ) ~ r (p ). Consider the past-
directed null geodesic k from p to S with null tangent
vector k', such that k'D, r ~0, at p. Using Eq. (2.5), by
the null-convergence condition, O'D, r 0 along k, so we
conclude that r(P) ~ infs(r) Hence, 2m(p. ) ~ infs(r).

Second, if D'r is future-directed timelike at p, consider
the integral curve of ( D'r) starting fro—m p. By the
non-negative-pressures condition, ( D'r )D, (2m ) ~0 as-
long as D'r is timelike or null. There are two possibilities
as we move along this curve: (i) D'r remains future-
directed timelike along the curve, in which case it must,
by global hyperbolicity, intersect S, for which we con-
clude that 2m(p) ~ infs(2m ); (ii) we reach a point q at
which D'r becomes null or zero, for which we conclude
from the above that 2m(p) ~2m(q)~inf (r)sHence, in.

this case

2m(p) ~ min(inf(2m ), inf(r)) .
5 S

Combining these results, Eq. (2.13) is also estab-
lished.

Lemma 2.2 Fix any two-dimensional spacetirne
(B,h, b) with a compact Cauchy surface S and any posi-
tive scalar field r that satisfies Eq. (2.5), with G,„satisfy-
ing the dominant-energy condition. Then

max( r ) ~ max( 2m ),
S S

inin(r) ~ min(2m ) .
5 5

(2. 1 5)

(2.16)

Proof. To establish Eq. (2.15), consider a point p where
r reaches its maximum value on S. At such a point D'r is
necessarily tirnelike or zero. Hence,

max(r ) = r(p) ~ 2m (p) max(2m ),
5 S

where the first inequality is by Eq. (2.3).
To establish Eq. (2.16), consider the open subset U of S

defined by U=tsCS~2m(s) &mins(r)J. On U, D'r is
necessarily spacelike. Denote, by s', the unit vector field
on each connected component of U, tangent to the sur-
face 5, such that s'D, r )0. Then, by Eq. (2.6) and the
fact that G,b satisfies the dominant-energy condition, we
find that, on U, s'D, (2m ) ~ 0. Using this fact, and not-
ing that 2m =mins(r) on the boundary of U, we conclude
that 2m =mins(r) on U. But, this is possible only if U is

empty. Hence, on S, 2m is everywhere no less than
mins(r).

III. KANTOWSKI-SACHS SPACETIMES

In this section, we investigate the conjecture of Sec. I
for the globally hyperbolic spherically symmetric space-
times that further admit the group G'=SO(2) of
isometrics whose orbits are one-spheres. These are
Kantowski-Sachs spacetimes, ' with orbits of G X G' be-
ing spatially homogeneous Cauchy surfaces with topolo-
gy S' XS . We prove theorem 1.2 by first showing that,
for A, ~ I /v'3, there exists an upper bound to the lengths
of timelike curves in any Kantowski-Sachs spacetime that
possesses compact Cauchy surfaces and that satisfies Eq.
(1.4). We then present a Kantowski-Sachs spacetime that
possesses compact Cauchy surfaces, satisfies Eq. (1.4) for
all k & 1/&3, and admits infinite-length timelike curves.

2m (p) ~ min(inf(2m ), inf(r) } .
S S

Third, and last, if D'r is spacelike at p, consider the
past-directed null geodesic A, from p to S with tangent
vector A,

" such that O'D, r (0, at p. There are two possi-
bilities as we move down thus curve: (i) D'r remains
spacellke so that, by the dominant-energy condition,
k 'D, (2m ) ~ 0 along A, , allowing us to conclude that
2m (p) ~ 2m (X fl5 ) ~ infs(2m ); (ii) at some point q along

k, D'r becomes null or zero for which we conclude, from
the above, that 2m(p) ~2m(q) ~inf s(r). Hence, in this
case
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2'
g,b= (dt), (dt)b—+ 8,8b+r Q,b, (3.1)

where m and r are functions of t alone, 0, is a nonvanish-

ing one-form on S, and O,b is a unit-metric on S . The
trace of the extrinsic curvature of the surfaces of homo-
geneity is then given by co, overdots denoting derivatives
with respect to t. The Einstein tensor for this metric is
given by

e 2'
G,b=p(dt), (dr)b+p) 4 8,8b+p2r A,b, (3.2)

where we have set

pr = —3r' +2r'(re) )+1,
p i T = 27"P" 1" 1

p2r =rr' —r~g 4r' +3r'(rm) —(—rn)

(3.3)

(3.5)

From Eq. (1.4), we have (1—
A, )p+A(p, +2p2) ~0. Us-

ing Eqs. (3.3)—(3.5) this becomes

r r co +Q+P ~0,d
dt dt

(3.6)

where we have set P = ( 1 —1/2A, ) and

Q = [(6A.+3)i —2(3A, +1)i(rm)+2k(ru) j .
2A,

(3.7)

For k~ I/&3, Q is non-negative and P is positive. Set-
ting

Theorem 1.2 states that the Kantowski-Sachs spacetimes
recollapse under far weaker energy conditions than those
needed for the more general spherically symmetric case.
In particular, the non-negative-sum-pressures condition
(A, = 1) is sufficient to ensure the existence of an upper
bound to the lengths of timelike curves in these space-
times.

Fix such a Kantowski-Sachs spacetime (M, g,b) that
satisfies Eq. (1.4) for some k~ 1/&3. Fix, once and for
all, a spatially homogeneous Cauchy surface X therein.
To show that L(M, g,b) must be finite, we argue that
L (D +

( X ),g, b ), and hence by a similar argument
L(D (X),g,b), must be finite. The strategy is to first as-
sume, for contradiction, that L (D ( X ),g,„) is infinite
and to then show the existence, in D+(X), of a spatially
homogeneous Cauchy surface S with negative trace ex-
trinsic curvature. Then, since the timelike-convergence
condition holds, it follows ' that L(D+(S),g,b), and
hence L(D+(X),g, b ), must be finite.

So, assume, for contradiction, that L(D+(X),g,b) is
infinite. Introduce the time function t, on D+(X), by set-
ting t(p)=L(D+(X)AJ (p), g,&) for each p&D+(X).
By construction, surfaces of constant t are surfaces of
homogeneity with t vanishing on X and t unbounded
from above on D+(X). Using our decomposition of the
globally hyperbolic spherically symmetric spacetimes in
Sec. II, and performing a similar decomposition for the
additional symmetry, the metric g,b for our spacetime is
given by

(3.8)

we have, from Eq. (3.6), the inequalities

d
CO C Pg

dt
(3.9)

a) ~ co(0)+cy —
—,'Py (3.10)

where c is a constant. We see, from Eq. (3.10), that co is
bounded from above.

Further, from Eq. (1.4), we have p+p& ~ 0. Using Eqs.
(3.3) and (3.4) this becomes

dt dt
(3.1 1)

From this and the fact that co is bounded from above we
find that

r ~ a+bt, (3.12)

IV. DISCUSSION

Theorem 1.1 resolves the weak version of the closed-
universe recollapse conjecture for the spherically sym-
metric spacetimes with S'XS Cauchy surfaces under
the requirement that the matter satisfy the non-negative-
pressures and dominant-energy conditions. Unfortunate-
ly, the methods used to prove theorem 1.1 do not work
for the spherically symmetric spacetimes with S Cauchy
surfaces. Although we still learn that r is everywhere
bounded above by the maximum of 2m on any Cauchy
surface, because r vanishes at the "poles, " we learn only
that 2m is everywhere non-negative. Hence, we are un-
able to take advantage of theorem 2.1. Thus, it appears
that a more subtle argument is necessary for the S case.

We have seen, from theorem 1.2, that those spherically
symmetric spacetimes that admit an extra spatial symme-
try "recollapse" under the non-negative-sum-pressures
condition. Although it seems quite dificult to prove, one
might conjecture that all spherically symmetric space-
times with compact Cauchy surfaces "recollapse" under
the non-negative-sum-pressures and dominant-energy
conditions. If so, one could include electromagnetic
fields as a source meeting the requirements of the
theorem. Further, we note that the energy conditions im-
posed in theorem 1.1 need only hold for those vectors or-
thogonal to the surfaces of spherical symmetry. This re-

where a and b are constants. From Eqs. (3.8) and (3.12)
we immediately conclude that g is unbounded from
above. Thus, by Eq. (3.9), co must become negative, es-
tablishing the existence of a spatially homogeneous Cau-
chy surface with negative trace extrinsic curvature.
Hence, L(M, g, b ) must be finite.

To complete the proof of theorem 1.2, consider the
Kantowski-Sachs spacetime with co =

—,
'

( 3+&3 )lnt and

r =t lnt. It is clear that this spacetirne contains infinite-
length timelike curves and it is straightforward to show
that Eq. (1.4) is satisfied for all A, ( I /&3 and t sufficiently
large.
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laxation, although slight, does enlarge the set of source
meeting the requirements of the theorem: e.g. , this now
includes the massless scalar field.

If the weak version of the closed-universe recollapse
conjecture is false, then any attempt towards its proof
must fail. One line of attack towards the construction of
a possible counter example is the following. Fix any
spacetime that possesses a Cauchy surface S of appropri-
ate topology and that satisfies an appropriate energy con-
dition. Fix any subset, C CS, that is diffeomorphic to the
three-ball. If the weak version of the closed-universe
recollapse conjecture is true, then the lengths of timelike
curves in D (C) must be bounded from above. Hence, we
will have a counterexample to the weak version of the
closed-universe recollapse conjecture if we can construct
an initial data set ( C, q, &, K,b ) where C is a three-
manifold, with boundary, that is diffeomorphic to the
three-ball, q, b is a Riemannian metric on C (the induced
metric), and K,b is a symmetric tensor on C (the extrinsic
curvature), and an evolution such that (i) D(C) contains
infinite-length timelike curves; (ii) the evolved spacetime
satisfies the appropriate energy condition; and (iii) the ini-
tial data set on C can be extended smoothly as an initial
data set on a three-manifold of appropriate topology and
so that it satisfies the appropriate energy condition (e.g. ,
non-negative energy density. ) Unfortunately, completing
this task or proving that it must fail seems at least as
difficult as proving the weak version of the closed-
universe recollapse conjecture itself. However, there is at
least one indication that the task must fail: In the two-
dimensional case, where C is diffeomorphic to the closed
interval, and the energy condition is R 0, being essen-
tially the only energy condition in two dimensions, we
can prove that the above construction cannot be carried
out, i.e., the lengths of timelike curves in D(C) are
bounded from above. However, there seems to be no sim-
ple way to extend this result to higher dimensions.

Lastly, we note that theorem 1.2, along with the recent
result that the Bianchi IX spacetimes "recollapse" under
the non-negative-sum-pressures and dominant-energy
conditions, establishes that the weak form of the
closed-universe recollapse conjecture holds, under the
stated energy conditions, for all spatially homogeneous
spacetimes with S ' XS or S Cauchy surfaces.

or S' XS . Further, we show that r, as defined in Sec. II,
is strictly positive in and only in the latter two cases.

Fix any globally hyperbolic spherically symmetric
spacetime and consider the pullback q, b of the metric
onto a spherically symmetric Cauchy surface X (of which
the theorem below guarantees existence. ) The pair
(X,q, z ) is then a three-dimensional, orientable, connect-
ed, spherically symmetric Riemannian space. Set
X' =

[p H M
~
r(P ) )0] . Then, each connected component

of X /G is a one-dimensional manifold and hence is
diffeomorphic to either IR or S'. From this, and the fact
that all orientable S bundles over IR or S' are trivial, it
follows that each connected component of X' is
diffeomorphic to either R XS or S' XS . If X =X', then
it follows that X must be diffeomorphic to either RXS
or S'XS . If XXX', then it follows that X must be
diffeomorphic to either IR or S (in the first case there be-
ing a single point in X where r vanishes and in the second
case two such points).

Theorem. Any globally hyperbolic spacetime with an
orthochronos compact isometry group G can be foliated
by Cauchy surfaces each of which is invariant under G.

Proof Fix any. globally hyperbolic spacetime (M, g, z )

with an orthochronos compact isometry group G. By
global hyperbolicity, there exists a function f:M~ IR

such that (df ), is everywhere past-directed timelike and
each surface of constant f is a Cauchy surface. Set

(A 1)

where the integral is over G (using that invariant volume
element that gives G unit volume) and P denotes a typical
element of G. By construction, t is invariant under G.
Further, using the fact that G is orthochronos, it is not
difficult to show that (dt), is everywhere past-directed
timelike. Hence, to establish the theorem, we need only
show that surfaces of constant t are Cauchy surfaces.

For any p EM, consider the surface X defined by
t =t(p) To show tha. t X is indeed a Cauchy surface we
need to show that all inextendible-directed (future or
past) causal curves intersect X. Fix any such curve
y:IR~M and consider the map p:G ~IR defined, for each
PH G, by setting p(P) to be the solution to
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APPENDIX: CAUCHY SURFACE TOPOLOGIES

In this appendix we show that the Cauchy surfaces for
any globally hyperbolic spherically symmetric spacetime
must have one of four possible topologies: IR, S, R XS,

f(y(y(minp))) ~ t(p) ~ f(P(y(max@)))
G 6

(A3)

for all PUG. Integrating this relation over G we obtain
the inequalities

t(y(minp)) ~ t(p) ~ t(y( mpa)x) .
6 G

(A4)

So, by continuity, there exists A, so that t(y(A, ))=t(p),
showing that y must intersect X.

That is, p(P) is that parameter of the curve P&&y where
Joy intersects the Cauchy surface defined by f=t(p).
Then, by construction,
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