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Thin shells in general relativity and cosmology: The lightlike limit
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This paper shows how the structure and dynamics of a thin shell traveling at the speed of light

can be obtained from a simple and convenient prescription that is a straightforward extension and

continuous limit of the familiar extrinsic-curvature algorithm for subluminal shells. It allows the

space-time coordinates to be chosen freely and independently on the two sides of the shell. The

prescription is applied to several examples of interest in general relativity and cosmology.

I. INTRODUCTION

The impact of unified gauge theories on cosmology has
assigned a key role to phase transitions in the early
Universe, for example, in scenarios such as inflation. '

When two phases coexist, the wall separating them can,
as a first approximation, be treated as an infinitely thin
bubble or shell whose history is a timelike surface layer.
Analogously, in a sudden global phase transition, the
transition region can sometimes be idealized as an
infinitely thin spacelike surface layer. '

As a result, the dynamics of bubbles and surface layers
in general relativity has been studied extensively, and
there are a number of excellent current reviews. The
formalism now commonly in use expresses the surface
properties in terms of the jump of extrinsic curvature
across the shell wall. Its distinctive feature is that the
properties are obtained directly as functions of the shell's
intrinsic coordinates. Thus the four-dimensional coordi-
nates may be chosen freely and independently on the two
sides of the layer. Since the geometry of each of the two
adjoining phases is described most naturally and simply
in terms of coordinates adapted to its own peculiar sym-
metries, the practical advantages of such a "coordinate-
friendly" formulation are obvious.

However, in its present form this approach has a seri-
ous limitation. Its formal scafI'olding —intrinsic metric
and extrinsic curvature —folds when the surface layer be-
comes lightlike. The intrinsic metric becomes degen-
erate, and an extrinsic curvature is no longer definable
uniquely, because the normal vector is now tangent to the
surface and a distinguished transverse vector no longer
exists.

Because of this breakdown, the lightlike case is a rela-
tively neglected area of shell dynamics which remains im-

perfectly understood. This is regrettable. Far from being
an uninteresting oddity, lightlike shells have a structure
and dynamics in many respects much simpler than time-
like shells. They thus allow the quickest reconnaissance

of the kinematical possibilities inherent in the coexistence
of two or more cosmological phases. The lightlike ideali-
zation is even quantitatively a fair approximation to the
behavior of, e.g. , sufficiently large bubbles in a sea of false
vacuum, which will be rapidly accelerated toward the
speed of light by the imbalance of normal pressures.

Existing studies of lightlike surface layers ' " are
generally not well adapted for straightforward cosmologi-
cal application. In some (Dautcourt, Taub, Redmount,
Clarke and Dray' ) a direct application of the formulas
would require preconstruction of space-time coordinates
that match continuously at the shell and in which the
four-metric is continuous. The elegant geometrical
analysis of Penrose is cast in the relatively unfamiliar
language of two-spinors (Redmount provides an alterna-
tive spin-coefficient formulation). The invariant prescrip-
tion given by Berezin, Kuzmin, and Tkachev is useful,
but confined to spherical symmetry.

Our aim in this paper is to fill what we see as an annoy-
ing gap in the literature by providing a simple recipe for
obtaining the surface properties of lightlike shells that re-
tains the coordinate-friendly advantages of the familiar
timelike case and may be considered a continuous limit of
it. The recipe is presented with minimal derivation in
Sec. II—details can be found in the Appendix. Section
III discusses some features that are peculiar to lightlike
shells. In Sec. IV we apply the general recipe to arbitrary
spherical shells and to specific examples of cosmological
interest. Section V considers a stationary lightlike shell
straddling a horizon common to two adjoining phases, a
case whose subtleties have led to some confusion in the
literature. A generalized form of the remarkable Dray —'t
Hooft —Redmount relation, which connects the gravita-
tional masses in the region between any pair of colliding
lightlike shells before and after the collision, is the subject
of Sec. VI.

A situation peculiar to the lightlike case arises when
the shell's history is a future causal boundary of the
domain to one side of it. This happens, for instance, if
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the shell is plane, cylindrical, or spherical, though not
necessarily uniform. In such a case the domain on the
past side is "not yet aware of," and, hence, unaffected by,
the gravitational field of the shell. Its geometry can
therefore be chosen arbitrarily, in particular as Hat if it is
empty. In Sec. VI we examine, fo11owing Penrose, '

Hawking, ' and Gibbons, ' some interesting examples of
this type.

Conventions. Our metric signature is (
—+++), and

we follow the now standard curvature conventions of
Misner, Thorne, and Wheeler (MTW). ' However, our
sign convention for extrinsic curvature —Eq. (3)
below —is the opposite of MTW and Berezin, Kuzmin,
aid Tkachev, though in agreement with the other re-
views we have cited. It makes the mean extrinsic curva-
ture of a convex closed two-surface positive if the norma1
is directed outwards.

Greek indices run from 0 to 3, lower-case latin a, b, . . .
from 1 to 3, and upper-case latin A, B, . . . =2,3. (In Sec.
VI we depart from this convention: a, b, . . . take the
values 2,3.) The symbols V„and 5/6A, denote covariant
and absolute derivatives with respect to the four-
dimensional space-time geometry. A semicolon indicates
covariant difFerentiation with respect to-a three-metric

g,b, when this is nondegenerate. %'e use square brackets
[)I(] and an overlying tilde )p, respectively, to denote the

jump and arithmetical mean of any quantity + that is
discontinuous at a hypersurface X.

II. TIMELIKE, SPACKLIKE, AND
LIGHTLIKE SHELLS: A GENERAL ALGGRITHM

In the form in which the problem is often presented to
us, the geometry on one or both sides of the shell is given
a priori, each expressed in terms of coordinates naturally
adapted to its symmetries. The task is then to infer the
surface dynamics from differences in the way the surface
layer is embedded in the two four-geometries.

It is therefore useful to view the general problem in
terms of a "cut and paste" approach. We are given two
distinct space-time manifolds JR+ and Jk with metrics

g p(x~+ ) and g p(x" ) in terms of independently defined
coordinate systems x~+ and x" . They are bounded by
hypersurfaces X+ and X, respectively, with induced
metrics g, b and g, b (a, b, . . . =1,2, 3). These hypersur-
faces are given to be isometric, i e.,

g,b(g)=g b(g)—:g,b(g) in terms of three-dimensional in-
trinsic coordinates P invariant under the isometry. We
then glue together ski+ and A, at their boundaries to
form a single manifold W=W+ U JNby making , the
natural identification X+ =X =X.

Parametric equations for the two adjoining imbeddings
of 2 will have different functional forms, x+ = f+(g).
The three holonomic basis vectors e(, )

=()/BP tangent to
2 have components e(, ) ~+=Bx+ /()P with respect to the
two four-dimensional coordinate systems. Their scalar
products define the metric induced on X:

a P
gab e(a) e(b) gaPe(a) e(b) ~+

the same on both faces X+ and X . A normal n to X,

normalized to have constant (but not necessarily unit)
length, will have components n+, satisfying

K,b
= n fie—(,)/5$":——n e(„)%pe(,), (3)

contain I" p~+, respectively, i.e., first derivatives of g —
p

transverse to X. Thus, in general, K,b WK,b. (In
Newtonian theory a surface layer is similarly character-
ized by a discontinuity in the transverse gradient of po-
tential. )

The normal prescription links the surface stress-energy
tensor S,„of the layer to the jump [K,b]=K,b

—K,b of
normal extrinsic curvature across X by a distributional
equivalent of Einstein's field equations:

87r(S,—b —,'g, b S ) = [K—,b ] . (4)

An inverse three-metric g'" and the trace S=g'"S,b are
we11 defined here, because g,b is nondegenerate for a non-
lightlike surface. [Because of our nonstandard normali-
zation (2), the conventionally defined extrinsic curvature
and surface energy tensor are actually ~e~

' K,b and
s/sf '"S., ]

The conservation law satisfied by S is

S;b [e(,)T np], (5)

in which the semicolon denotes covariant differentiation
with respect to g,b. This is an immediate consequence of
(4) and the Arnowitt-Deser-Misner (ADM) constraint'

G Pe()n =K, b 8 K

applied to both faces of X. The "Hamiltonian con-
straint"

G n anP ) (K2 K Kab &(3)g )aP 2 ab

yields an additional dynamical equation

K.„S'=[a.pn nP],

where the tilde denotes the average of a discontinuous
quantity:

K,b
= ,'(K,+b+K,b ) . —

Equations (5) and (8) are identities implied by the
"field-equations" (4). They have a transparent physical
interpretation. In the rest frame of a timelike shell, the
time component of (5) equates the net infiux of energy
from the surroundings to the increase of internal energy

n n I+=n.n
/

=e, n e(, ) 1+=0,
where e is constant over X. We suppose n directed from
JM to A, +.

To set the stage, let us briefly recall the "normal"
extrinsic-curvature prescription for determining the ener-

gy and stresses in a layer that is nonlightlike. In this case
the normal n is transverse to X, and e&0.

In the geometrical sense that both induce the same
three-metric (1) on X, the join at X of the two four-
metrics g

—
& may be said to be "continuous. " However,

the normal extrinsic curvatures K,b of the two imbed-
dings, each defined by an equation of the form
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plus the work done by the surface stresses in expanding
and deforming the shell. Equation (8) is Newton's second
law: it equates the net inward normal pressure on the
shell to the outward force ( —' 'KP, where ' 'K is extrin-
sic curvature of the two-surface) due to the surface pres-
sure P, plus an inertial, (mass) X (inward normal accelera-
tion), term. For a (spacelike) transition layer, (5) (read
from right to left) determines the change of momentum
density in a continuous medium resulting from the mo-
mentary appearance of an impulsive stress gradient; (8)
equates the change of energy density to minus the work
done by the impulsive stress.

Expressed as four-dimensional distribution, the stress
energy associated with X is given by

T& =S'"e(,)e~(b) ~a~(sgnc, )5(@), (9)

where @(x")=0is the equation of X, so that we can set
n =a '(P)B @. Of course, (9) appears in two different
forms Tx ~+, depending on which of the two four-
dimensional coordinate systems happens to be in use.
The intrinsic formulation (4), (5), and (8) has the advan-
tage that it is independent of this choice.

How must these results be modified in order to extend
them to the lightlike case? The answer to this question is
remarkable. All of the above equations [with the three-
dimensional covariant derivatives in (5) and (6) suitably
interpreted] are valid without change for lightlike shells
(e =0). The only snag is that (4), which are the key equa-
tions linking the physics and geometry, now assume the
unhelpful form 0=0.

The normal prescription breaks down for lightlike sur-
face layers because the normal extrinsic curvature K,& is
disabled as a carrier of transverse geometrical informa-
tion. As the normal n declines into tangency with X, K,&

manages to retain only tangential derivatives of the
metric, and is now "extrinsic" in name only. (The degen-
eration of g,& to a matrix of rank 2 is an additional and
related —but incidental —complication. )

Thus as extended and unified algorithm, able to encom-
pass the lightlike case, needs recourse to a transverse ob-
ject decoupled from the normal. Accordingly, returning
to (2) and the general case where X is arbitrary, we intro-
duce a transversal or "cross vector" N over X in addition
to (and independently of) the normal n To ensure ". con-
tinuity of the transversal, " i.e., to be sure that the com-
ponents N+, N defined on the two faces do in fact
represent the "same" vector N, we must require equality
of their projections N, =N e[,] onto X:

[N, ]=N e(, ) ~+ Ne(, ) ~
=0, — (10)

and that they assign the same length to N: [¹N]=0.
We denote two frequently occurring scalar products by

=N n&0, n n=F .
—1

It is convenient [and necessary for the validity of some of
our equations, e.g., (5) and (6)] to assume c, =const over
X. However, the function g(P) can be specified freely
over X. For prescribed g, N is still free to the extent of a
tangential displacement

N ~N'=N+A, '(g)e(, ), (12)

with arbitrary functions A, '(g").
In practice, it is often convenient to specify g to be

constant and equal to +1 for timelike and -1 for non-
timelike X. In our metric signature ( —+ + + ), this
amounts to requiring N and n to be directed toward the
same side of any hypersurface, e.g. , both future directed
if X is spacelike or lightlike. As for c, , while the discrete
values +1,0 suffice for any example, retention of a con-
tinuous range has an advantage in general arguments: A
lightlike hypersurface can then be regarded as a continu-
ous limit of a generic X. As X leans toward the lightlike,
the boost or "tilt" parameter c.=n n approaches zero,
while the components n„remain bounded away from
zero in a regular coordinate frame x".

We now introduce a slight generalization of the con-
cept of extrinsic curvature by defining"

%',b= —N„5 )(',
) j5$b=&b, . (13)

A, b might be called transverse or oblique' extrinsic
curvature, to distinguish it from the normal extrinsic cur-
vature K,b.

It is evident that %,b is not independent of the choice
of transversal. Under (12) it transforms as

(14)

The (three-dimensionally) noncovariant expression (14)
also shows that, under a change of intrinsic coordinates
p, A', b would not even transform as a three-tensor.
However, the Christos'el symbols I, ,b contain only
tangential derivatives of g,b, which must be continuous
across X. Hence the jump (traversing X in the positive
sense of N)

23 ab [~ab ] (15)

is both a three-tensor and independent of the choice of
transversal direction.

By analogy with the normal field equations (4) for a
nonlightlike X, we now seek a generalized prescription
that will relate the surface stress-energy tensor to y,& in
the case where X is arbitrary.

Deferring all proofs, we begin by succinctly stating this
prescription in its four-dimensional form:

(i) Select one of the two four-dimensional coordinate
systems x~+, x", and, for simplicity, drop the positive or
negative affix.

(ii) Having obtained y, b from (13) and (15), construct
any four-tensor y„which has y, b as its projection onto
X

p v
Vpv (a) (Q) XaQ (16)

(iii) The surface stress-energy tensor g 'S" is then
given by

16vrrj 'S" =2y'"n ) yn "n y—tg)' e(y)' yg—)' ), — —

(17)

where
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yp=yp n, y~=ypn„, y=y„vgp (18)

Considered as a distribution, the stress-energy tensor is

We pass now to the intrinsic form of the general
prescription (17). By virtue of (20), S" can be decom-
posed (uniquely) in terms of the basis Ie(, ) I:

Tg =aS" 5(N), (19) SPv SabeP e v
(a) (b) (23)

where The intrinsic tensor S' satisfies the conservation law

Bp+ =np X,(B„+I b
)S'" S,—bA', b

= —[X)„T"n„], (24)

and C&(x")=0 is the equation of X. This gives T" with
the correct sign if we adopt the conventions that 4 in-
creases from AL to At+, and that a is positive for time-
like, negative for nontimelike, X. The surface cruxes S"
are tangential to X as they should be:

S" n =0. (20)

p
—y pv+ 2A, (pn v) (21)

where A,„is an arbitrary four-vector field over X. Howev-
er, S" is invariant under this transformation.

It is easy to understand this as a coordinate gauge
effect. In four-dimensional coordinates which are con-
tinuous at X, a solution of (16), (15), and (13) is given by
the jump in the Lie derivative of the metric along N:

y„.=[XNg ] 2[V(„X,)] if [g„]=0,
so that (21) can be interpreted in terms of freedom in the
choice of transversal off X. In coordinates convected
along the direction of N""r)„=(a/il )(3/M&, we have
y„=(a/i))[Bg„„/8@],so that (21) corresponds to an ar-
bitrariness in Bg„—&/BP, i.e., to arbitrariness in the gra-
dients of the ADM lapse and shift functions.

(b) Under (21) the quantities defined in (18) transform
as

y =y~+2ck, ~, y" =y"+zip+A. ~n p,

while y —cy stays invariant, where k =A,pn„. It follows
that y" can be transformed to zero by a gauge transfor-
mation (21) for any nonlightlike X(E&0); for lightlike X,
it contains physically significant information.

(c) The preceding remark is the basis for a simple proof
of the prescription (17) for an arbitrary surface layer. If
we gauge y" to zero for a nonlightlike X, (17) projected
onto X reduces to

Some explanatory remarks concerning this prescription
are in order.

(a) The condition (16) leaves y, undetermined to the
extent of the transformation

where the tilde denotes, as usual, the arithmetical mean
at X, and

I b= —,'(I b++I b ), I b=a 'V„(ae((,) ) . (25)

For nonlightlike X this reduces to the familiar, intrinsi-
cally defined expression

I b=I b
=I' =Bbln~ g~' (s&0) . (26)

S.'., = (a„+I, )S."——,'S"a.g„. (27)

According to (17) and (23), S",and hence S'", is fully
determined by y„. Further, the gauge invariance (21)
shows that no part of y„ that is not determined by y, b

contributes to S" . Hence S' must be determined
uniquely by y,b. For lightlike X, this is not quite a trivial
statement: To express S' in terms of y,b, machinery is
needed for "raising" the indices a, b.

To this end, we decompose the normal n" with respect
to the oblique basis t X",e~(, ) ]:

n =cgN+l'e(, ) .

Since n.e(, ) =0, the three-vector l' satisfies

g,„l = —c.pe, .

(28)

(29)

But the more robust definition (25) is needed to anchor
the meaning of I b in the lightlike limit when the intrinsic
metric becomes a degenerate. It retains the essential con-
venience that the + and —contributions to I b can be
evaluated separately in the independent charts xP+ and
x . It is straightforward to verify that I b is invariant
under arbitrary rescalings 4(x )~(M(x)@(x) in (19), if one
takes account of the tilt this induces off X in the base vec-
tors e~((, )

= (ax "/ag'), .
Both (5) and (8) may be considered special cases of (24);

in fact, (5) is precisely the condition that (24) remain valid
under an arbitrary change (12) of transversal X". It is
now clear that the three-dimensional covariant derivative
in (5) is to be defined for arbitrary X as

167rS' = —ilE(y' —yg'"), (22)
Then a symmetric matrix g', exists such that

(30)
which is equivalent to the normal prescription (4). Thus
(17) is a gauge-invariant expression which reduces to a
manifestly correct form (in a particular gauge) for any
sAO. Moreover, it remains well defined when E~O.
Therefore, it must be generally correct.

(d) A minor inconvenience of this simple unified treat-
ment is a risk of sign confusion. As (19) makes clear, it is
a S"" (rather than S"') which represents correctly the
sign of surface energy and pressure, and one needs to
keep this in mind for spacelike and lightlike layers.

For a nonlightlike X, g'," would be just the usual contra-
variant three-metric g'b if Np were chosen normal to X.
In the lightlike case, g,bl"=0, and (30) determines g'„
only up to the transformation g' ~g' +2k,l'l, with k
arbitrary. In particular, g, could be chosen as the con-
travariant two-metric g" (bordered by zeros) in convect-
ed coordinates (l'=5) ), with the choice X e(z) =0.

The intrinsic stress-energy tensor for an arbitrary layer
can now be expressed quite generally in the form
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1677 iS~b= [ ~g b/d+/q~g bd g~b/qd /&/bg«

(31)

Equations (31) and (17) can be derived straightforward-
ly from the expression [cf. (22)] n n~=I nIn (38)

(k not necessarily affine). o &
is the shear of the genera-

tors, O=d in' /dA, the dilation rate, and T„ the stress
energy of the ambient medium. The "acceleration" ~ is
defined by

Here

(32) Now the left-hand side of (36) depends only on the intrin-
sic metric g, I, and must be continuous. It follows that

QPV —gPV ~ ln Pn V (33)

is the four-tensor that projects onto X. It can also be ex-
pressed as

[~]8= 8m.[T n "n'] (E=O) .

This is equivalent to (8) by virtue of

(39)

(40)
bF'=(g'" E—'/'/ )eI'„e, ,

by virtue of the completeness relation

gI' =g', e~(, )e(b)+2gl'e(", ) +g c,N"N

for the basis [X,e~, ~
I.

(34)

(35)

III. PROPERTIES GF LIGHTLIKE SHELLS

Here A is an element of two-area convected (Lie trans-
ported) along the generators with tangent

dx"n"=/'e~( = (E=0) (37)

The formulas of Sec. II were valid for arbitrary shells.
This section treats some features specific to the lightlike
case.

When two space-times with lightlike boundaries X+
and X are slotted together along corresponding lightlike
generators, the only geometrical properties that must
match are the degenerate (i.e., effectively two-
dimensional) three-surface metrics at corresponding
points. The one-metric along the generators, being zero,
cannot impose any sort of rigid constraint on the slotting.
A residual freedom to slide along the generators may
therefore persist, at least to the extent permitted by
matching of the two-metrics. [In particular, if X+ are
stationary (cf. Sec. V), the generators are orbits of an in-
trinsic isometry and can be slotted together in a
lengthwise-arbitrary fashion. ]

One might attempt to remove or reduce such arbitrari-
ness by requiring any soldering of X+ and X to be
"affinely conciliable" in the following sense. The affine
parameters A, +,A. along null generators of X+,X are
each arbitrary up to linear transformations with
coefficients constant along the rays. A soldering is
affinely conciliable if A, +,A. can be made equal at corre-
sponding points by such a linear transformation.

There are important special cases in which afFine conci-
liability is both possible and efFective in reducing arbitrar-
iness. In general, however, affine conciliability is incom-
patible with the overriding requirement of isometry. This
can be seen at once from Raychaudhuri's formula' for
any lightlike three-space:

in which X denotes the Lie derivative. According to (40)
and (17) —[~]/8m. is the isotropic surface pressure in a
lightlike shell, and (39) expresses the condition that all of
the energy absorbed by the shell from its surroundings
goes into work done by the surface pressure in dilating
the shell. This is to be expected for a lightlike shell, since
the "proper" mass of the material must remain fixed at
zef o.

Thus a lightlike shell is affinely conciliable (i.e., A. can
be chosen so that K+ =K =0) if and only if it is pressure-
less: y =y,b/'/"=0. Equation (39) shows that this is
possible only if [T„n"n "]=0, i.e., only if there is no net
exchange of energy with the surroundings. For a nonsta-
tionary shell (OWO), this condition is also sufficient.

It is, incidentally, useful to note from (36) that if
T„n"n =0 on one side of a nonstationary spherical or
cylindrical (hence shear-free) shell, then A ', i.e.,
Schwarzschild's coordinate r, or the square root of the
circumferential cylindrical coordinate, is an affine param-
eters for that side.

Propagation of a surface layer is genera11y accom-
panied by a "tidal wave, " a distributionlike swell of the
Weyl conformal curvature, having the form' (see the
Appendix)

C' „=[2i/n' y(„'n )
—16~5 „S I+ —',mS &„" ]u5(+ ),

(41)
to be evaluated on either the positive or negative face of
the layer.

The tidal wave accompanying a nonlightlike layer car-
ries nothing essentially new. The distributional Weyl
curvature is fixed as an algebraic function of the surface
stress energy S"', because (17) and (31) can be solved for
y, b (the gauge-invariant part of y„) in terms of S"
when a&0. By contrast, when E=0, only y„n" and y
enter the expression (17) for S",and so a specification of
S" leaves entirely free the traceless part of y„~ (in coor-
dinates convected along the direction of propagation /').
It is precisely this part of y„ that enters the first term of
(41) and determines the strength of the purely gravita-
tional part of the shock. Thus, in the lightlike case, ma-
terial and purely gravitational distributionlike shocks
decouple from each other and propagate independently
along characteristic hypersurfaces.

The distributional Weyl tensor associated with a light-
like surface layer is algebraically degenerate in the sense
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of Petrov. ' From (41) we obtain, in the lightlike case,

C n = —
( ,'n—('y )n„+ 6(5—("n )y )ag5(P) (e=O) .

This implies' (i) generally, that n is a repeated principal
null vector of C „(i.e., that the Weyl tensor is degen-
erate of Petrov type II, (ii) if the layer is affinely concili-
able (y =0, then n is doubly degenerate (Petrov type
III), and finally (iii) for a pure gravitational shock unac-
companied by matter (S"'=0 y—= ,'y—n ), (42) reduces
to C „=0,so that n is a quadruple principal null vec-
tor and the Weyl tensor is of Petrov type N.

IV. SPHERICAL LIGHTLIKE SHELLS

The physical peculiarities of lightlike shells, and the
e%cacy of the present methods for treating them, are best
appreciated in the simple context of spherical symmetry.
Spherical shells are in any case of interest in their own
right in various cosmologica1 settings.

Expressed in terms of Eddington retarded or advanced
time u, the metric of a general spherisymmetric geometry
is

are the same for W+ and Jkt, this transversal has been
correctly chosen as the "same" vector on both faces of X.

In our coordinates the transverse extrinsic curvature
(13) reduces to W, b

= —' 'I „,&N". The nonvanishing
components are

g
Q6

g
A Be a e b (49)

The surface energy tensor ( —S'b) can now be read off
from (31) with v=0 and (15).

—Sa& =~ $ a( b+ pg &b

where

(50)

4mr o = —g[m], SrrP= —g[B„P] . (51)

From these junction conditions in tandem with the
field equations (44), one obtains the balance laws for ener-
gy and normal force:

The indices 8, (t. have been raised with g ",the inverse of
the two-metric g~Bd0 dO =r dQ intrinsic to X.

Since l'=$6'„, Nb =N e(b~
= (5—b, and r)= —1 ac-

cording to (28), (45), and (47), the three-tensor g'„satisfy-
ing (30) can be chosen as g" bordered by zeros, i.e.,

ds = e~du (fe —~du +2g dr ) + r d A (43)

where ij'j, f are functions of u and r. The sign factor g is
+ 1 if r increases toward the future along a ray u =const,
i.e., if the light cone u =const is expanding; if it con-
tracts, g= —1.

It proves useful to introduce a local mass function
m (u, r ) defined by f= 1 —2m Ir. The Einstein field equa-
tions then take the formam, am „a&~2+K — 4 2+4 i —4
au "' ar "' ar

(44)

a~~
n"=pe~(„) =g

Bp'
(45)

As a future-directed transversal, it is simplest to choose
the other radial lightlike vector:

We consider a thin shell whose history X, a light cone
u =const, splits spacetime into past and future domains
JR and At+ The four. -metric has the form (43) in both
JR and JR+, but with diFerent functions (P,f ) and
(it'+ f+ ) ~

The intrinsic metric of 2 is (ds )z=r df1 . It is con-
sistent with the isometry of the positive and negative
faces of X to choose r as a common parameter along the
generators. (Implicit in this choice is the assumption that
X is nonstationary. The stationary case is dealt
with separately in the next section. ) With
P=(r, 8")=(r, 0,$) as intrinsic c—oordinates of X, the
future-directed lightlike normal generator is

'[ ~T. g~-], g)'a =a„,

6 =e~(fe~u +fr ) = ,'e~(pi '+—fpi) (54)

is conserved along the path segments passing through
static (e.g. , vacuum) regions, and may be considered a
measure of the observer's specific energy. However, 8 is
discontinuous across the shell. The variable which is
continuous at the crossing point is the momentum p~
normal to the shell:

[pi]=0, pi= —u n =ue& . (55)

As measured by this radially moving observer, the en-

ergy density associated with the shell is, according to
(19),

2P/r = —g[T &n n~] .

Equivalently, these equations can be recovered from the
general conservation laws (24), in which we set g&=u,
a= —e ~, whence I b =Bbln(r sin8), and (39).

There is no rest frame for a lightlike shell, and there-
fore o' and P in (50) cannot be given an absolute opera-
tional meaning as the surface density and pressure. They
nevertheless serve perfectly well to determine the results
of measurements by any specified observer. Consider, for
example, an observer in radial free fall, having the four-
velocity u =dx /dc=(u, r', 0,0). The observer-
momentum conjugate to u,

N"d =e & —mf-a i a
au 2 ar

' (46)
T(z u„u =e ~cr(n "u„) 5(u)

=g(u "n„)5( )[rm]/4mr (56)
Since the scalar products

N N=O N-n = —1 N. e =0(A) (47)
and is accompanied by an equal energy Aux. The total
inertial mass energy encountered by observers with nor-
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mal momentum p~ is thus

M(p, ) = gp—, [m] . (57)

These observers also register an impulsive transverse
pressure

respect to ~, the proper time. The sign factor is +1 or
—1 accordingly as r increases or decreases along the nor-
mal n directed from the negative to the positive side.
The proper inertial mass M(r) satisfies the conservation
law

e ~P5(u)=p1 '5(r)P, (58) dM+Pd(4vrr )=0,

where we set ~=0 as the proper time of crossing the
shell, and P is given by (51).

Particularly simple is the case where the geometry on
both sides of the shell is static, and

T ~n ni'=T„„=o, (59)

so that we can set /=0, f=f (r) in (43). This allows the
Schwarzschild, Reissner-Nordstrom, and de Sitter geom-
etries, or any superposition of these, as backgrounds. It
follows from (53) and (39) that the shell is pressureless
and that the parameter r is affine. The mass of the shell is
determined by

4vrr o = ,'rg(f+ —f ) . — (60)

f =1—2mo/r, f+ =1—8~por—

The shell's mass

(61)

4nr o. =mo ——', m.r po (62)

is steadily expended to create the energy of the expanding
false vacuum. A subluminal bubble wall would slow
down and begin to fall back when all of its kinetic energy
was used up in this way. But a lightlike wall is con-
strained to remain on its geodesic path, with the conse-
quence that the shell's inertial mass (62) decreases and
inevitably becomes negative. This situation is quite un-
physical, and it is more natural, as Dray' has suggested,
to suppose that the shell negotiates a hairpin bend at the
moment when its inertial mass is reduced to zero and be-
comes an infalling lightlike shell. This convention
preserves the parallelisrn of the lightlike and timelike
cases.

It is instructive to trace explicitly how this discontinu-
ous lightlike behavior arises as the limit of the continuous
history of a subliminal shell. Consider a spherical shell
moving through a background in which the exterior and
interior metrics have the form

.= d"
ds = +r dQ f(r)dt-f(r)

with different functions f (r) and f+(r). The equation
of motion for the shell radius r = r(r) is

[sgn(n t) r)(f+r' )'/ ]= M/r . —

The square brackets indicate, as usual, the jump across
the shell and the overdot means differentiation with

As a very specific example, consider a lightlike bubble
whose interior consists of a false vacuum with density po
expanding (g=+ I) into Schwarzschild exterior space-
time. The exterior lies to the past if the shell is expand-
ing, and so we set

where P is the surface pressure.
For a dust shell in a de Sitter —curn —Schwarzschild

background, we set P =0 so that M is a positive constant,
and choose f+ as in (61). The equation of motion can be
expressed in the form

Vl o 3
7Tr po (63)

dr 4
ms(A) =mo err po ~

3

is compatible with (62) and displays explicitly an abrupt
reversal of motion at the point where the right-hand side
becomes zero.

V. HORIZON-STRADDLING LIGHTLIKE SHELLS
IN SPHERICAL GEOMETRIES

For a nonstationary shell, as we saw in the previous
section, the requirement that the intrinsic geometry be
unique determines how the two faces X+,X have to be
soldered. In particular, this requirement designates
Schwarzschild's radial coordinate r as the soldering pa-
rameter to be identified along the generators in the spher-
isymmetric case.

We turn now to the study of stationary lightlike shells,
for which this requirement is merely an initial condition
that does not otherwise constrain the soldering. "Affine"
and "static" soldering s—respectively defined by
identification of corresponding affine parameters and (ad-
vanced or retarded) static time coordinates over X+ and
X —are only two of many soldering possibilities that
now arise and are permitted geometrically. Nor are any
of these possibilities physically inconsistent. Rather,
different solderings correspond to shells with different

where

2y
—(f +r 2)1/2+(f +r 2)1/2

It is clear that a shell which is expanding initially must
reverse its motion before the right-hand side of (63) be-
comes negative. For a rapidly moving shell of small
proper mass (r')) 1,M/mo &(1), (63) simplifies to

MIr I =mo —-', ~r'po

showing that the turning point is very close to the zero of
the right-hand side.

The lightlike limit is obtained by replacing ~ by anoth-
er monotonic parameter A, according to Mdk, =ms(k)dr,
then letting M~O with m&(k) (an unspecified positive
function) held fixed. (In particular, we could choose

~d A, /dr
~

= 1, d X/dr) 0, so that A. is affine in the lightlike
limit according to the remarks in Sec. III.) The lightlike
limit of (63),
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a result that follows equivalently from Bf+/Bu =0 for
r =ra and the first of (44). Thus, there is no energy fiux
incident on the shell from either side.

We select u as a parameter along the generators, con-
tinuous across X, but place no restrictions on the func-
tions g+(u, r ), so that the arbitrariness in the soldering is
entirely refIected in the arbitrariness of the u dependence
of f+. With u, 8, y as intrinsic coordinates of X, the vec-
tors

Bx q Bx
Bu

' Br
(64)

are correctly identified over r=rp as normal and trans-
verse radial lightlike vectors, the "same" on both faces,
satisfying N-n = —1.

The second of Eq. (44) yields

[ao]/4mro = —
[ T&n N~] = [T„"]= [ T„"] . (65)

This expresses the net ambient radia1 pressure on the
shell in terms of the jurnp of "surface gravity":

physical characteristics. A statically soldered shell has a
surface pressure and density which are time independent.
This object appears simple to a stationary observer, who
views the shell as held in static equilibrium by a balance
between the surface pressure and external forces.

If, on the other hand, the shell is affinely soldered, then
it has vanishing surface pressure and a time-dependent
surface density. This would be considered a simple object
by a local inertial observer, who sees the shell in free fall,
moving radially with the speed of light, its inertial mass
energy changing as the result of work done by environ-
mental forces.

To give concrete form to these remarks, let us consider
a stationary shell r =ra =2m+(ro, u ) straddling a horizon
(f+ =0) common to two geometries of the form (43).
According to (36), stationarity implies that, on the shell,

ways, since 2m+(ro) =ro ~ The gravitational mass may be
interpreted in an asymptotically Oat space as the mass en-
ergy calibrated for an observer at infinity. It vanishes in
this instance because of the infinite redshift associated
with matter placed statically at a horizon.

A radially moving inertial observer who crosses the
shell with four-velocity u has a continuous normal
momentum p~:

[pi]=0, pi= —u n l„„=ge~r .
0

(69)

His inward radial velocity is therefore abruptly boosted
by an amount proportional to the surface density:

[ r]=pi4—rrrocr . (70)

8~P = [gi~o], 4~roo= —[.g], (71)

and are independent of time.
If an initially expanding (g =+1) bundle of radial

light rays u =const is focused by the shell so as to be-
come contracting (g+ = —1), (71) shows that the surface
density 0 =2rp/4~rp is positive, in agreement with the
Raychaudhuri effect. In the more conventional situation
where r varies monotonically across the shell, g will be
continuous and o. =O. Since the material has no inertial
mass, the net external force on it must vanish: The equa-
tion

This is a manifestation of Raychaudhuri focusing' by the
shell material of a bundle of radial timelike geodesics.

All of the foregoing results apply to an arbitrary sold-
ering. For simplicity, we now specialize to an
everywhere-static geometry without radial energy Aow

(T„„=O), so that, by (44), g=g+(u), f=f+(r) every-
where.

The shell faces are statically soldered if we choose
ij'j+(u) =0, so that u is the standard advanced or retarded
time along the shell's history. From (67) and (68) the sur-
face pressure and density are given by

(66)
2(P /ro = [ T„"], (72)

r=r 0

The transverse extrinsic curvature (13) reduces to

Hence

A „I'l'=%' =~ Me=A~=fr 'e

obtained from (71) and (65), expresses the balance be-
tween the radial force 2P/rp due to surface pressure, act-
ing "outward" (in the direction of increasing r ), and the
net ambient radial pressure, acting from JR+toward JR,

Let us turn now to the case where the shell faces are
affinely soldered. The soldering parameter u is affine if
the acceleration ~, given by (67), vanishes. This yields

where the "acceleration" x(u), defined by (38), is given
explicitly by

e ~= —/~0(u —uo), (73)

(67)

From (15) and (31) we immediately find that the sur-
face stress energy —S' has the perfect-fiuid form (50),
with 8~P =0, 4rrroo = [~o(u —uo)] . (74)

as the appropriate choice for it, where uo is an arbitrary
constant. (The constants g, ao, and uo all have different
values on the two faces in general. ) From (68) we thus
obtain, for an affinely soldered shell,

8vrP = —[v], 4vrrocr = —[ge &] . Recalling (65), we derive68

We note that, while the shell's inertial mass 4m.r pg does
not vanish in general, its gravitational mass [m]=0 al-

(75)
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This shows, from the viewpoint of a local inertial ob-
server, how the inertial mass varies with time as the re-
sult of work done by the ambient radial pressure on the
shell wall traveling with the speed of light. To clarify the
issue of signs, we remark that, for a shell moving outward
relative to an inertial observer, the future side A, + corre-
sponds to the interior of the shell, so that [T„")represents
the net outward radial force.

It is worthwhile to look at a concrete example. We
consider a stationary lightlike bubble, with a de Sitter in-
terior geometry, given by (43) with

fd&
= 1 —,'torpor—= 1 —r /a

and a Reissner-Nordstrom exterior:

fRN=1 —2m/r+e /r

The ambient stress-energy tensors have, respectively, the
false-vacuum and Maxwellian forms

C)
ll

C)
II

and

T„"=T„"=Tg = T~ = —
po (dS)

—T„"=—T„"=TO= T+=(8m) (e/r ) (RN) .

Demanding that the shell be located on a horizon
r = ro =a common to the two geometries yields the rela-
tion

FIG, 1. Reissner-Nordstrom black-hole exterior space-time
joined to an interior de Sitter geometry by a stationary lightlike
shell ABC or ADE located on segments of the outer RN hor-
izon. If the shell is statically soldered, a horizon r =ro on one
side must extend to a horizon on the other, since both corre-
spond to infinite values of the static time coordinate. But for an
affinely soldered shell, this is not necessary.

2ma =a +e (76)

and, from (66), the surface gravities

KQ~ds= —a, KQ~aN=(m —e /ro)/ro .
—I 2 2. (77)

The tug between the false-vacuum and Maxwell ten-
sions ( —T„") produces a net inward radial force on unit
area:

po
—e /8mro =(2a —m )/4rra = —[pro]RN/4na . (78)

8~P =m /a, o.= (2rra ) (79)

If X were extended toward D, o- and P would abruptly re-
verse sign at B. Such development of negative energies
can be forestalled by Dray's stratagem' of introducing a
kink in the shell history at B, with subsequent infall along
BC. The density is now everywhere positive. However,
the sudden reversal of motion at B requires ad hoc inter-
vention by a momentary infinite surface tension. This
statically soldered singular configuration ABC might be

We now fix attention on an episode X of the shell's his-
tory, represented by segment AB in Fig. 1, when the shell
is moving outward relative to an observer in free fall, and
u thus has the character of an advanced time. Light rays
u =const incident upon X from the past (RN) side At
have r increasing toward the future, but after traversal of
the shell, r becomes decreasing on the de Sitter side A, +.
Hence g = + 1, g+ = —1 along segment AB. Note,
however, that these signs would be reversed on BD if the
boundary were extended to D.

If X is statically soldered, we find from (71), (76), and
(77),

considered the limit of a sequence of subluminal static
shells whose radii approach the horizon radius r =a. It
must, however, be considered unphysical.

There is a trail of attempts in the recent literature to
construct a classical elementary-particle model in the
form of a ball of false vacuum bounded by a de Sitter hor-
izon. Even when the boundary is permitted to be shell-
like, static models of this type (commonly treated in the
current literature as lightlike limits of subluminal static
shells) all exhibit singular behavior (infinite surface pres-
sure). These pathologies are essentially due to the kink
necessarily encountered on every surface of constant
Schwarzschild time at the Schwarzschild throat B.

Parenthetically, it is amusing to observe that for the
special choice of parameters a =

—,'e, the surface gravi-
ties (77) become equal on a shell placed at the inner RN
horizon. Hence, from (71), o =P=0. This means that a
perfectly smooth transition is now possible, yielding a de
Sitter-like model of a charged particle which would be
entirely free of geometrical singularities and discontinui-
ties having a massless charge distribution balanced at the
inner horizon, if the charge fully occupies both sheets of
the inner horizon. The gravitational mass of this "elec-
tron" is on the order of the Planck mass.

We have been discussing shells that are soldered stati-
cally. AKne soldering, on the other hand, opens up a
variety of possibilities for avoiding both negative energies
and singular impulses at a kink. Choosing u o+ =0,
uo =(2a —m )/uDa, with B as the origin for the affine
soldering parameter u, we obtain, from (74),

P=O, 4m.a o =(2a —m)(uD —u),
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along the a%nely soldered shell segment ABD. In striv-
ing outward against the force imbalance (78), the shell
steadily loses its inertial mass. At the (arbitrary) point D,
cr =0, the shell has effectively disappeared and it is possi-
ble to introduce a kink without invoking any extraneous
force. The complete shell history ADE has 8=0, o. ~0
everywhere and may be regarded as the regular lightlike
limit of the history of a subluminal dust shell which ex-
pands to a maximal size and then falls back.

If an affinely soldered shell of this type occupies the
past and future outer horizons of the exterior RN
geometry, then it is easily seen to have a negative inertial
mass. Even as a nonstatic model for a particle, it there-
fore fails to satisfy reasonable criteria.

VI. WHEN SHELLS COLLIDE
3

One of the useful features of a thin shell as a gravita-
tional source is that it can effectively localize interactions
that are ordinarily nonlocal by bringing into close prox-
imity two regions A, +, Af in which the gravitational
fields may be different. A much greater variety of such
effects becomes accessible when one considers a pair of
shells in collision. Five years ago Dray and 't Hooft '

and, independently, Redmount derived a simple
formula —the "DTR relation" —which connects the
gravitational masses in the vacuum region between two
spherical lightlike shells before and after they collide.
This formula is quite remarkable. In the absence of grav-
ity, it would take a trivial linear form, expressing the con-
servation of material energy in the collision. Its actual,
nonlinear, form encapsulates algebraically a number of
surprising nonlocal and nonlinear effects hidden in the
Einstein field equations. The most dramatic of these—
"mass inAation" —occurs when opposing streams of
matter collide near the past horizon of a white hole, or
the Cauchy (inner) horizon of a black hole, releasing ar-
bitrarily large amounts of gravitational binding energy as
material forms of energy.

There is a straightforward generalization of the DTR
spherical formula, governing the collision of a pair of ar-
bitrary lightlike shells.

We briefIy sketch the derivation. Let the spacelike
two-surface S, parametrized by 0'=(8, @), with associat-
ed tangential base vectors e~, ~, be the intersection of two
lightlike shell histories, labeled X3,X~. Let X&, Xz be two
other lightlike shell histories that reemerge from S. The
normal to X, (i =1, . . . , 4) is denoted n B( )=B/Bu; with

u; a (generally nonaffine) parameter along the generators,
the same on both faces. The normal "extrinsic" curva-
ture of X, has components

K b= n() 5e( )/5g (a b 0cp)

tangent to S. As we noted in Sec. II, for a lightlike hy-
persurface, K;,& is really a measure of purely intrinsic
properties —the dilation and shear rates, given by its
trace E, and the magnitude cr; of its trace-free part-
and, as such, must have the same value on both faces.

The hypersurfaces X,, . . . , X4 divide the spacetime
near S into four sectors which we label (clockwise from
noon, as in Fig. 2) 12= A, 23 =C, 34=B, 41=D.

FIG. 2. Collision of two lightlike shells, whose three-
dimensional histories are represented by lines 3 and 4 in the
figure, to form outgoing lightlike shells represented by 1 and 2.
In the application to mass inflation in a black hole, sector B ex-
tends out to the exterior of the hole, and shell 3, representing in-
fall from the radiative tail of the collapse, falls close to the inner
horizon which lies just beyond it in the extension of sector B.

(Pl( )n)(2) )(n(3) B(4) ) (6( )n((4) )(lj(p) n(3) ) (80)

at each point of S, since all four lightlike generators are
orthogonal to S and there are only two lightlike direc-
tions orthogonal to a spacelike two-surface.

We now define eight scalar functions F„,. . . , Fd and

D~, . . . , Dz over S by, e g., F~ =F
2 =%~%2/

(n(() n(2) ), D~ =D(2 =o (o~/(n()) n(2) ). They are clearly
independent of the choice of parameters u;.

From these definitions and (80) it follows by inspection
that, at each point (H, y) of S,

I+,+a I

= IFcro I
(81a)

(81b)

These are the generalized DTR relations.

The basic assumption which underlies the generalized
DTR relations (at least in their simplest form) is that
each point of S has a neighborhood that can be covered
by an "admissible" chart (for instance, Gaussian coordi-
nates anchored to geodesics orthogonal to S) in which
the components of the four-metric are continuous and
piecewise continuously differentiable. In other words, it
is assumed that the points at which the two thin layers in-
terpenetrate constitute singularities which are not quali-
tatively "worse" than those of a single thin layer. We
thus exclude the possibility that points of S have conical
(or worse) singularities of the four-geometry, a possibility
in principle conceivable for the collision of two coherent
streams of nonlinearly interactive fiuids or fields.

The assumption gives unambiguous meaning to the
equality or parallelism of a pair of vectors transverse to S.
It follows that
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we obtain F„=2r f„,where

f=g ", rp=g

Hence (81a) reduces to the single, angle-independent
condition at the point of collision,

B C D (82)

which is the formula original1y found by Dray and
't Hooft and Redmount. We may define, as in Sec. IV, a
quasilocal Schwarzschild mass function m(x ) by
f=1—2m /r The.n (82) relates the values of the masses
m~, . . . , ID at the collision point. For weak fields, to
linear order (neglecting quadratic potential-energy
terms), it is seen to express conservation of gravitational
mass in the collision.

For nonspherical shells the generalized DTR relations
(81a) similarly connect the "Hawking quasilocal mass as-
pects" mz(9, y), . . . , mD(8, @) over S, where mz, for ex-
ample, is defined by

m „(O,cp) =(A /16')' [1—(A/8m)F„], . (83)

with A. denoting the area of S. The quasilocal mass orig-
inally introduced by Hawking was defined as the mean
value of (83) over S and is known to give reasonable
answers in simple instances. In spherisymmetric fields it
reproduces the Schwarzschild mass function, as we have
in eA'ect just shown.

A typical situation where (81a) or (82) predicts that
"mass-inflation" occurs when shell 3, schematically
representing infall from the gravitational wave tail of a
collapse, falls close to the inner horizon of the resulting
black hole, so that I'z is an arbitrarily small positive
number. Because of the (finite) jump in mass across shells
3 and 4, the value of Fc,FD are bounded away from zero
at S. Then, after the collision with shell 4 (representing
outAow from the collapsing star), ~Fz ~, and hence mz,
must be correspondingly large. Relations (81b) can simi-
larly be used to place upper bounds on the growth of non-
spherical deformations in this process. For more detailed
discussion, the reader is referred to the papers cited.

VII. GRAVITATIONAL RADIATION
FROM THE COLLAPSE OF LIGHTLIKE SHELLS

AND COSMIC-STRING LOOPS

There is an interesting class of problems which exploits
the ability of an appropriately shaped lightlike shell to
act as causal boundary for the spacetime region on its
past side. Such models were first considered in 1973 by
Penrose' in his search for counterexamples to the
cosmic-censorship hypothesis. Similar arguments were
employed by Hawking' in 1987 to obtain an upper
bound for the amount of gravitational radiation that can
be emitted by a circular loop of string collapsing with the
speed of light. Since none of this work is widely known

For spherical shells, K;=2r 'n~;~B r. By virtue of the
completeness relation

g ~~=g'"e ~e ~e ~&~ +2n
~ & ~n ~z~ /n

~ & ~

-n ~&~,

(that of Hawking remains unpublished at the date of writ-
ing), it may be useful to give a brief account of it here.

The type of lightlike shell X that we consider has the
property that the past side A, of X is contained in the
complement of its domain of influence. This means that
if a point p lies to the past of a point of X, then no point
of X lies to the past of p. Thus X cannot influence AL

gravitationally and the geometry of A1, can be chosen in-
dependently of X, in particular as flat if it is empty. The
lightlike histories of plane layers and of collapsing
spheres and cylinders are casual boundaries in this sense.
Precisely because of its causal disconnection from AL

the matter distribution over X need not share these
geometrical symmetries, but can be arbitrarily nonuni-
form.

As an example, we consider, following Penrose, ' a
nonuniform spherical shell of coherently moving photons
falling radially inwards from infinity. The interior of the
shell is assumed flat. In this domain we can introduce
spherical coordinates x =(t, r, 6,p) in terms of which the
shell has the equation t = —r and its stress energy is

T ~=urn n~5(t+r) . (84)

The associated base vectors e~~~ have four-dimensional
components

Bx
e(„)= „=(—B„h,B„h,5„,5„),ao'

and the intrinsic metric is

g„~d8"dO =h (H, p)(d0 +sin Hdy ) .

The outgoing lightlike vector N orthogonal to S has
components

N =( —A, , (l —
A, ), —B h, —B„h),

on the inner face, where A, = —,'(1+g "~B&h Bzh ).
easily verifies that

N N=N e&~=0 N. n = —1 .

One

A slightly tedious but straightforward calculation from
(13), using the interior (Aat) affine connection, gives, for
the expansion rate of outgoing light rays on the inner face
ofS,

g
" %' ~ =h '(1 —V lnh ),

Energy conservation demands that 4mr o (r, O, y) be con-
served along the flow lines of n 8 =0, —8„.

Our objective is to relate the gravitational mass of the
shell to the area of the apparent horizon formed in the
collapse.

For our purposes the apparent horizon S is convenient-
ly defined as a subspace of the light cone t =r, a closed
two-surface on which light rays beamed perpendicularly
outwards are marginally trapped, i.e., expansionless. If
the collapsing shell is nonuniform, S will not be a sphere;
in terms of intrinsic coordinates 6"=(H, y), we write its
parametric equation as

t=r=h(8") . —
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in which the Laplacian refers to the spherical two-metric:

1 8 . 8 1
slnO

sinO BO BO sin2O c

t=o

Since the exterior geometry of the shell is unknown, a
corresponding calculation for the outer face cannot be
carried through in general. However, in the particular
case of a marginally trapped S, g Az&=0 by hy-
pothesis. Then the surface density o. over S follows at
once from (15) and (17), in which we set y„=O for a pres-
sureless shell of radially moving material. The result is

8~h cr = (1 —V' lnh ) .
C2

r=a

(Alternatively, this can be derived by integration of
Raychaudhuri's equation through the layer. )

This yields the shell's gravitational mass as an integral
over a complete solid angle,

M= crh2dA= 8~ ' h 1 —7'~lnh dO . 86

since, by the conservation law, the first integral is equal
to a corresponding integral taken over a sphere at infinity
on the past light cone.

There is a well-known argument which concludes
that, if cosmic censorship is valid, the diAerence

E,„=M—(A. /16~)' (87)

—t=r=a, z=0 .

(where A = I h dQ is the area of the apparent horizon)
must be non-negative. It then represents an upper bound
for the energy emitted as gravitational radiation in the
collapse, since by the Hawking area theorem, A cannot
be larger than the area of the final stationary black hole.

Penrose's efForts in 1973 were directed toward a search
for functions h(8, @) that violate the inequality E,„~0.
It is now established that no initial data can violate the
Penrose inequality. Today, (87) is chiefly of interest as a
rigorous upper bound on gravitational energy emission,
assuming that a black hole is formed in the collapse.

An example of special interest, considered by Hawk-
ing' is the collapse of a circular loop of cosmic string,
moving at the speed of light. This idealization is reason-
able, since the tension in the loop will rapidly accelerate
it to relativistic velocities. The dustlike stress energy (84)
is an accurate representation in the lightlike limit for a
cosmic string, since the (transverse) tension is invariant
under boosts in the radial direction and thus becomes
negligible compared with the energy density.

To locate the apparent horizon, we focus on the critical
moment t = —a (say), when light rays emitted radially
outward in the plane of the loop (assumed to be the equa-
torial plane) become marginally trapped. At this moment
the loop occupies a circle C whose equation is

FICz. 3. Azimuthal three-section y=0 of the flat interior of
the past light cone t+r =0. This is the region that has "not yet
become aware of" a circular loop of cosmic string collapsing
along the cone. At a given moment, t = —a, say, the string loop
is represented in the figure by the two points C, , C2 in which it
intersects the x axis. The apparent horizon is the cusped two-
surface formed by the pair of surfaces whose sections are the
parabolic arcs S,S+.

formed as the union of the intersections S+ of X+ with
the light cone t = —r. This is because S+ encounter the
string's history only on C, and hence [A,~ ] =0 elsewhere
on S+. The outward lightlike normals to S+ are the null
generators that rule the hyperplanes X+ and are expan-
sionless. From this, it follows that %'+ =A =0 every-
where on S+ except at the cusp C, which, however, is
marginally trapped by hypothesis. Thus the surface
S=S+ US, with equation

r =h (0)=a /(1+ icos8~ ),
is the apparent horizon. Substitution in (85) shows that o
is a Dirac 5 function with support on the equatorial circle
r =a, O=w/2, as expected (we are here following a slight
variant of Hawking's argument due to Gibbons' ).

From (86) the gravitational mass is found to be M =
—,'a.

On the other hand, A =2~a, since the intrinsic
geometry of S+ is that of a pair of disks of radius a. (In
cylindrical coordinates, the intrinsic metrics of X+ are
ds =dp +p dcp, with p~a on S+. )

Thus, from (87),

E,„=(1—2 ' )M .

This is Hawking s result that at most 29.3% of the initial
mass of a co11apsing lightlike circu1ar loop can be radiat-
ed gravitationally before it forms a black hole, assuming
cosmic censorship valid in this instance.

The pair of lightlike hyperplanes

X~: t= —a+ized, z=rcoso—
intersect on C, forming a cusp (Fig. 3). It is now easy to
see that the apparent horizon S is the cusped two-surface

VIII. CONCLUDING REMARKS

A fair amount of work has been done on lightlike sur-
face layers over the past 25 years, but the lack of a con-
venient intrinsic description of their dynamics, similar to
the extrinsic curvature formalism for subluminal layers,
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has proved an impediment which has left this as one of
the murkier areas of general relativity. We have been
able to show in this paper that an intrinsic description
can indeed be formulated in the lightlike case and that it
constitutes a natural limit of the subluminal description.

Because they require matching of a pair of metrics that
are only two-dimensional, lightlike shells offer the sim-
plest and most plastic means for joining two four-
geometries in a dynamically consistent way. Once their
idiosyncrasies have become familiar, they emerge as a
versatile and useful resource in the relativist's arsenal ~

We hope that this presentation will help to make lightlike
shell dynamics a working tool for practioners in both
standard and (by straightforward extension) higher-
dimensional cosmologies, where (as characteristic sur-
faces) they form a natural bridge between phases or
domains with different material content, dimensionality,
metric signature, or topology.
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APPENDIX: THIN SHELLS
AS DIRAC DISTRIBUTIONS

For completeness we here present a straightforward
derivation, based on distribution theory, of the jump con-
ditions and conservation laws stated in Secs. II and III,
some of them justified there by an indirect limiting pro-
cedure. Our approach here is similar to that of Taub
and Clarke and Dray. '

As in Sec. II our formulas here apply to arbitrary
(lightlike or nonlightlike) surface layers. But by contrast
to that treatment, where, mindful of the flexibility needed
in practical applications, we admitted a pair of indepen-
dent, disconnected charts x~+ in the two domains abutting
on the shell, here we lay down a single chart x" (for in-
stance, skew-Gaussian coordinates attached to geodesics)
that reaches into both domains and is maximally smooth.

In more detail, our assumptions are that we are given
the following.

(a) A manifold JNconsisting of , overlapping domains

(b) A hypersurface X contained in the overlap
W+ fl A, . The equation of X is 4(x)') =0, where 4 is a
smooth function, and x~ a chart that covers the overlap.
We assume that the domains of AL in which N is positive
and negative are (properly) contained in JR+and JR, . re-
spectively.

(c) A pair of metrics g+p(x) and g p(x), defined over

A, + and JR, respectively, each at least three times con-
tinuously differentiable.

(d) Equality of g +p and g p on X:

I:g.p]=0 (A 1)

We employ the following notation. If F (x),F (x)
are functions defined over JR+,W respectively, then we
define the "hybrid" function F and the jump on X by

F(x)=F'(x)B(e)+F-(x)B(—e),
[F]= [F+(x ) F(—x) ] I z,

(A2)

where the Heaviside step function B(@)=1,—,', or 0 ac-
cordingly as &0 is positive, zero, or negative. [The con-
vention B(0)= —,

' makes B(C))+B(—@)=1 into a point-
wise identity. ] From these definitions it follows that

a„F(x)=(a„F)- —[F]S(e)(a„e),
FG(x) =(FG) —[F][G]B(4)B(—4),

(A3)

(A4)

[d„g p]=B„(g+—g ) pl+='r)y pn„.
Here y &

is the jurnp in the transverse derivative:

y p=aN~[r)„g p] .

(A5)

X"(x) is an arbitrary vector field (the same over At+ and
JR ) transverse to hypersurfaces of constant @, so that
we can define functions g+(x) by

a /il I ~ =K"8„4&%0 .

From (A5)

[I p]=il(y( np)
—,'y pn ) . — (A6)

The key step is the introduction of a "hybrid" metric
g & over A, which solders the metrics g &,g & together
(continuously) over X. Recalling the notation (A2), we
define

which hold pointwise. [In (A4) the last term of course
vanishes when considered as a distribution. ]

We assume (if necessary, by restriction to a subregion
of X ) that the intrinsic metric does not change signature
over X. Then it proves convenient to set

g p(a.e )(ape) =. (e)a' (x~),

where s+, c, are (nonunique) smooth functions of @
which reproduce the sign of the left-hand side and, in
particular, vanish if the hypersurface %=const is light-
like. There is then no loss of generality in requiring
a(x)%0 everywhere. The normals n„+, defined on JR+
and W by n„=a+ 'B„N, satisfy

g" n„n I+=a+(@) .

On X the values of these functions are unambiguous:

[s]=[a]=[n„]=0.

Because tangential derivatives of g &
—g &

vanish over
X by virtue of (Al),
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(A7)

It follows from (A3) and (Al) that the Christoffel sym-
bols derived from the hybrid metric g & are the hybrid of
r „.+pv~ 'e ~

r„'.= r„'. . (A8)

with S "given by Eq. (17).
The conservation identity V„T "=0, implied by the

contraction of (A10), leads to

V„(aS ")5(4)= V„—T ~"',

by virtue of (20). Using (A3) to extract the distributional
part of the right-hand side, we find

The curvature associated with I „can be written down
at once by applying (A3) and (A4),

Ri„„=Ri„,—2[I i(„]n,)a5(N)

V„(aS ")=—a[T "n„] .

Transvecting (A13) with N& and noting that

(A13)

—2[1.;,„][r;).]e(e)e( —e),
and it satisfies the Bianchi identity

(A9) X S'~=X.S'e~
a (b)

S i'V Ni= S'"e(,)( 5N ilg' ) =S' (d„N, +A',b),

Vt R „. )=0. (A10)

Here V is the covariant derivative associated with the
hybrid affine connection (AS), so that V&g„,=0, and R &„„
is, of course, the hybrid of R+&„,. In view of (A6), (A9)
takes the explicit form

where we have made use of (23), (A8), and (13), we finally
arrive at the conservation law for the layer in its intrinsic
form (24).

Returning to (A 1 1), we can obtain the expression (41)
for the Weyl conformal curvature, defined by

R i&, =R i„,—( 'ny („i—n&y(„)n, )ai)5(g&) . (A 1 1) PV PV P V 6 PV

T "=T "+S "a5(4), (A12)

(Terms that vanish distributionally have been discarded. )

Contraction of (Al 1) and use of the Einstein field equa-
tion yields

if we use (A12) to express the distributional part of R in
terms ofS .

This completes the derivation of the main formulas
quoted without proof in the text.
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