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Formation of primordial black holes by cosmic strings
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We calculate the density of primordial black holes formed by cosmic strings. When these black
holes evaporate due to Hawking radiation, they produce y bursts. We find that comparison with
observations of the y burst and y background yields a new nontrivial upper limit for the string
linear mass density. Our result is in good agreement with that found by Hawking. However, we use
a quite different method to estimate the probability of black-hole formation. It should be mentioned
that the adoption of a measure in the space of the parameter describing the form of loops is the key
point. We present two reasonable choices, but the physical measure may be very different, so quan-
titative results may be changed, while qualitative conclusions remain valid.

I. INTRODUCTION

Cosmic strings are one-dimensional vacuum defects
which appear naturally in a certain class of field
theories. ' Recently it has been realized that cosmic
strings may play an important role in various scenarios of
structure formation in the Universe. ' Such scenarios
require a string to have the linear mass density p large
enough to effectively interact with surrounding matter;
that is, Gp/g should be of the order of 10

In this paper we give the upper limit for p which seems
to contradict the demand Gp/c —10 . The basic idea
is that a cosmic-string loop may become a black hole dur-
ing its evolution, when it falls under its gravitational hor-
izon. The black hole may then evaporate due to the
Hawking mechanism emitting its energy mainly by y
photons. During the radiation-dominated era the density
of black holes falls with time slower than the energy den-
sity of radiation. Thus, even if the density of primordial
black holes was very small, the evaporating black holes
may now significantly inhuence the y spectrum. Combin-
ing the lower limit for the density of primordial black
holes produced by cosmic strings with observations of y-
ray background and y bursts we have obtained the upper
bound for the string linear mass density.

Recently Hawking has analyzed the same problem.
However, he has estimated the probability of black-hole
formation in a diff'erent way. Note that this probability is
the key element of calculation. The idea of Hawking is to
consider a string loop as a set of x parts, where x is a free
parameter that can be expressed in terms of the correla-
tion length s and the string lengths l: x =l/s. The ap-
proach presented in this paper is based on an exact solu-
tion for the evolution of cosmic strings. However, as will
be shown later, we are also left with one unknown param-
eter that represents the uncertainty of the measure in the
parameter space of the exact string solution.

II. THE MECHANISM OF BLACK-HOLE
FORMATION BY COSMIC STRINGS

First we formulate the criterion for the creation of the
black hole from a cosmic-string loop.

Let E be the energy of the loop in the center-of-mass
frame. Its gravitational or Schwarzschild radius is equal
to (c= l)

R =2GE =2Gpl, (2.l)

where l =Elp is the fundamental (or invariant) length of
the string loop and p is the string linear mass density.

It is clear that the black hole is formed when the whole
loop falls under its gravitational horizon. Thus one can
simply follow the evolution of a string loop looking for an
instant when the loop can be enclosed in a sphere of the
radius R R . Certainly this condition establishes only
the lower limit for the creation of black holes. For exam-
ple, corrections to the equation of motion of the string
due to its gravitational field can effectively result in in-
creasing the radius R . It is also possible that only a part
of the loop creates the black hole and this black hole
draws in the rest of the string later. In the following,
however, we neglect these effects because we are interest-
ed in the lower bound for the number density of primor-
dial black holes formed by cosmic strings.

Notice, that due to one-dimensional nature of the
string the ratio

Rf = =2Gp
l

(2.2)

does not depend on the fundamental length l of the loop.
Thus, if the scaling solution for the whole ensemble of
strings exists, then there is also the "scale-independent"
production of black holes.

Now let us discuss how the gravitational radiation
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from the string loop can modify this picture. We neglect
the change of the shape of the string but we consider the
change of the total string energy due to the gravitational
radiation. This assumption is reasonable because, as will
be shown later, black holes are formed mainly by strings
which initially have an almost circular shape. It is easy
to show that under this assumption the gravitational ra-
diation does not alter the value of f. Hence our criterion
for the black-hole formation remains unchanged.

The black hole with mass M will evaporate, due to
Hawking radiation, after time

3
M

Mp1
(3.7)evp

where tp1 and Mp1 are respectively Planck time and
Planck mass.

The density of black holes at the moment of evapora-
tion in the radiation-dominated era is

III. SPECTRUM OF PRIMORDIAL BLACK HOLES

Let n„„(M) be the number density of strings with the
mass M. The very small fraction p of them can form
black holes, each of mass M. We neglect the change of
the mass of the string due to gravitational radiation be-
cause the loop will radiate all its energy in time
t -M/(y Gp ) ))t~~, where tB~ is the time of black-hole
formation. Then the density of black holes with the mass
M is

so

PBH
+evp

Pmat t =
tevp

a t 1/2
—4a

(3.&)

+evp

1/2
e P P (G )I/2 P

Mp1
(3.9)

If the black hole evaporates in the matter-dominated
era, the density of black holes is

nB~(M)=pn„, (M) . (3.1)

p =Ir(Gp) +q, (3.2)

The probability p of black-hole formation is equal to
the probability that the string loop can be enclosed in a
sphere of the radius Rg. Clearly, it can depend only on
the ratio R /I-Gp. As when R goes to zero, p must
also go to zero, we parametrize the probability p, for
small value of Rs/l, in the form

and

—3a

1/2
eq

&evp
eq tBH

' 1/2
Mte—

( G )
I /2

Mpi

—1/2

PBHa -const
evp —3

Pmat t =
tev p

(3.10)

(3.1 1)

where ~ and q are some coefficients.
We take into account only these black holes which are

formed shortly after the string loops fall under the
cosmological horizon. The number density of such loops,
with sizes about the horizon scale, is equal to'

where teq is the instant when pmat pradiation
We can combine Eqs. (3.9) and (3.11) to obtain

M/Mp& for t,„(t,
( G )

I/2
evP P (t /tp~ )

/ (M/M )
/ for t

3

n„,(M)=v'
3

=v (3.3) (3.12&

and its fundamental length is about l-2mR, where R is
the distance to the horizon and v and v' are some numeri-
cal constants !if l =2m R then v = (2m. ) v' ].

The ratio of the energy density of black holes to the
density of the matter at the instant t =tB~-M/p when
black holes of the mass M are formed, is equal to

teq
Mp1~ 10 g

13 (3.13)

Substituting this to Eq. (3.12) we get, for M )M„!taking
into account (3.6)],

Let us define the mass M, equal to the mass of the
black hole which evaporates at tevp teq

..
1/3

PBH

Pmat t =t
nBHM

Pmat

(3.4)

(G )
+ t(t /t )' '(M/M )

3

(3.14)

The density of the matter for a —t' (a is the scale fac-
tor) is

As discussed earlier, it gives us the lower limit for a.

!
32 Gt BH

and finally we get

3277 VK
( G )3+q

3

(3.5)

(3.6)

IV. THE OBSERVATIONAL UPPER LIMIT

Now we are ready to compare our result with observa-
tions.

As the evaporating black holes with M„=10' g pro-
duce the y burst, from observations of the y background
and y bursts we can get the upper limit for the density of
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X= ——(1—a)coso. ——'a cos3o —cosP cosa.1 +
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—2&a(1 —a)coscr —sing coscr+

(5.2)

(o.—=o+r) satisfies all Eqs. (5.1).
Now we have to find the region in a parameter space of

the family (5.2) for which the whole loop can, at some in-
stant t =to, be enclosed in a sphere of the minimal radius
R «R . It is possible to show that this occurs at t =sr/2
and

o.
R l, =.r, = [&a(1—a) —&P(1—P)]'+(a/3 —P)',

(5.3)

FIG. 1. The maximal value of Gp/c as a function of param-
eter q.

evaporating black holes:

(4.1)

So we obtain

Gp~( 3

32m' t,
~ [(G ),„]7z(7+2~)

r

1/2 2/7+ 2q

(4.2)

(Gp),„o=10 (10 ' (4.3)

where G(p),„ois the upper limit for Gp correspond-
ing to q=O. Taking into account that (r,„/tp, )

r =10
and M, /M =10, we have

—2/7

p, = f dadP=A, , (R /I) (5.5)

Numerical investigation gives X t
——1; for example, if

/l =10 we get p, =10 ' . However, the other set
of parameters, (g, P), where a=sin (q/2), P=sin (P/2),

where P= sin (P/2) (see Fig. 2). For a =/3=0 the
minimum R =0 is reached. The case a=P=O represents
the solution, for which the loop is a circle and at t =~/2
shrinks to a point.

To calculate the probability p it is necessary to perform
the integration

p=f de, (5.4)

where de is the measure in parameter space. Unfor-
tunately, we do not know this measure. If one naively
chooses a and I3 to be the natural parameters (we call pa-
rameters x and y natural, if de =dx dy), de =dadP, he
can evaluate the integral (5.4) and obtain

If v~) 3 X 10, this seems to be the case.
Our upper limit for Gp, the fundamental value for

cosmic-string theory, depends on the value of q. The
form of this dependence is shown in Fig. 1. Note that for
q ~1 one gets the nontrivial, new upper limit on Gp,
which may contradict the requirement Gp —10 . It is
therefore very important to find the realistic estimation
for the parameter q.

V. BLACK HOLES FROM TWO-PARAMETER FAMILY

Now we give an example of calculation of the probabil-
ity p and we discuss the meaning of q. In this section we
deal with the two-parameter family of string loops found

by Turok.
Let X~(r, o ) be a four-vector describing the world

sheet of a cosmic string loop. The equations of motion
and constraints for gauge r=X =t, X"=(t,X) have a
form

o
l50
0

12 ip-
I I I I I I I I I I I I

—10. —B. —6 —4

log A

X=X", X +X' =1,X X'=0, (5.1)

where an overdot represents a derivative with respect to
~, while a prime represents a derivative with respect to o..

It is easy to check that the two-parameter family

FIG. 2. Area in the parameter space of the Turok family of
cosmic strings that leads to formation of black holes. The curve
represents the solution of equation R (a,P)=R =10 l. In the
region between the curves the minimal radius R is smaller than
R, for a =p=0 string loop shrinks to a point and R =0.
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seem to be as "natural" as the previous one. It is not easy
to say which set if any is "more natural. " But
de = dr) dP yields the quite different scaling

2. For x=3 or q=0 the upper limit for Gp obtained by
Hawking coincides with our result [see Eqs. (4.2) and
(4.3)j

p2= J dred/=k~(R /l) (5.6) Gp~ 10 (6.3)

where A,2- 1. For example, if 8 /I = 10 then
10 9

Comparing Eqs. (5.5) and (5.6) with (3.2) (recall that
R =2Gpl) we conclude that the uncertainty of the
choice of the proper measure de yields the uncertainty of
the estimation of q.

VI. CONCLUSIONS

p -(Gp) (xGp) " (6.1)

where x =l/s and s is the correlation length for a string
loop. Comparing Eq. (6.1) with (3.2) we see the relation-
ship between q and x:

q =2x —6.
According to Hawking, x should lie in the range between
2 and 4, which corresponds to q in the range from —2 to

As we have seen in the previous section, the value of q
crucially depends on the choice of the parametrization,
that is, on the measure de of string space.

Another approach to the estimation of the probability
p was given by Hawking. He obtained

We have shown that comparison of the density of pri-
mordial black holes formed by cosmic strings with obser-
vational upper limits from the y background and y burst
gives a nontrivial upper limit for Gp. For reasonable
values of q this contradicts the value of Gp required by
the structure formation scenarios based on cosmic
strings. Therefore it is very important to calculate the
value of q (or Hawking's x ) more accurately or,
equivalently, to introduce the measure in the parameter
space of cosmic-string loops consistent with the dynamics
of loop formation.
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