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We consider the present cosmological density of weakly interacting massive particles (WIMP's) in
the context of models where the energy density is dominated by decaying massive particles, such
that WIMP s freeze out of chemical equilibrium during the massive-particle-dominated era. An ex-
pression for the density of WIMP s is derived by a generalization of the Lee-Weinberg argument for
the density of heavy neutrinos in the standard cosmological model.

I. INTRODUCTION

A possible feature of many particle-physics models is
the existence of heavy particles which decay in the early
Universe at low temperatures —1 GeV or less. For ex-
ample, in the context of supersymmetric models, ' it is
possible for the gravitino to decay at temperatures of —1

MeV to —1 GeV, if its mass is in the range 10"—10
GeV. ' (The 1-MeV lower bound on the temperature at
the end of the decaying-particle-dominated period is
necessary in order to not interfere with nucleosynthesis. )

Also, symmetry breaking along flat directions in the sca-
lar potential of supersymmetry (SUSY) models, such as
must occur in SUSY axion models or models with en-
larged symmetry groups such as SU(5) XU(1), will result
in a coherently oscillating scalar field equivalent to a den-
sity of massive scalar particles. ' These particles will be
long lived, such that they typically decay at temperatures
in the range 1 MeV to 1 GeV. It is therefore of interest
for these and possibly other models to consider generally
the consequences of a period of decaying-particle-
dominated cosmology at temperatures of —1 MeV to —1

GeV in the early Universe.
In this paper we consider the question of densities of

weakly interacting massive particles (WIMP s) in the
cosmological scenario where the energy density of the
Universe is dominated by decaying massive particles at
temperatures 1 MeV & T ~ 1 GeV. During the decaying-
particle-dominated period of interest to us here the radia-
tion energy density in the Universe is primarily that com-
ing from the decay of the particles. ' As a result, the
Universe expansion as a function of temperature is more
rapid than is the case with a standard radiation-
dominated cosmology (R ~ T ~ compared to
R ~ T '). This unorthodox cosmology necessitates the
generalization of the calculation of WIMP densities due
to freezing out of chemical equilibrium, originally done
by Lee and Weinberg, to the case where freeze-out
occurs during the decaying-particle-dominated era.

The question of the present density of WIMP's in the
Universe is relevant to the problem of the nature of dark
matter. Dark matter is expected theoretically from the
inflationary universe scenario, which predicts 0= 1,

while the dynamically inferred density is 0=0. 1 —0.3. '

Studies of galactic rotation curves and of galactic clusters
indicate that around 90% of the mass on every mass scale
is dark matter, which if 0)0. 15 cannot be baryonic. "'
It is important therefore to consider the value of Qwy~p
in a decaying-particle-dominated cosmology.

The paper is organized as follows. In Sec. II we briefiy
review the cosmological scenario of interest. In Sec. III
we discuss for a general WIMP the density of WIMP's in
the Universe at present which arises from freezing out of
chemical equilibrium. In Sec. IV we illustrate these re-
sults by considering the case where the WIMP corre-
sponds to a light photino in SUSY models. Section V
contains our conclusions.

II. EVOLUTION OF THE UNIVERSE DOMINATED
BY DECAYING MASSIVE PARTICLES

In this section we briefly review the cosmological
scenario of interest, in the context of which we wish to
discuss constraints on WIMP's coming from the present
observed matter density in the Universe.

At an initial temperature To and corresponding time
to it is assumed that the energy density in the massive
decaying particles, which we label X, dominates the total
energy density of the Universe. For t ) to the energy
density in X particles is

R (to)
p„( )=p,

—I (t —t )
e 0 (2.1)

(2-2)

where G is Newton's constant. In most cases of interest
one can take t —

to to be large compared with
(6~Gp )

'~ . Equation (2.1) is then given by

~here p is the energy density at t =to, I is the decay
0

rate of the X particles, and the scale factor for
1 (t to) «1is—
R(t)=[6vrGp R(to)3]'~3[t —to+(6trGp„) '~~]2~3,
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1
p (t)=

6lrG (t t,—)'
(2.3) ( m 3+p 2)1/2

no(T)=-
3 I 4rrp dp exp

(2lr)3 T

Pro
t — tp

3 ( 6 G) 1/31 4/3
Xo

(2.4)

We denote by tf the time at which t —tp = 1/I and by
t the time at which the radiation energy from X decays
dominates the primordial radiation energy density exist-
ing before X decays. "'

t is given by

3/5

(3.2)

with + (
—) for fermions (bosons) and N is the number of

spin degrees of freedom (N =2 for fermions and 1 for
scalars).

An approximate analytic solution of (3.1) for the
WIMP density can be obtained by a method analogous to
that of Ref. 8. For T ) Tf (3.1) can be rewritten as

where p„ is the initial radiation density at tp. The time-
0

tempera, ture relation is then (for I t ( 1) (Ref. 4)

(2.5)

dh

dT
12& o.u ) (h, h, )T3

g(T)er-r
(3.3)

where g (T)=gs+ —', gf (gal =2 for the photon) counts the
number of spin degrees of freedom. Thus during the
period t )t, one has from (2.5) and (2.2) that R ~ T
compared to R ~ T ' when entropy is conserved. The X
field decays away and the Universe becomes radiation
dominated again once t & tf, with a corresponding tem-
perature Tf given by'

I =
—,'lr3g(Tf )GTf . (2.6)

Because of the much increased expansion between any
two tempeatures when T ) T ) Tf (during which the
expansion rate is proportional to T rather than T as
for standard radiation-dominated cosmology with RT
=const) the discussion of relic WIMP densities arising
from freezing out of chemical equilibrium must be recon-
sidered if freeze-out occurs at a temperature greater than
Tf I

where

n (T)
T8

An approximate solution is obtained by using the fact
that the rate of annihilation is fast enough to maintain
h =h p down to a freeze-out temperature Tf„at which hp
changes with T more rapidly than the rate of annihila-
tions. Below Tf„ the evolution of h is found by solving
(3.1) in the absence of ho on the right-hand side (RHS)
and with h (Tt„)=ho(Tt, ) as the initial value for h (T).
(It is shown in Appendix A that for typical examples the
approximate analytic solution is no more than 20%
larger than the exact numerical solution, becoming in-
creasingly accurate as Tf /Tt, is reduced. ) The freeze-out
temperature is found from

III. WIMP DENSITIES IN
DECAYING-MASSIVE-PARTICLE-DOMINATED

COSMOLOGY

dhp

dT &= Tf„

12& ou )

g(T)er-r
0 fr (3.4)

dn

dt
n+(n', —n')&ou) . (3.1)

Here n (t) is the WIMP number density, &cru ) is the
thermal average value of the cross section for WIMP an-
nihilation times the relative WIMP velocity, and no( T) is
the number of WIMP's in chemical equilibrium,

In this section we consider the stable WIMP density in
the Universe today due to the freezing out of an equilibri-
um density of WIMP's. This requires a generalization of
the mass bounds obtained in Refs. 8, 13, and 14 for the
case of a standard radiation-dominated cosmology to the
case of a decaying-particle-dominated cosmology and a
general WIMP. The evolution of a density of stable
WIMP's can be studied via the rate equation (we use
lllllts wltll 'Il=c =

klan
= 1 )

with ho(T) obtained from (3.2). In the nonrelativistic
limit T (m one has

ho(T) =
2~T

3/2

e
—m/T (3.5)

(In general Tt, will be small compared with m. ) In order
to calculate Tt, one requires an expression for & cru ) for
the case of WIMP annihilations. For nonrelativistic
WIMP's this has the general form

&cru) =a+ bT
(3.6)

In general a and b may be I dependent. For the case of
Majorana fermions a is m independent while b is propor-
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4Tf'( o-U )

rr m [g ( T& )G]'
m/T (3.7)

From this one obtains

tional to m . For massive Dirac neutrinos b =0, a ~ m,
and for sneutrinos b =0 and a is m independent.

From (3.4) one obtains the condition for T&
3/2

T

4T m' a+f
bTf,

(3.8)

ln
3[g ( T )G]1/2T3/2

From T„down to Tf one solves (3.3) with ho=0 on the
RHS and with h (T& ) =ho(T& ). The solution is

g(T) = h (T)
h (T&) 8Tfh (T&)1+ (Tr, —T )+ —(Tg„—T )

[2g(T&)~ G]'/ 5m 4

(3.9)

Using (3.8) and (3.5) one has

6[ 2g(T &)~ G]'
h (T&)=

8Tf a +—Tf,2 b 4

(3.10)

a lower bound on the WIMP mass can be obtained by re-
quiring that Qw&~&& 1. From (3.12) and (3.13) we see
that the value of AwIMP in the decaying particle cosmolo-
gy is sensitive both to the WIMP mass and to the decay
rate of the decaying particle:

where 5=m /Tf, . As seen from (3.8), 5 depends only log-
arithmically on the parameters of the model. From (3.9)
one obtains the relic WIMP density at Tf, n (Tf ). g(T)
accounts for the eAect of annihilations at T & Tf, . Note
that g( T) tends quickly to a constant as T decreases from
Tf„ i.e., annihilations are significant only for T close to
Tf, . Then one can write

g(Tf )
g(Tf)h(T„) . (3.11)

g Tr
h (Tf)=

The factor [g(Tf)/g(T&)] in (3.11) accounts for the
heating of the photon temperature due to annihilations of
particles with masses between T& and Tf. (This is dis-
cussed in Appendix B.)

The number density of WIMP's in the Universe at
present is then

n(T )=
[2' Gg ( Tf ) ]'/ g ( Tf )

g(T )T'I 5'
x

8(a +b /5)m

g(Tf)
g(T&)

(3.12)

pwIMp mn ( Ty )
+WIMP

Pc
(3.13)

where p, =2.0X10 h &/z GeV [h&/2=(1 to 2)] is the
critical density at present (h»2 parametrizes the uncer-
tainty in the present value of H). From (3.12) and (3.13)

where Tz is the photon temperature at present and the
factor g ( T~ )/g ( Tf ) accounts for the heating of the pho-
tons due to annihilations of particles with masses between
Tf and T . Note that n ( Tz ) depends only on the decay-
ing particle lifetime and not on its mass or initial density.
From (3.12) we can write down the value of 0 for
WIMP's of mass m:

I 3/2

m (a+b/5) (3.14)

In this we ignore the logarithmic dependence of 6 on m.
This may be contrasted with the case of standard
radiation-dominated cosmology, where AwIMP depends
on m only through a and b:

Q cc 1
WIMP (3.15)

The decay rate I will be determined in most cases by
model parameters relating to physics at a scale large
compared with M~. Typically one finds

M~
I =Ed

M~
(3.16)

IV. RELIC LIGHT PHOTINO DENSITY IN
DECAYING-PARTICLE-DONIINATED COSMOLOGY

We apply the analysis of the preceding section to the
case of a light photino. In the limit where the photino

where Mz is the mass scale of the decaying particle and
Mz is a large mass scale (Mz «Mz) which serves to
make the decaying particle long lived, for example, a
large spontaneous symmetry-breaking scale. ' Kd
represents the factors from coupling constants and loop
integration (Kd « 1 ). From (2.6) we find

Tf ~Kd' Mz /M~. Thus a wide range of values for the
mass scale Mz will give rise to values of Tf in the range
of interest (1 MeV& Tf & 1 GeV). For example, with
Mz = 100 GeV (typical of SUSY models ) and Kd = 10
one finds Tf in the above range if 10" GeV ~M& ~ 10'
GeV. We illustrate these results in the following section
by considering the example of a light photino freezing
out during the decaying-particle-dominated era.
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does not mix significantly with the other neutralinos Ii.e.,
where the SU(2)I and U(1)~ SUSY-breaking gaugino
masses are small compared with m, ] the main contribu-
tion to the annihilation cross section is from the exchange
of squarks and sleptons (Fig. 1). This gives' '

Q, 4m-a (m —m; )'

(m-,. +mr ) Pl y

a =3.6X10 " GeV

b =7.0X10 GeV

(4.4a)

(4.4b)

Since Tf„ is typically O(m /20) for a WIMP of mass m,
one expects Tf, ~ 1 GeV for light WIMP's. Thus Tf
should be in the range 1 MeV + Tf ~ 1 GeV. As a typical
example we consider Tf =100 MeV. From (4.3) one ob-
tains

(4 1) Then from (3.8) one obtains the value of Tf, :

4~~& (m,' —m,')'"(oU)=, 6Tm, +
r

2I (4.2)

(If m is less than m„ then in the second term m, is re-
placed by m . ) From this we obtain, for coefficients a
and b of (3.6),

4~~~ (mr —m, )' m,a=
4

my Ply

24~a
4
I

(4.3a)

(4.3b)

As a specific example we calculate the relic photino
density for a 10-GeV photino, under the assumption that
the slepton mass is m1=90 GeV. The temperature Tf at
which the decaying-particle-dominated period ends
should be less than Tf, in the cases of interest to us here.

I. q

where u is the fine-structure constant, m z is the photino
mass, Q, the electric charge of the quark or lepton species
i produced by the annihilation (with mass m;), and m-. is

the mass of the corresponding squark or slepton. [In
writing (4.1) it has been assumed that left-handed and
right-handed sparticles have the same mass. ]

Since in most SUSY models the slepton masses are
smaller than the squark masses, ' in the following we con-
sider the example of photino annihilation mainly arising
from exchange of sleptons of a common mass m&=90
GeV. One then has

Tf, =649 MeV . (4.5)

In obtaining this one varies Tf, on both sides of (3.8) until
they are equal. We assume that Tf, is greater than the
temperature of the quark-hadron phase transition, in
which case g (T&, ) =+''. Thus 5—:m ITf, =15.4. From
(3.12) and (3.13) we finally obtain the relic photino densi-
ty

5.7X10
wIMF

h]r2
(4.6)

V. CONCLUSIONS

In this paper we have discussed, in the context of mod-
els where the energy density at low temperatures is dom-
inated by decaying massive particles, the cosmological
relic density of WIMP's which arises when WIMP's
freeze out of equilibrium during this period. A general
expression for the relic density in terms of the WIMP
nonrelativistic annihilation cross section was derived by
generalizing the Lee-Weinberg calculation of the density
of heavy neutral leptons. It was shown that the lower
bound on the WIMP mass from the requirement 0 & 1 is
in general reduced compared with the standard cosmolo-
gy case.

where g ( Tf ) =+'' and g ( T~ ) =2 have been used, and

from (3.9) g(Tf )=0.24. We see that a 10-GeV photino
in this scenario would contribute only a small amount of
dark matter. In fact we find that (for the case h, zz= 1)
0=1 occurs when the photino mass is m =2.6 GeV
with 5=12.3. This is small compared with the value for
the standard radiation-dominated cosmology, m& =10.4
GeV.
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TABLE I. 6 and Tf, for a 30-CxeV photino for various values

of Tg.

FIG. I. Diagrams giving the main contribution to the pho-
tino annihilation cross section via squark and slepton exchange.

Tf (GeV)

0.01
0.1

0.5
0.8

11.7
16.5
19.8
20.8

Tf„(GeV)

2.6
1.8
1.5
1.4
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TABLE II. Numerical vs analytical approximation results for h (T) in case (a) Tf =0.01 GeV and
case (b) T& =0.8 GeV.

(a)
T (GeV) h ( T) (numerical) h (T) (analytical) ho( T)

3.2
3.0
2.9
2.7
2.5
2.3
2.0
1.5
1.0
0.7
0.5
0.3

9.3X10
7.6x10-'
6.8 x10-'
5.2X 10
3.8X10
2.7 x10-'
1.8x 10
1.3 x10-'
1.2X 10

1.16x 10
1.16x 10
1.16x 10-'

(b)

9.2X 10
7.5x10-'
6.6x10-'
4.9X 10
3.0x10-'
1.9x10-'
1.4x10-'
1.2x10-'
1.1x 10

1.11x10-'
1.11x10-'
1.11 x 10-'

9.2 x
7.5 X
6.6x
4.9x
3.3 x
2.0 X
7.1x
3.1 x
2.0x
5.2 x
1.7 x
1.9 x

10
10
10
10
10
10
10-'
10-'
10

—11

1P
—16

10
1P

—38

T (GeV)

2.2
2.0
1.8
1.6
1.4
1.2
1.0
0.9
0.8

h (T) (numerical)

1.5X10
7. 1x10-'
2.7x 10
7.3x10
1.5x10
5. 1x10-"
3.5 x10-"
3.2X 10
3.1x10-"

h ( T) (analytical)

1.5X10
7. 1x lp-'
2.6x lp
7. 1x10-'
1.2X 10
5.2X 10
4. 1x 10-"
3.8X10
3.7X 1P

ho(T)

1.5X 10
7.1x 10
2.6x lp-'
7.1 x 10
1.2X 1P
8.9 x10-"
2.0x 10-"
1.4x 10-"
4.6x10-"

APPENDIX A: COMPARISON OF ANALYTIC
AND NUMERICAL SOLUTIONS

GF THE RATE EQUATION

In this appendix we compare for some typical examples
the numerical solution of (3.1) with the analytical approx-
imate solution (3.9). We consider the case of a photino of
mass mz =30 GeV, for various values of Tf. The form of
(o U ) for this case is given by (4.1), which for a 30-GeV
photino is dominated by the T-dependent term. [We take
g ( Tf ) =g ( T~, ) =60 throughout. ]

In Table I we give the analytic approximation values of
6 —m y /Tf and Tf„ for various values of Tf . In Table II
we give, for cases Tf =0.01 GeV and Tf =0.8 GeV, the
analytical and numerical values of h (T) for a range of
values of T.

For the purposes of calculating the relic density of
photinos at present the most significant results are those
of Table III, which show the analytic approximation and
numerical results for the limiting value of h (T) at tem-
peratures small compared with the freeze-out tempera-
ture. It is seen that the limiting value of h (T) calculated
analytically is at most 20% larger than the numerical
value, with the error decreasing as Tf is reduced.

ping below the mass of particles which are lighter than
Tf ~ In the standard cosmology, the Universe expands
adiabatically, with total entropy conserved. Therefore,

g (T, )T,R, =g (Tb )TbRb, (B1)

n (Tf ) R (Tr ) g(Tf) Tf
n(T, ) R(Tf)' g(T, ) T,

(B2)

Between Tf, and Tf radiation from decaying particles
dominates the total radiation density and entropy is not

TABLE III. Limiting values of h (T) for T small compared
with Tf, .

where T, and Tb are arbitrary temperatures and
g ( T) =g~+ —,'gF is the number of efFectively light degrees
of freedom in thermal equilibrium at temperature T.
Thus one has, for a density of nonrelativistic electively
conserved particles between Tf and T~,

APPENDIX B: EFFECT OF ANNIHILATION OF
PARTICLES ON THE PHOTON TEMPERATURE

IN DECAYING-PARTICLE-DOMINATED COSMOLOGY

In this appendix we discuss the photon-heating factors
which result from the temperature of the Universe drop-

Tf (GeV)

0.01
0.1

0.5
0.8

h&;;, (numerical)

1.16x 10-'
6.0x10-'
5.9x lp-"
3.1X10

h&;;, (analytical)

1.11 X 10
6.8X 10
6.9x10-"
3.7X 10
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(B3)

conserved, preventing one from using (Bl). From (2.2)
and (2.5) one has, for temperatures T„Tb ) Tf,

R ( T, ) g ( Ts ) T~

R(T, ) g(T )2Ts

n (Tr, )

n(Tf)
g(Tr, ) Tr,

g(Tf )

Therefore between T&, and Tf one has (in the absence of
WIMP annihilations)
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