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Cosmic string dynamics with friction
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Cosmic-string equations of motion are derived with the force of friction due to string-particle
scattering taken into account. For strings in a Robertson-Walker space, the additional terms in the
equations of motion have the same functional form as the terms due to the expansion of the
Universe. As a result, a computer simulation of strings with friction would require only a trivial
modification of the existing programs.

I. INTRODUCTION

II. FRICTIONAL FORCE

Let us consider a straight segment of string moving at
speed —v through a gas of massless particles in radiation
era. It is convenient to do the calculation in the rest
frame of the string, where the gas is moving with velocity
v and the phase-space distribution function of the parti-
cles is given by

n„=n [y(k kv)/To] . — (2.1)

Here, k is the particle momentum,
k = k~, y=(1 —v ) ', To is the temperature (in the
frame of the gas), and n (kIT) is a Fermi or Bose distri-
bution function. The force per unit length of string can
be written as

Cosmic strings are topological defects that could be
formed at a phase transition in the early Universe. They
could play an important role in the formation of struc-
ture in the Universe and can lead to various observational
effects at the present time. ' The cosmological evolution
of strings has been a subject of extensive research in the
last several years (see, e.g., Refs. 2 —4, and references
therein). In most of this research it was assumed that
friction due to the interaction of strings with matter can
be neglected. For superheavy strings this assumption is
justified, except at very early times, soon after string for-
mation. However, for lighter strings, friction can be
significant during most of their evolution.

The purpose of this paper is to derive the string equa-
tions of motion with friction taken into account. In the
next section the force of friction is calculated in the local
rest frame of the string. The general string equations of
motion with friction are derived in Sec. III, and the con-
clusions are brieAy stated in Sec. IV.

tered by an angle O, and der /d O is the differential cross
section of scattering per unit length of string.

The cross section do. /dO depends on the type of in-
teraction of particles with the string. Everett studied the
scattering of particles belonging to a multiplet ttt, with a
mass matrix M,b(0) changing around the string. He
found that the low-energy scattering cross section for the
light members of the multiplet is

do
dO

(2.3)
2q [ln(q5)]

where, like before, q is the transverse momentum of the
particle and 6 is the string thickness. A different and po-
tentially more important effect is the Aharonov-Bohm-
type interaction of charged particles with the pure gauge
field outside the string. The phase change experi-
enced by a particle as it is transported around the string
1s

2av=e+, (2.4)

do sin (harv)

2nqsin (9/2)
Alford and Wilczek gave an example of a realistic SO
(10) model in which light fermions have noninteger values
of v (e.g. , v= —,

' for electrons and v= —,
' for electron neutri-

nos). This appears to be a generic phenomenon. We
shall assume v to be a noninteger (at least for some parti-
cles) and neglect the effect of (2.3), which is suppressed by
a large logarithmic factor. Then the angular integration
in (2.2) gives

dO 1 —cosO =2q 'sin ~v
do

(2.6)
dO

(2.5)

and Eq. (2.2) takes the form

where e is the particle charge relative to the gauge field of
the string and N is the string magnetic Aux. Aharonov-
Bohm scattering is present when v has a noninteger
value. The corresponding cross section is

F= f n„—k f dO (1—cosO) ."k (2.2) k dkF =2sin (harv) f (2~)'
Here, q is the particle momentum in the plane perpendic-
ular to the string, nk(qlk)d kl(2') is the Ilux of parti-
cles with momenta in the interval d k, k(l —cos8) is the
momentum transferred to the string by a particle scat-

yk (1—v cosg)
0 TO

(2.7)
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where g is the angle between k and v.
The integration over k is easily done using the relation

d k A;

(2~)' T()
=bvr g(3)T(), (2.8)

where no is the number density of particles in the rest
frame of the gas, b =

—,
' for fermions and b =1 for bosons,

and we have assumed that particles have a zero chemical
potential. The remaining angular integration is also easi-
ly performed; the result is

F=2sin (~v)n~v(1 —
U ) (2.9)

Adding up the contributions of different particles, we ob-
tain

F=pTDu, (3.7)

with u=v(1 —
U ) '~, while the time component of F,

representing the rate of energy change, should be equal to
zero:

F =0. (3.8)

To complete the derivation, we have to find a covariant
expression for F" which reduces to (3.7); (3.8) in the
string rest frame. This is not dificult to do:

where F is a four-vector representing the force of fric-
tion. F should be expressed in terms of x „tempera-
ture T~, and the four-velocity of radiation u . In the lo-
cal rest frame of the string, the spatial components of F
should be given by (2.10),

F=PT (1—
) (2.10) F =PT~(u' —x,x 'u ) . (3.9)

where

P=2vr g(3) g b, sin (~v, ) (2.11)

To verify that (3.9) is the desired expression, we can lo-
cally introduce world-sheet coordinates such that t =g
and x =ng', where n is a unit vector in the direction of
the string. Then y, b

=g,b and
and the summation is over the spin states of light parti-
cles (m ((Tr ). Equation (2.10) agrees with an order-of-
magnitude estimate obtained earlier by Everett.

III. STRING EQUATIONS OF
MOTION WITH FRICTION

F=PTo[u —n(n u)]=PTDu,

F =0.
Substitution of (3.9) into (3.6) gives

x,"=(PT()/p)(u —x,x 'u ) . (3.10)
The world history of a string can be represented by

two-dimensional surface in spacetime,
A generalization of this equation to arbitrary curved
spacetime is

x"=x"(g'), (3.1) ,"+I ~,x"=(PTD//b)(u" —x', x 'u ) .

which is called the string world sheet. Here, g' with
a=0, 1 are two arbitrary parameters on the surface. In
the absence of friction, the string dynamics is described
by the Nambu action

(3.1 1)

We are particularly interested in the dynamics of
strings in a Robertson-Walker universe:

S= p

where y =det(y, b ),

p v
'Vab =gpvx, ax, b

(3.2)

(3.3)

ds =a (r)(dr —dx ),
with the four-velocity of radiation given by

u"=(a ', 0,0,0) .

(3.12)

(3.13)

is the two-dimensional world sheet metric, and g„ is the
four-dimensional space-time metric. Variation of (3.2)
with respect to x "(g) gives

x","+I"y'"x, x b =0, (3.4)

where I" is the four-dimensional Christoffel symbol.
From the two-dimensional point of view, x "(g) is a set of
four scalar fields, and the covariant Laplacian in Eq. (3.4)
is given by

The string equations of motion (3.11) considerably simpli-
fy if we choose the gauge in which

x x'=0 . (3.14)

T3
2 —s (x'/E)'+ 2—+ a x=0,a 0

a p
and the time component becomes

(3.15)

With this choice, the spatial components of (3.11) take
the form

x , a )'V, b) .V' —y
(3.5)

Let us now see how the frictional force (2.20) modifies
the string equations of motion. We shall start with
motion of strings in Oat spacetime with the Minkowski
metric. The general form of string equations of motion is

PT()~+ 2—+ a x c.=-0.
a p

Here,
i /2

x 2

(3.16)

(3.17)
px, '=F (3.6)
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and overdots and primes stand for derivatives with
respect to g and g', respectively. Equation (3.16) is not
an independent equation; it follows from (3.15) and (3.17).
We see that, somewhat surprisingly, the only difference
introduced by the force of friction is to replace the fac-
tors 2a/a in equations of motion for a free string in the
expanding Universe' by the factor

r»(Gp, ) (3.21)

in agreement with previous estimates. ' Here, t~ and fop
are Planck time and mass, respectively, and t is the cos-
mic time, which is related to the conformal time ~ by
dt =ad~.

[2(a/a)+(pTO/p)a] . (3.18)
IV. CONCLUSIONS

pTO

2pa /a
(3.19)

Disregarding numerical factors and using Einstein's
equation,

2

a 8~6 6 4

a P (3.20)

we find that friction is negligible ( r « 1) when

Tp c(Gawp or

The importance of the force of friction is determined
by the relative magnitude of the second term in (3.18): The main result of this paper is Eq. (3.15), which is the

equation of motion for a string in a Robertson-Walker
universe (3.12) with friction taken into account. A re-
markable fact about this equation is that it is identical to
a free string equation of motion with a factor 2a/a re-
placed by the factor

[2(a /a)+(pTo /p)a] .

As a result, computer programs developed to study the
free string evolution in the expanding Universe require
only a trivial modification to include the effects of fric-
tion.
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