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The Kibble mechanism has recently been used to estimate the production of topological objects
such as Skyrmions in hadronic events and textures in the context of the Universe. These objects
correspond to a nontrivial third homotopy group of an appropriate group manifold. We discuss the
importance of boundary conditions required for a topological description of such objects. These
considerations show that textures do not have any topological meaning in the context of a homo-

geneous and isotropic universe and actually are homotopic to trivial configurations (as long as the
universe is much bigger than the horizon size). We point out (and as has been noted by others) that
a scale-invariant distribution of density fluctuations is expected for the spontaneous breaking of any

global symmetry as long as the connected component of the vacuum manifold is degenerate. It does
not matter whether the vacuum manifold has any nontrivial homotopy group. For the case of Skyr-
mion production in hadronic events, our considerations lead to a strong suppression of the Skyr-
mion production. A recent numerical simulation of the texture formation found that textures rarely
occur. Our results provide a simple explanation of this result.

I. INTRODUCTION

Production of topological objects in various physical
systems has been of great interest from theoretical as well
as experimental points of view. There are numerous ex-
amples of such objects in condensed-matter systems such
as Aux tubes in type-II superconductors, vortices in
superfluid helium, and point defects in certain liquid-
crystal systems. In the context of particle physics, famil-
iar examples are domain walls, cosmic strings, and mono-
poles, which are expected to form in a phase transition in
the early Universe if the vacuum manifold of the Higgs
field has, respectively, zeroth, first, or second homotopy
groups which are nontrivial. In the effective-Lagrangian
approach to QCD it has been shown that baryons can be
thought of as certain topological objects, called Skyr-
mions, which owe their existence to the third homotopy
group (of an appropriate group manifold) being nontrivi-
al. ' Similar objects corresponding to the third homotopy
group have also been discussed in the context of the
Universe under the name texture.

Production of domain walls, cosmic strings, and mono-
poles in the early universe has been extensively discussed
in the framework of the Kibble mechanism. Davis
studied the case when the vacuum manifold has a non-
trivial third homotopy group. He considered the case
when our Universe is topologically S and discussed the
formation of textures. The study of textures has recently
been revived by Turok who considered the case when
textures may form in a given region enclosing certain
horizon volumes. He studied the evolution of a texture
with asymptotically fixed boundary conditions and found
that the texture collapses with the speed of light. The
implications for the density Auctuations and anisotropy
in microwave-background radiation have been further in-
vestigated.

Another interesting application of the Kibble mecha-
nism has been recently proposed by Ellis and Kowalski
et al. ' who use it to estimate the production of baryons
in jet events and in quark-gluon plasma. A baryon is
viewed as a Skyrmion which is a soliton in the pion con-
densate field U valued in the group SU(2) for the two-
fiavor case. The region under consideration (for jet
events this region is the volume of the jet containing ini-
tial partons) is divided in small cells of size roughly l fm
each and arbitrary directions for the U field are assumed
in each cell by assuming that the hadronization in these
cells happens independently. An algorithm' is then used
to estimate if a given region encloses a configuration
which has a nontrivial winding number in the group
SU(2), identifying such regions with baryons.

When the Kibble mechanism is applied to estimate the
production of strings or monopoles in space R, one con-
siders respectively a circle S' or a two-sphere S embed-
ded in R . By considering field configurations on S' (or
on S ), one explicitly constructs various winding-number
maps associated with the corresponding homotopy
groups of the vacuum manifold (first homotopy group for
the case of strings and second homotopy group for mono-
poles). The situation is quite different if we are interested
in configurations corresponding to the third homotopy
group of the vacuum manifold. A three-sphere S can be
embedded in R but not in R, which is our physical
space. The only way to construct an explicit representa-
tion of a nontrivial winding-number map in R corre-
sponding to the third homotopy group is by viewing R
as a stereographic projection of an S . Since in such a
projection the north pole of the S is mapped to the
infinity of R, this representation is meaningful only by
implementation of appropriate boundary conditions.

In the context of the Universe, for texture formation,
and in the interior of a hadronic jet, for the topological
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production of baryons, this requirement of boundary con-
ditions poses important questions. We address these
questions in this paper.

We first describe, in Sec. II, the Kibble mechanism to
estimate the production of domain walls, strings, and
monopoles in the early Universe. The scenario of Turok
for the formation of textures is discussed in Sec III. We
argue that due to the absence of any asymptotic bound-
ary conditions in the context of the Universe (for the case
when the universe is much bigger than the horizon scale)
textures do not have any topologically invariant meaning
in the sense that they are hornotopic to trivial
configurations. We point out that scale-invariant distri-
bution of density Auctuations will be expected for the
spontaneous breaking of any global symmetry as long as
the connected component of the vacuum manifold is de-
generate. It does not matter whether the vacuum mani-
fold has any nonvanishing homotopy group. Such con-
clusions were first obtained by Press. "

We next consider, in Sec. IV, the topological mecha-
nism for the baryon production in jet events proposed by
Ellis et al. In this case we show that the considerations
of suitable boundary conditions lead to a strong suppres-
sion (by a factor —10 ) in the production probabilities,
making it virtually impossible to find an exactly integer
winding-number Skyrmion configuration.

In order to identify configurations which may later
evolve into integer-winging-number configurations, we
relax these requirements of boundary conditions (needed
for integer-winding-number configurations) and consider,
in Sec. IV 8, the case when a field configuration in a given
region closely approximates a Skyrmion configuration,
even though it may have only fractional winding number.
Such a configuration may be able to separate out as an
integer-winding-number Skyrmion configuration. We
find that such a configuration necessarily extends over at
least four elementary tetrahedra in R (as opposed to
only one needed in Ref. 8). The production probability of
such configurations in that region is about 0.01 (when all
Skyrmions are to have the same value of the field at their
centers, the case relevant for hadronic events) and is
about 0.05 (when diFerent Skyrmions can have diFerent
value of the field at their centers). This leads to the pro-
duction probability per tetrahedron -0.003 which is
greatly suppressed as compared to the value —,', as ob-
tained in Ref. 8.

After a preliminary version of this paper was written,
we became aware of a paper by Spergel, Turok, Press,
and Ryden who have done a numerical simulation of
texture production and evolution in the Universe. These
results show that any texture with winding number ~

—,
'

collapses. The formation probability of such
configurations per horizon volume at the time of their
collapse was numerically found to be about 0.04. Thus,
as far as one is concerned with the number of collapsing
textures, there is no reason to single out configurations
with integer winding number (i.e., those with constant
boundary conditions outside a given region). (It is impor-
tant to note here that integer-winding-number textures
are of importance for the model of generation of baryons
discussed by Turok and Zadrozny, Ref. 5.) In fact these

textures with fractional winding number are similar to
fractional-winding-number Skyrmions (with no special
value of the field at the center) as discussed in Sec. IV B.
As we have mentioned above, we find in Sec. IV 8 that
the formation probability of such configurations is about
0.05, thus providing an analytical understanding of the
numerical results of Spergel et al. We further predict
almost an absence of any integer-winding-number texture
configurations which are suppressed at least by a factor
of 10 or so.

II. FORMATION OF TOPOLOGICAL OBJECTS
AND KIBBLEMECHANISM

Topological objects are generally associated with cer-
tain phase transitions, where the order parameter space
(the vacuum manifold) has nontrivial topology. We will
limit our considerations to fields defined in Aat space R
(for topologically nontrivial spaces we consider small re-
gions which are topologically equivalent to a ba118 ). In
this context we should mention that Davis has considered
the case when there is only one texture in the whole
Universe S (Ref. 3). Since in any horizon volume the
field will tend to be uniform to minimize the energy, such
a configuration is physically interesting only when the
horizon is of the same size as the Universe (which was the
case in Ref. 3). We here consider the case when the hor-
izon is much smaller than the Universe.

Let us first consider the case when the order parameter
space has nontrivial first homotopy group. This means
that it contains loops which cannot be smoothly contract-
ed to a point. For any space of dimension ~2 we can
consider loops embedded in the space and check if the
field varies along a nontrivial loop in the vacuum mani-
fold as we trace this loop. If it does, then the loop en-
closes a string. Similar considerations tell us that to get
domain walls and monopoles we have to embed respec-
tively, two points and S in R

Now if the vacuum manifold has a nontrivial third
homotopy group (so there are S 's in the vacuum mani-
fold which cannot be contracted to a point) then in order
to form a topological object in the above discussed
manner we will need to consider an S embedded in the
space which is not possible unless number of spatial di-
mensions ~4.

As we know, one usually prescribes certain fixed
boundary conditions on the fields at large distances which
lead to the compactification of R into S (equivalently,
R is regarded as a stereographic projection of S with
the north pole of S mapped to the infinity of R ). Soli-
tonic configurations are then constructed by the usual
winding-number maps from S to S . This is what hap-
pens for the case of Skyrmions where the finiteness of en-
ergy forces the boundary condition that the pion conden-
sate field U go to 1 at large distances. Since there is no
need for fixing any such boundary conditions (and identi-
fying a suitable asymptotic region) for the formation of
other topological objects like domain walls, strings, and
monopoles, there is a qualitative diA'erence between their
production and the production of Skyrmions and tex-
tures.



43 IMPORTANCE OF BOUNDARY CONDITIONS FOR. . . 1049

III. TEXTURE FORMATION

Let us now see if we can apply the Kibble mechanism
to the case of textures in the early Universe. Textures
arise when the third homotopy group of the vacuum
manifold is nontrivial. However, textures in the context
of the early Universe differ from (say) Skyrmions in the
laboratory in one very important aspect. Whereas in the
context of Skyrmions in the laboratory there is a well-
defined asymptotic region where the field must go to a
constant value to maintain the finiteness of energy, there
is no such region in the context of the Universe. In fact
any such condition will be inconsistent with a homogene-
ous and isotropic universe.

In order to apply the Kibble mechanism, we divide the
space into elementary cells (let us take these elementary
cells to be the horizon volumes) where all horizon
volumes are equivalent and the field varies randomly
from one cell to another. We can consider a few horizon
volumes adjacent to each other and then calculate if there
is a texture in this region. A region comprising a few ad-
jacent horizon volumes will be topologically equivalent to
a ball B (since there is no reason to expect that at the
surface of the ball B the field goes to a constant value).

As we know, there is no topologically nontrivial map
from 8 to S . Any field configuration on 8 is homoto-
pic to any other field configuration on 8 . Thus texture
configurations in the context of the Universe have no to-
pologically invariant meaning and are actually homotopic
to trivial configurations (except for the case when the
horizon is about the same size as the universe S, then a
collection of horizon volumes may actually comprise an
S instead of B ). This is different from the unstable na-
ture of texture discussed in Ref. 4 where a texture could
change its winding number only by going over the top of
the potential barrier when it has collapsed to extremely
small size. We find that, even without collapsing, a tex-
ture can smoothly change to a trivial configuration by a
suitable evolution of the field at the boundary of the tex-
ture. Of course it may happen, due to random variations
of the field, that at the surface of some ball 8 the field
happens to have a constant value. The field configuration
on such a ball will have integer winding number. Howev-
er, as shown in Sec. IV, the probability of such
configurations is at most 10 . (We should mention here
that in Ref. 4 the probability of a full knot was estimated
to be about —,', , though it is not clear what a full knot
means in the absence of constant boundary conditions. )

Thus the random occurrence of such configurations is
highly suppressed. Also, there is no reason to expect that
as the field smoothens out, it will maintain such a bound-
ary condition. In general, the field at different points of
the surface of 8 will change depending upon the value of
the field at neighboring points and after a little bit of
smoothening, there may not rema, in any surface in that
region such that the field has some constant value on that
surface. Thus all the field configurations in space (now
some of them may have fractional winding number on the
ball B under consideration) have equal topological
significance.

An important point brought out in Ref. 4 was that

5p =const X—
4c

(3.1)

where the const contains the parameters of the Lagrang-
ian and ct gives the horizon length at time t. Since the
background energy density of the Universe decreases as

p& -t we get

6p =const .
PI

(3.2)

We thus get a scale-invariant distribution of the densi-
ty fluctuations. In fact this conclusion holds for any de-
generate connected vacuum manifold M. One just needs
to replace 7r /4 in Eq. (3.1) by d where d is the expected
separation between two points of M. This only changes
the amplitude of the distribution of density fluctuations
in Eq. (3.2) without affecting its scale-invariant character.

IV. TOPOLOGICAL PRODUCTION OF SKYRMIONS

The situation is somewhat different for the case of
Skyrmion production in jets (and in quark-gluon plasma)

there will be density fluctuations associated with the for-
mation (and later collapse) of global textures. One will
still expect this feature of course now for any spatially
varying field configuration. In fact the density Auctua-
tion will always be present whenever any global symme-
try is spontaneously broken as long as the vacuum mani-
fold is degenerate; it does not matter whether it has any
nonvanishing homotopy group. (This should be clear
from the consideration of nontopological textures as dis-
cussed by Turok, see also Ref. 6. Similar conclusions
were obtained earlier by Press. ") We illustrate this point
in the following by considering a case of U(1) symmetry
breaking.

Consider a model in which a global U(1) symmetry is
spontaneously broken such that the vacuum manifold for
the Higgs field is U(1). In any causally connected region
the Higgs field will tend to have the same phase in order
to minimize the gradient energy but the phases will vary
randomly for points separated by distances much larger
than the horizon scale. [Note that this model has global
strings and in general a horizon volume may be expected
to have a string stretching across it (see Ref. 7). Howev-
er, these strings are not relevant for the point we want to
make„which is to only consider the degeneracy of the
vacuum manifold irrespective of its topology. It may be
that the density Auctuations we get in this specific model
can be associated with the formation of strings (after all
string formation is also calculated by assuming random
variation of field from one horizon volume to the next). ]

Now consider a region of space at some time t, which
is just entering into the horizon. On the average, the
phase change (due to random variation of the phase of
the Higgs field N) across the region will be vr/2. This is
because if the phase at one edge of the region is 0 then
the largest phase variation will correspond to the phase at
the other edge being 0+~, whereas the smallest variation
is zero, thus giving average variation to be ~/2. Gra-
dient energy density coming from a term such as (7'&0)

in that region from this phase variation will then be
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studied by Ellis et al. "' There, since one is attempting
to estimate the production of baryons, one has to consid-
er those configurations which give an integer winding
number and hence can be identified with Skyrmion
configurations. Any other field configuration which is
varying in space must be thought of as (most probably)
ultimately decaying into pions. In the following, we

briefly recall the model discussed by Ellis et al.

Z

„u,

Ug
I y

A. Skyrmion production and Kibble mechanism

In jet events the initial partons are contained in rough-
ly cylindrical shaped regions. By assuming that the had-
ronization in various portions of a jet happens indepen-
dently and by assuming that the pion condensate field U
[valued in group SU(2) for the two-fiavor case] assumes
arbitrary values in the group manifold in these far por-
tions of the jet, one can map this picture to the one em-
ployed in the Kibble mechanism. One divides the region
in the jet into small elementary cells (of size roughly 1

fm; see Ref. 8) and then attaches random values of U at
the vertices of these cells. Skyrmions are topological de-
fects in the configurations of pion condensate field U
which arise due to the fact that the third homotopy
group of SU(2) is nontrivial. One then attempts to find,
using a generalization of the Kibble mechanism, if there
are Skyrmions (which are identified with baryons) in any
given region. (It should be clear from this construction
that the problem of formation of Skyrmions in the interi-
or of a hadronic jet is identical to the problem of forma-
tion of textures in the Universe. )

This generalization of the Kibble mechanism was
achieved in Ref. 8 by considering the three-dimensional
lattice (obtained by dividing the region of the jet in ele-
mentary cells) as part of a hypercubic lattice in four-
dimensional space. Values of the U field were then ran-
domly attached to the vertices of this hypercubic lattice
(by suitably discretizing the vacuum manifold S3 using
five points) and by considering surfaces (homotopic to 5 )

embedded in this R, the distribution of Skyrmions was
calculated. A certain algorithm' was employed to calcu-
late the winding number of a given field configuration in
a region. It was emphasized in Ref. 8 that the fourth di-
mension is hypothetical and certain conditions were de-
rived from this (leading to correlations between the pro-
duction of baryons and antibaryons).

Even though this fourth dimension is introduced only
for mathematical simplicity in Ref. 8, it plays an abso-
lutely crucial role from the point of view of topology.
Thus if we do not assume the existence of such a fourth
dimension, we realize that any region inside the jet con-
sisting of few elementary cells is homotopic to a ball B
and we are again considering the mapping of B into S,
all such mappings being topologically trivial. A simple
way to illustrate this point is by going to two spatial di-
mensions and trying to construct a two-dimensional
Skyrmion configuration. The field is now valued in the
vacuum manifold S . If we consider a third (hypotheti-
cal) dimension and embed an S in this R, we can con-
struct a Skyrmion as shown in Fig. 1(a). Four distinct
values of the field, U, , U2, U3, and U4, are attached at

U)

(c)

FIG. 1. (a) A winding-number-1 Skyrmion configuration
(shown here by U, , U2, U3, and U4) on S embedded in R'.
The x-y plane is the two-dimensional physical space and the z
axis represents the hypothetical third dimension. (b) The field
in the physical two-dimensional space. (c) The field in Fig. 1 (b)
is homotopic to the constant field (arbitrarily chosen to be U&)

shown here.

four points of S (in order to triangulate S one needs
four points). The x-y plane is the physical space and the z
axis represents the hypothetical third dimension. How-
ever, from this one cannot conclude that we have a Skyr-
mion in the physical space because, as Figs. 1(b) and 1(c)
show, in physical space R one can simply deform the
field to a constant value (say) U&. Here we may mention
that the algorithm employed in Ref. 10 to compute in-
stanton numbers for S embedded in R is perfectly fine
since an instanton is a topological configuration in four-
dimensional physical space-time R .

As we mentioned earlier, Skyrmion configurations can
be constructed only with a suitable boundary condition.
Figure 2 shows a Skyrmion in two spatial dimensions,
with the boundary condition that U = 1 beyond a certain
localized region (enclosed by the dashed circle) in R
Nontriviality of the field configuration is contained inside
the dashed circle (later in Sec. IV B, we will consider such
a configuration in more detail). For an isolated Skyrmion
such boundary conditions follow from the requirement
that the energy be finite. In the case of jet events such
boundary conditions are imposed by assuming that U
goes to 1 outside the jet (see Ref. 8). However, for very
small regions (such as regions comprised of few elementa-
ry cells) inside the jet there is no natural way in which
one can impose such a boundary condition.

In the absence of any topologically invariant descrip-
tion of a baryon inside the jet and by realizing that any
baryon produced in the jet will be strongly coupled with
other nearby baryons as well as with other field
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FIG. 2. A localized Skyrmion in two-dimensional space.
U = 1 outside the dashed circle.

FICs. 3. An interacting Skyrrnion —anti-Skyrmion pair. U = 1

outside the dashed loop.

configurations (which may later decay into pions), it be-
comes very difficult to identify field configurations which
may later separate as baryons. For this purpose we sug-
gest the following modification of the method proposed
by Ellis et al. in Ref. 8.

First let us attempt to identify those configurations in-
side the jet which represent single, integer-winding-
number Skyrmions. We again divide the three-
dimensional region inside the jet into elementary cells
which are taken to be tetrahedrons with unit edges (in
fm; see Ref. 8). The vacuum manifold S is triangulated
using five points and these five values of U are randomly
attached at the vertices of the lattice (though we will see
in Sec. IV B that, for getting integer winding number, it is
more appropriate to consider six points on the vacuum
manifold S ). We want to see if the field configuration on
a given tetrahedron corresponds to an integer-winding-
number Skyrmion configuration. Consider a surface en-
closing this tetrahedron such that the points on this sur-
face are about a unit distance away from the vertices of
the tetrahedron. Such a surface will have at least about
10—12 points which will be separated from each other by
a unit distance. (Remember that the directions of U are
supposed to be independent for such points. We will not
attempt to be more careful about these estimates since we
are only interested in order of magnitudes for this case. )

Now consider the probability that all such points hap-
pen to have a fixed value (say Uo) attached to them.
Since there are five values of U available, this probability
is =(—,

' )' =10 which is exceedingly small as compared
to the probability of about —,', expected for integer-
winding-number Skyrmions in Ref. 8. (Of course this
probability then has to be multiplied by the probability
that on the enclosed tetrahedron one has the appropriate
field configuration for a Skyrmion. ) Later, in Sec. IV 8,
we sill present these considerations in more detail. Note
here that we are not requiring that Uo be the same as the
constant value of U outside the jet. At present we want
the find any configuration which may have integer wind-
ing number.

Of course one may consider configurations which
represent a pair (or more) of interacting Skyrmions. As
should be clear from Fig. 3 for the case of a
Skyrmion —anti-Skyrmion pair in two spatial dimensions
(see Ref. 12 for details of such a configuration), U still
needs to assume some constant value at a suitable surface
enclosing the Skyrmion —anti-Skyrmion pair giving

roughly the same suppression in production probability
(for the three-dimensional case) as discussed above. The
same remains true for the case of say three interacting
Skyrmions. For a very large number of interacting Skyr-
mions there may not be any such surface for the Skyr-
mions in the interior. But then these configurations may
also have no chance of separating out as Skyrmions. In
any case, at least from the topological point of view, these
kinds of configurations do not seem any different from
any other spatially varying field configurations which are
generally expected to decay into pions.

It is possible that when some suitable dynamical con-
sideration is employed then certain fractional-winding-
number configurations, which in some sense closely ap-
proximate Skyrmion configurations, may separate out as
integer-winding-number Skyrmion configurations instead
of decaying into pions. In the following we will attempt
to classify such configurations. We find that the proba-
bility of production of such configurations will not be as
drastically suppressed as in the above cases but it still is
much less than the earlier estimates.

B. Skyrmion production with relaxed boundary conditions

We will first consider the case of Skyrmions in two spa-
tial dimensions as this case is easy to visualize. We will
then generalize the arguments to the case of a Skyrmion
in three spatial dimensions (here we will restrict our at-
tention to the two-Aavor case where the Skyrmion field is
valued in the group SU(2) which as a manifold is S ). In
the case of two spatial dimensions the Skyrmion field is
valued in a two-sphere S . As we have mentioned, the
Skyrmion will arise when we impose the boundary condi-
tions so that the Skyrmion field goes to some constant
value at the spatial infinity of the two-dimensional space
R thereby compactifying R to a two-sphere S . (In the
following we use a construction employed in Ref. 12.)

Let us choose the coordinates for the (compactified)
physical space to be the polar and azimuthal angles 0 and
P whereas the coordinates on the target manifold S (in
which the Skyrmion field is valued) are denoted by polar
and azimuthal angles 0 and N. 0 and N thus give a pos-
sible value of the Skyrmion field at some spatial point.

Figure 4(a) shows a winding-number-1 Skyrmion
configuration. Dashed circles show contours of constant
6 and dashed lines (emanating from the center) show
contours of constant N. 0=0 outside the outermost
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FIG. 4. (a) Shows a winding-number-1 Skyrmion
configuration in R while (b) shows the same on S which is ob-
tained by compactifying R . (c) and (d) show a winding-
number-( —1) anti-Skyrmion configuration. 0 and P denote the
polar and azimuthal angles on S (the compactified R ) while 0
and 4 give the value of the field at a given spatial point.

dashed circle (which is consistent with the
compactification of R to S ). Figure 4(b) shows the
same Skyrmion now on S, the compactified R . The
whole region outside the outermost dashed circle in Fig.
4(a) corresponds to a neighborhood of the north pole N in
Fig. 4(b) with the infinity of Fig. 4(a) corresponding to the
north pole N. Figure 4(a) can be thought of as represent-
ing the stereographic projection of the S in Fig. 4(b).

Figures 4(a) and 4(b) represent a winding-number-1
Skyrmion as can be seen from the fact that all the dashed
circles in Fig. 4(a) [or equivalently the circles parallel to
the equator in Fig. 4(b)] represent a winding-number-1
map of S' to S'. We have here used a standard way of
constructing the winding number n map of S to S
wherein one starts with a winding number n map of S
to S '. By considering S as the suspension of S
this map is then extended to a map from S to S which
can be shown to be a winding-number-n map. ' (See also
Ref. 12.)

In a similar way, we can construct a winding-number-
(
—1) anti-Skyrmion as shown in Figs. 4(c) and 4(d) (this

will be useful to us when we discuss the baryon-
antibaryon correlations). We start with a winding-
number-( —1) map of the equatorial circle to S' and by
considering S as a family of circles parallel to the equa-
torial one (which shrink to zero size at the north and
south poles); that is, by considering S as the suspension
of S', we extend this map to a winding-number-( —1) map
of S2 to

With this explicit construction of the Skyrmion
configurations, let us now attempt to estimate their pro-

duction following the Kibble mechanism. As we have
mentioned, in the context of the Kibble mechanism (ei-
ther for the interior of the jet in hadronic events or in the
context of the Universe) it is not possible to force any
boundary condition on the Skyrmion field. Let us make
the standard assumption that the field between two points
separated by the correlation length g varies along the
shortest path in the vacuum manifold. We then see from
Fig. 4(a) that, in order to have an integer-winding-
number Skyrmion configuration, we need to specify field
at least at the following points.

(a) At the center we must have B=~. (Of course any
point of the vacuum manifold could be chosen to be at
the center. The value at this point governs the require-
ment for the field at other points. )

(b) On a circle enclosing this center, we must have
some value of 0 between 0 and n and 4 must vary by
winding number 1 around this circle (for a Skyrmion; for
an anti-Skyrmion, 4 must vary by winding number —1

on this circle). This circle may be triangulated by using
three points all of which are a correlation length (il) away
from the center.

(c) We finally need an outer circle on which 6 must be
zero. Now in order that we use the Kibble mechanism
consistently, this outer circle must be about a correlation
length away from the three points on the inner circle in
item (b) above. This outer circle will have at least about
six points (that is if we take it to have a diameter of about
2i)) which are separated from each other by distance —i).
The requirement the 6 be zero on these points gives a
suppression factor of about ( —,

'
) . Note that we here need

to specify five points in the vacuum manifold S (6=n,
which is the south pole, 0=0 which is the north pole,
and three points needed to triangulate a circle corre-
sponding to some intermediate value of 8) to get an in-
teger winding instead of just four needed for the case of
monopoles embedded in R .

The above discussion clearly shows the diA'erence be-
tween the application of Kibble mechanism to the case of
topological defects such as monopoles and the case of ob-
jects such as Skyrmions. For the latter class of objects
one needs the information about the field at a much
larger number of points than what one may naively ex-
pect. This is what gives rise to strong suppression in the
production probability of such objects.

The generalization to the three-dimensional case is
then immediate. We consider a winding-number-1 map
of S to S such as the one shown in Fig. 4(b). We then
consider a family of concentric two-spheres, S 's, a11 of
which correspond to winding-number-1 map of S to S .
These S 's will be labeled by a third angle g between 0
and 7r The innermo. st sphere which corresponds to (say)
y=ir is shrunk to a point at the origin (south pole of the
S ) whereas the outermost S corresponds to y=o (the
north pole of the S ) and leads to the compactification of

to S . It can be easily seen from our discussion of the
two-dimensional case (also see Ref. 13) that this leads to a
winding-number-1 map of the (compactified) space S
(seen here as the suspension of S ) to the target manifold
S .

It is then clear in this three-dimensional case that in



43 IMPORTANCE OF BOUNDARY CONDITIONS FOR. . . 1053

order to have an integer winding-number configuration,
one must have (a) some fixed value at the center (say
g=~), (b) there should be a winding-number-1 mapping
on some S (corresponding to some value of g other than
0 and vr), and finally (c) on a larger S we should have
y=0. As we have argued earlier, this final requirement
leads to the drastic suppression in the production proba-
bility. We note here again that in order to have an
integer-winding-number Skyrmion configuration, we need
to consider six distinct points on the vacuum manifold S
(g=n, y=0, and four points needed to triangulate an S
corresponding to some intermediate value of y). This is
in contrast with the naive expectation of considering five
points on S .

Now let us relax the requirement of an integer-
winding-number configuration. Instead, we will attempt
to find those (fractional winding number) field
configurations which may separate out later as integer-
winding-number configurations (given a suitable evolu-
tion of field at the boundary of the initial configuration).
Consider again the two-dimensional case first. Suppose
that we have some fixed value of the field (say 6=~) at
the origin and winding number 1 for N variation on a cir-
cle enclosing the origin. Let this circle correspond to
6=0 where 0 has some value other than 0 and ~. Such a
configuration does not wind around the 5 completely
and if we integrate a suitable winding-number density
over this region, we will get a fractional number.

We first observe that given such a configuration (which
represents the core of a Skyrmion) there is a large possi-
bility that the field configuration in the neighboring re-
gion corresponds to the core of an anti-Skyrmion (as op-
posed to that of another Skyrmion). This is most clearly
seen by comparing Figs. 4(a) and 4(c) which show that
the variation of N in some segment of a circle in Fig. 4(a)
actually corresponds to the N variation required on a seg-
ment of a circle in a nearby anti-Skyrmion configuration.
(This is happening because, when viewed from a point in-
side the 0=0 circle in the Skyrmion configuration, @
varies in an anticlockwise direction, whereas from a point
outside this circle, the @ variation is clockwise. ) On the
other hand if we want a Skyrmion configuration near the
configuration in Fig. 4(a) then one will need to specify
field at extra set of points to reverse the direction of N
variation as one crosses the region of one Skyrmion into
the region of the other Skyrmion. It is easy to see that
the same argument holds for Skyrmions in three dimen-
sions. Thus we are much more likely to find
Skyrmion —anti-Skyrmion pairs as opposed to finding
Skyrmion-Skyrmion pairs. Such a strong correlation be-
tween the production of Skyrmions and anti-Skyrmions
was also obtained by Ellis et al. though, as mentioned
earlier, their treatment of the Skyrmion production
diIIers from ours.

The question of the final evolution of the above
configuration (representing the core of the Skyrmion) will
crucially depend upon the field configuration in neighbor-
ing regions. We now assume that these neighboring
configurations resemble portions of anti-Skyrmions. (as
we have argued above it is quite likely to be so.) Then, it
can be seen from Fig. 4(a) that, if 0 ( rr/2, then as the re-

gions of partial Skyrmion and partial anti-Skyrmion
separate, the field in between will tend to assume the
value O=ir (or some other constant value in the lower
hemisphere to minimize the @ variations). Combined
with our assumption of the variation of the field along the
shortest path in the vacuum manifold, we see that this
does not lead to any nontrivial integer-winding-number
configuration.

Now consider the case when 0)~/2. Then above con-
siderations show that the field in the intermediate regions
will tend to assume a value e=0 (or some other constant
value in the upper hemisphere). Again the shortest path
variation of the field shows that in this case we will get an
isolated integer-winding-number Skyrmion. (We will not
worry about the questions such as how many anti-
Skyrmions can separate out this way since we are only at-
tempting to find very rough criteria for which
configurations have a good chance of separating as
integer-winding-number Skyrmions. )

It is then easy to implement the above criteria for the
Kibble mechanism. We triangulate the physical space
(R, in this two-dimensional case) in terms of triangles
such that the vertices are separated by il [see Fig. 5(a)j.
Let us take 6=~ at some vertex. There are four neigh-
boring vertices to this point and we require that, as we go
full circle along these vertices, N changes by 2~ and the
corresponding value of 0 remain in the upper hemi-
sphere. We see that this corresponds to the standard tri-
angulation of the vacuum manifold S using four points
U, , U2, U3, and U~ as shown in Fig. 5(b). The thing
which is new in this case is that to get even a fractional-

U2
U4

U) (s=z)

(b)

g

g

(c)

FICz. 5. (a) Triangulation of the two-dimensional space R .
(b) Triangulation of the vacuum manifold S by four points.
With U, corresponding to 6=~, U2, U3, and U4 correspond to
O(~/2. (c) Smallest region in R needed to specify the two-
dimensional (fractional winding number) Skyrmion
configuration.
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winding-number configuration (which may have some
chance of later separating as an integer-winding-number
one, of course depending on the neighboring
configurations) we need to consider four elementary cells
(triangles in this case) rather than just one. One may con-
sider using only three adjacent triangles as shown in Fig.
5(c) since we are just trying to triangulate a circle enclos-
ing the vertex with 6=+ and triangulating a circle re-
quires only three points. Even though this is not con-
sistent with the triangulation of full space R using only
one correlation length scale, we may still do this in order
to get a sort of upper limit for the value of the production
probability.

Using Figs. 5(b) and 5(c) we see that the probability of
a fractional winding Skyrmion configuration in the region
enclosed by points q„q2, and q3 with a specific value
6=A at the center is (this type of situation will be
relevant for the jet events where the Skyrmion field as-
sumes some specific constant value, assumed to be 0=0
here, outside the jet; Skyrmion configurations then
should have 8 =7r at their centers)

P) =(—,')( —,')'( —,') =O.O26, (4.1)

where the first —,
' factor comes from requiring that e=~

at the center and ( —') comes from requiring that field at
none of q s is equal to 0=m. . The last —,

' comes from cal-
culating the probability that N changes by 2~ around a
circle on which points q, , q2, and q3 lie (known from the
string case, see Ref. 8), with the field restricted to the
three points in the upper hemisphere of the vacuum man-
ifold [see Fig. 5(b)j.

Now suppose we do not require any specific value of
the field at the center (which will be relevant for the case
of the texture production in the Universe) then we get the
probability to be

Pz =4P, =0. 1 (4.2)

P3 =(—,
' )(—;)'(—,

'
) =O.ol, (4.3)

where various factors here have similar interpretation as
in Eq. (4. 1) (e.g. , the factor —,

' comes from requiring that

We again emphasize here that these probabilities corre-
spond to getting a (fractional winding number) Skyrmion
configuration extended over at least three elementary (tri-
angular) cells.

We can again generalize all this easily for the three-
dimensional case. We consider the standard triangula-
tion of the vacuum manifold S using five points, one
point being the south pole with y= ~ (for the case when

y =0 outside the jet; for the case of textures the choice of
this point is arbitrary). The other four points triangulate
the S corresponding to some value of y (~/2. Consider
a point in space with y=m and enclose it with a tetrahed-
ron (more appropriately with a cube which will be com-
posed of elementary tetrahedron cells. We, however, fol-
low our earlier approach used in the two-dimensional
case and use only a tetrahedron to triangulate the S ).
The analog of P, (with y=vr at the center, appropriate
for the jet events) is then

the tetrahedron correspond to having a winding-
nurnber-1 map or S to S; see the case of the mono-
pole).

The analog of P2 (with no special value at the center,
which is relevant for the case of texture formation in the
Universe) is then

P4 = 5P3 =0.05 (4.4)

V. CONCLUDING REMARKS

We have considered the question of boundary condi-
tions for the case of texture formation in the early
Universe as well as for the topological model for the pro-
duction of baryons. Such considerations imply, for the
case of textures in the Universe, that textures have no to-
pological significance and are homotopic to trivial field
configurations (when the horizon is much smaller than
the Universe size). It is thus inappropriate to character-
ize them by a topologically invariant concept like wind-
ing number. One may occasionally find a configuration
which at least initially may have integer winding number.
But as this configuration evolves, there is no topological

We now see from Eq. (4.3) that even if we allow
fractional-winding-number Skyrmion configurations,
their formation probability (per four elementary tetrahed-
ron cells) is quite small. Even if one says that there is no
reason to have a specific value of the field (diametrically
opposite to the value assumed for the outside region of
the jet) at the center of the Skyrmion, we see from Eq.
(4.4) that the formation probability (per four elementary
tetrahedron cells) is still much less than the value of
4X —,', obtained in Ref. 8. We again emphasize here that
the probability of —,', in Ref. 8 was calculated for a single
four-simplex. When restricted to three physical dimen-
sions, this corresponds to the probability of about —,', per
tetrahedron.

According to our considerations, the production of
Skyrmions is mainly suppressed due to the requirement
of constant boundary conditions. Thus the above con-
clusions may be greatly modified when we consider the
regions near the boundary of the jet, due to naturally
present constant boundary conditions outside the jet.
For example, when enclosed by a surface on which the
field assumes a constant boundary value almost every-
where, it may be enough to consider the winding (of S to
S ) on a single tetrahedron. This will lead to enhance-
ment in the probability of Skyrmion production. This
however, suggests that the earlier suggestion, that there
should be less baryon production in a narrow jet event as
compared to a more isotropic event, may be modified.
For example, in the interior of a narrow jet, the surface of
a Skyrmion may have more overlap with the surface of
the jet. As argued above, this requires fewer points
where one will need to specify the field in order to get a
Skyrmion configuration. Baryon production in such a
case may be thus enhanced as compared to a more isotro-
pic case. The relevant thing to consider may be the
surface-to-volume ratio of the region with a larger ratio
leading to more baryon production.
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reason that this does not smoothly change into a
fractional-winding-number configuration. Also, the
probability of such configurations is highly suppressed
and is at most 10 . (Note here that the probability of
full knots was estimated to be about —,', in Ref. 4.)

We point out (and as has been noted by others" ' )

that the considerations of density fluctuations from tex-
tures as discussed in are in fact valid for a much more
general class of models and field configurations. In par-
ticular, any model with spontaneous breaking of a global
symmetry leads to a scale-invariant distribution of densi-
ty fluctuations as long as the connected component of the
vacuum manifold is degenerate. It does not matter if the
vacuum manifold has any nonvanishing homotopy group.

For the model of topological production of baryons in
the interior of jets, our considerations lead to strong
suppression (by a factor of about 10 ) of the probability
for the production of integer-winding-number Skyrmions
(except for the possibility of enhancement near the sur-
face of the jet). (We may note here that in this case, as
opposed to the case of textures in the Universe, the final-
state Skyrmions with integer-winding-number configur-
ations are of clear topological significance due to the
presence of an asymptotic region outside the jet where
the field assumes some constant value, though inside the
jet there still is no topologically invariant description of a

Skyrmion. ) We then consider certain fractional-
winding-number Skyrmion configurations which (given
an appropriate dynamical evolution of the field) may be
expected to separate out as isolated, integer-winding-
number Skyrmions. We find that such configurations
necessarily extend over at least four elementary tetrahed-
ron cells (used to triangulate the physical space R ) and,
in that region, their production probability is at most
equal to 0.05, which amounts to a probability of about
0.013 per tetrahedron. (For jet events with fixed bound-
ary conditions outside the jet, a more appropriate value is
-0.003 per tetrahedron. ) Thus the production of Skyr-
mions is highly suppressed compared to earlier esti-
mates, ' where integer-winding-number Skyrmions were
expected to form with the probability of —,', . We find that
a strong correlation should exist in the production of
baryons and antibaryons (similar correlation was also
predicted by Ellis et al. in Ref. 8).
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