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Numerical simulations explore the evolution of global texture in an expanding universe. The evo-
lution is surprisingly simple —"knots, " regions with a nonzero winding number, collapse and
unwind at a fixed rate per horizon volume per horizon time; the comoving density of knots n

unwinding in a conformal time interval dq obeys dn/dq=0. 04' . During each collapse, asym-
metries are damped and the texture knots appear to approach an exact spherically symmetric scal-
ing solution. The locations of the knots are anticorrelated on scales smaller than the horizon scale
and uncorrelated on larger scales. We calculate the density and pressure in the texture "scaling
solution" in the matter and radiation eras. We estimate (in a universe dominated by cold dark
matter with 0=1) that of order ten knots of angular radius of order 8 should be visible on the mi-
crowave sky.

I. INTRODUCTION

An intriguing pattern of very-large-scale structure in
the Universe is emerging more and more clearly from ob-
servation. The currently popular theories of its origin
"reveal a distinct lack of correlation" with the new re-
sults' and are close to being ruled out by observations of
the microwave background. In particular, the "stan-
dard" inAation plus cold-dark-matter model appears to
be in conAict with a number of different observations of
large-scale structure and could be ruled out in the future
by microwave observations from the South Pole.

In this paper we begin a systematic exploration of a
new mechanism for producing large-scale inhomo-
geneities in an initially homogeneous universe —defects
produced when non-Abelian global symmetries are bro-
ken. Here we shall consider the most generic such defect,
global texture, discussed as a mechanism for the forma-
tion of galaxies and large-scale structure formation by
Turok. In subsequent papers we shall consider global
monopoles and "nontopological texture. "

Global texture is an unstable topological defect that
arises whenever a non-Abelian globe symmetry is com-
pletely broken. Grand unified theories in which this
occurs are simple to construct, and "family unification"
schemes necessarily involve broken non-Abelian global
symmetries. ' The dynamics of the nonlinearly coupled
Goldstone-boson fields constituting the texture is to an
excellent approximation independent of any parameters,
involving only the speed of light and the geometry of the
vacuum manifold. This makes the theory highly predic-
tive. The evolution of texture is completely independent
of parameters and so, therefore, is the pattern into which
the matter is perturbed by the gravitational attraction of

the texture. To obtain the correct magnitude of density
fluctuations today, one requires that the global symmetry
be broken around the grand unified scale, a "natural"
scale. With this breaking scale the Goldstone bosons
which the texture is made out of are very weakly coupled
to matter and would not be observed in laboratory exper-
iments. Global texture does, however, produce a charac-
teristic pattern on the microwave sky which may be ob-
servable in the near future.

While historically there has been some prejudice in
particle theory against broken global symmetries and the
associated Goldstone bosons, they occur ubiquitously in
condensed-rnatter systems, and the possibility of their oc-
currence at a more fundamental level is certainly worth
exploring. Of course, it is also true that dynamics similar
to that we describe here occurs in condensed-rnatter sys-
tems with similar symmetry-breaking patterns, for exam-
ple, in liquid crystals.

Our main finding in this paper is that the evolution of
global texture is remarkably simple. While the dynamics
is highly nonlinear, it is largely governed by the topology
of the field and it is quite accurately described by a low-
resolution code. This makes possible the study of the full
three-dimensional evolution over a large range of physi-
cal scales. We have extended a "leapfrog" computer
code developed by Press, Ryden, and Spergel to study
domain walls in an expanding universe in order to study
texture dynamics. The simplicity of the code (the central
evolution algorithm occupies five lines) means that our
results should be easy to reproduce —and the study of the
cosmological effects of global defects should be almost as
simple as that of the random Gaussian noise, a standard
paradigm for initial Quctuations.

The plan of the paper is as follows. In Sec. II we re-

43 1038



43 GLOBAL TEXTURE AS THE ORIGIN OF LARGE-SCALE. . . 1039

view the evolution of the simplest "SU(2)" global texture.
In Sec. III we review the numerical techniques used to
evolve the texture fields in an expanding universe and de-
scribe several tests of the code. Our results on the cosmo-
logical evolution of the simplest texture are described in
Sec. IV. Section V sums up.

II. EVOLUTION OF TEXTURE

In three dimensions the simplest symmetry-breaking
scheme which produces textures involves a global SU(2)
symmetry broken by a Higgs doublet P with the potential

just as in the Weinberg-Salam electroweak theory. Of
course, in the latter case the SU(2) symmetry is gauged,
whereas we shall consider the case where it is a global
(ungauged) symmetry. A classic example of such a
theory is Skyrme's model of pion dynamics. The texture
"knots" in that model were identified with nucleons and
stabilized by the addition of higher-derivative terms to
the action. Here we shaH assume that such terms, if
present, have little effect (we return to this point below).

By writing the complex doublet P as a real four-vector
P=(I/&2)(P, +i/2, $3+i/4), P=(P„.. . , P4), one sees
that VQ, the space of minima of V(P), is a three-sphere

Of course, this is no accident, but rather the re-
sult of a general theorem that if a group 6 breaks to a
subgroup H, then, barring accidental degeneracy,
V0 =G/H. Here G= SU(2) and H= I, and so
VQ=SU(2)=S3. In the broken-symmetry phase, there
are three massless Goldstone-boson modes tangential to
the three-sphere, and one massive radial "Higgs" mode,
with a mass m&=v'SA, P0. The inverse Higgs-boson mass

m&
' sets a length scale, which we shall frequently refer

to as 8'0.
A heuristic picture of texture evolution is as follows.

We assume that the Universe starts out in a hot and
homogeneous big bang (perhaps, but not necessarily, fol-
lowing a period of infiation). At high temperatures
T ))$0, the symmetry is restored, and the long-
wavelength modes of P are localized about /=0. As the
Universe cools, there is a phase transition and the global
symmetry is broken. The Higgs field falls to the vacuum
manifold, but winds around it in a nontrivial way on
scales larger than the correlation length, which by causal-
ity must be smaller than the horizon. As Turok argued,
in such "winding" regions the field configuration col-
lapses at the speed of light and, when the field gradients
become large enough to lift P over the potential barrier,
"unwinds" itself in regions of radius 8'0. As the
Universe expands, the Higgs field becomes correlated on
larger and larger scales. In this process gradient energy
in the fields is converted into incoherent "Goldstone-
boson" oscillatory modes, which then redshift away.
Long after the phase transition (which occurs at around
the grand unified scale), the scale on which coherent gra-
dients occur in the Higgs field continues to grow at the
speed of light, with the Hubble radius. We shall refer to
this fixed point in the evolution of the texture field as the

scaling solution. In the case of texture, the coherent field
gradients are themselves a source of inhomogeneity, but
there is the more dramatic effect of knot collapse as well.
As the Universe expands, comoving regions in which the
Higgs field winds around the vacuum manifold come
across the horizon. These "knot" configurations collapse
at the speed of light down to the scale 8'0 where they
unwind. An analytic solution describing spherical col-
lapse was found in Ref. 5. This collapse produces a
roughly spherical overdense region onto which matter is
attracted in a characteristic pattern. ' ' Collapsing
knots are, as we shall see, produced at a fixed rate per
horizon time per horizon volume at all times right up to
the present day. One of our more surprising findings is
that they become remarkably spherical as the collapse
proceeds, appearing to approach the analytic solution.
The density Auctuations induced in dark matter by the
collapse of a knot appear to fit quite well the 5p~r
profile predicted from spherical collapse in Oat space.
We shall discuss this behavior in more detail in a forth-
coming paper. '

This picture of the evolution of the texture field should
apply quite generally to theories with broken global non-
Abelian symmetries. What is required is that longest-
wavelength "dynamical" modes, i.e., those of horizon
wavelength, dominate the dynamics. This will be the
case for theories producing global monopoles, for exam-
ple, where the energy of the defects diverges linearly with
scale and is thus dominated by the largest scales. It
should also apply to "nontopological texture. " In both
these cases we expect to see a scaling solution with a
correlation length of order of the horizon scale. For glo-
bal strings the energy per unit length diverges logarith-
mically, at small and large scales, and so there is impor-
tant dynamics on scales much smaller than the horizon.
One would expect global strings to behave much like
gauged cosmic strings, where the correlation length on
the long strings is of order of one-tenth of the horizon
scale. The feature of a horizon scale correlation length
common to global defects from non-Abelian groups
makes them far more promising as a means of generating
large-scale structure than cosmic strings, either gauged or
global. The horizon scale at matter-radiation equally
corresponds to a

corno

ving scale of approximately
160 'h Mpc, which is certainly comparable to the
scale of structure seen in redshift surveys for reasonable
values of h and 0, .

These considerations apply to the classical dynamics of
P; it is conceivable that on scales of order W0 higher-
derivative terms in the effective action for the quantum
theory are large enough to stabilize the "knots" and
prevent them from unwinding. As mentioned before, this
is what Skyrme assumed in order to stabilize nucleons.
Even if this should occur here (one would have to go
beyond perturbation theory to show it), the time scale for
quantum-mechanical tunneling through the barrier
would generically be of order of the grand unified time
scale and negligible on the time scales we are interested
in. Needless to say, stable "knots" would be a cosmologi-
cal disaster, rapidly coming to dominate the Universe.

In an expanding universe with a cosmological expan-
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sion factor a (t), the equations of motion for the P field
take the form

da 1 Bp ~~ 2BV—'7 = —a
dil a Bil Bp

(2)

where conform al time g is defined by the relation
di)—=dtla (t), and the spatial gradients are taken with
respect to comoving coordinates. The equations of
motion are thus a wave equation with a Hubble damping
term on the left-hand side and a force term on the right-
hand side, driving the field into minima of the potential.

On scales much larger than 8'o, there are two
equivalent descriptions of the dynamics. Since gradients
are small compared to m&, the massive Higgs mode is
only negligibly excited. The main players are the Gold-
stone modes, whose evolution may be described in two
different ways. Either we can stick to the description in
terms of a four-component field with potential (1), or we
can just describe the three massless modes interacting in
the "nonlinear o model approximation". " In this ap-
proximation, P =$0 is treated as a constraint, and the
dynamical equations become

(3)

independent of the shape of V(P) or the magnitude of $0.
The main use of the o. model description is to demon-
strate that the evolution of cosmic texture on large scales
is insensitive to the symmetry-breaking scale or the form
of the Higgs potential. This is what makes the theory
predictive. While the magnitude of the density perturba-
tions depends on $0, the pattern in which they are laid
down is fixed by the evolution of the fields, which de-
pends solely on the geometry of Vo (fixed by the symme-
try groups involved) and the background geometry of the
spacetime.

The nonlinear o. model description breaks down when

P changes winding number —the o model becomes singu-
lar at these points. Here one must revert to the "poten-
tial" description —as mentioned, at the center of "wind-
ing" regions the field gradients become large enough to
lift P from Vo and change its winding number. This pro-
cess takes a time of order 8'o. While it is important that
the o. model description exists, and for the vast majority
of the time it is an excellent approximation to the true
dynamics, in practice we have found it simpler to evolve
P using the potential V(P) with Wo chosen to be a few
grid spacings. This allows the entire evolution to proceed
without singularities, and provided the scales of interest
are much larger than the grid spacing, the evolution
should well approximate the nonlinear o. model anyway.
We shall check this in Sec. III ~ In addition, the "poten-
tial" description allows us to set up initial conditions
which mimic the thermal phase transition rather well
and, in particular, enforce the "isocurvature" nature of
the perturbations on scales larger than the initial horizon.
The initial conditions we used were to set /=0, but
dpldiI a vector of random direction but fixed magnitude
at each grid point. This choice of initial conditions

means that the initial density is exactly uniform. It
correctly enforces the isocurvature nature of the pertur-
bations and avoid introducing random noise on scales
larger than the horizon size in a noncausal way, as has
been a problem for cosmic-string calculations (for a re-
cent discussion, see Ref. 12). Of course, we expect that
the long-term evolution of the field is insensitive to the
details of the initial conditions, as long as they assign P
randomly to points on Vo on scales larger than the causal
horizon.

It may be helpful to describe the "winding" of P
around the three-sphere more precisely. As long as P
remains on the three-sphere, there is a conserved topolog-
ical current

1 &pva/3 abcdyag
pbbs ycgpd

12 2y4
(4)

The spatial integral Q = J d xj is constant as long as p
remains on the three-sphere and if P is constant on the
boundary of the integration region. It is an integer if P is
parallel everywhere on the boundary. j is therefore a
"winding density. " We shall somewhat loosely use the
term "knot" to describe a causally connected region
within which Q = Jd x j = 1 and "antiknot" for a re-
gion within which Q = Jd x j = —1. A rough criterion
for collapse is that Q )—,

' orQ ( —
—,', at least in the spheri-

cal and initially static case. It is hard to define knots
more precisely. We shall often define them post hoc as re-
gions where the Higgs field wrapped around in such a
way as to lead to an unwinding event. We find collapses
by looking for places where P falls significantly below $0.
In the cases we examined, this corresponded to regions
where P had wrapped most of the way around the three-
sphere.

III. NUMERICAL TECHNIQUES

The fields were evolved according to Eq. (2) with the
same code used to study domain walls in the expanding
Universe, now modified to treat multicomponent fields.
Our evolution of a field with textures in an expanding
universe encountered the same numerical difhculty dis-
cussed in the work with domain walls. The spatial grid is
of constant comoving size, while the width of a topologi-
cal defect such as a wall is constant in physical units and
thus decreases in comoving units at the rate a (t) '. The
topological defects have to be a few grid lengths thick in
order to be resolved and cannot be permitted to shrink
away to nothing. In order to bypass this problem, as in
Ref. 6, we modified the equations of motion to

8 P da 1 Bit'i ~~~ BV
(&)

drI a Brj BP

ignoring the a factor on the right-hand side of (2). As
was argued in Ref. 6, if one sets a=3 instead of 2, Hub-
ble damping of the massive modes has the same scaling in
a matter-dominated universe in both Eqs. (2) and (5). If
the dynamics are dominated by these modes, this is a
reasonable procedure. Visual comparisons of domain-
wall simulations based on Eqs. (3) and (5) revealed that
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By+2 da 1 B

dg a
t) y sin(2y)

7" 7'
(6)

The initial conditions used for the field were agent)r)=0
and g increasing linearly with r with slope such that it
reached m at a radius corresponding to five grid spacings
in the three-dimensional code (with 8'o equal to two grid
spacings). The results of the comparison are shown in
Fig. I, for a matter era background. We plotted the
quantity most relevant to structure formation calcula-
tions: the effective acceleration produced on a test parti-
cle at comoving radius r at each time. This is given, in
synchronous gauge, by GMlr, where M is the effective
gravitating mass within radius r:

M =4' J r dr(p+3p) =4m J r dr 2P

As usual, we ignored the potential contribution in the
three-dimensional code. The spherical code used 100

panding background, we wrote a standard leapfrog code
to evolve the nonlinear o. model spherical solution in ex-
panding backgrounds. This code reproduced the exact
Hat-spacetime solution found by two of us to very high
precision and was, in fact, how we discovered it. The
spherical ansatz used was

(() =(cosy, siny cos8, siny sin8cos(t1, siny sin8 sing),

with 8 and P the standard polar angles and y(r, g) the sin-
gle radial function. For a single isolated knot, y varies
from 0 at the origin to ~ at infinity. The o. model equa-
tions are, in this case,

spatial grid points, and the result it gave was very close to
that with 400 grid points. As can be seen, the three-
dimensional code performs acceptably well for textures
only slightly larger than our resolution scale 8'o. While
the precise details are different, both the time of collapse
and the shape of the acceleration field are very similar.
With larger textures the agreement was even better.

As direct tests of the three-dimensional code, we
evolved the same initial conditions in 60 boxes with 8'o
of two and four grid spacings, respectively. The results
are described in Sec. IV.

IV. NUMERICAL RESULTS

The numerical simulations tested the scaling behavior
of texture evolution and determined the relevant numeri-
cal coeKcients. As we explained above, as the Universe
expands, the texture field corelates itself on a scale which
grows with the horizon. In this scaling solution, the den-
sity in texture should remain a fixed fraction of the back-
ground density, p ~t, and the number of knots collaps-
ing and unwinding per horizon volume per horizon time
should remain constant.

In the simulations we computed the mean pressure and
density in the P field (averaged over the simulation
volume):

p —g 2[ 1$ 2 1(P'p)2]

and

p
—g 2[ 1$ 2+ 1(QQ)2]

.03—

C4
.01

.003—

.001

2
I ! !

5 10 50

FICx. 2. Scaling with conformal time of the spatial average of the effective source density for perturbations in nonrelativistic matter
in the matter era for a 100' simulation. The dashed line shows 2(B„Q)'=2/0/q (we use units where go= 1).
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where derivatives are with respect to conformal time an. d
comoving coordinates. Since the potential plays little
role outside of unwinding regions of radius 8 p, we ignore
its contribution to P and p (we justify this below in Fig.
3). Of particular interest is the scaling of the quantity
p+3P =2a P, which, as we mentioned before, is the
source for scalar mode density perturbations in synchro-
nous gauge. Figure 2 shows this quantity plotted against
conformal time g ~ t ' in the matter era, calculated in a
100 matter era run. It obeys the predicted scaling very
well. In Fig. 3 we show that P/p is small, and so the 3P
term actually contributes very little. This is as required
by stress-energy conservation —if the texture density
scales as matter, the mean pressure should be zero.
Furthermore, the numerical value P = (t) P )

=(c)~P) =(8,P) =go/rt indicates that the correlation
length really is the horizon scale. As a direct check of
energy conservation and its dependence on the parameter
Wo, we calculated the value of P/p as well (in 60 runs).
Figure 3 shows the evolution of P/p in the matter era for
different values of 8'p. As can be seen from the figure,
doubling 8'p has little effect on the evolution after an ini-
tial transient. As we mentioned, "scaling" behavior re-
quires P=O. In fact, we found P/p to be less than 0.05,
an acceptable error. We also show that the average po-
tential energy density V(P) is a very small fraction of the
total density in this figure.

Our results are consistent with the scaling solution

0op=2 (matter era) . (9a)
a g

We also ran simulations in the radiation era. The re-

suits for p+3P are shown in Fig. 4, where a comparison
between a 100 and a 60 simulation is shown. In the
scaling solution a fixed fraction of the total density in the
Universe should be dumped into Goldstone modes each
expansion time. Because these modes redshift at the
same rate as the background, the fractional density in
Goldstone radiation should grow logarithmically with
time. Figure 5 shows the same quantity as in Fig. 3, but
with a logarithmic correction ln(rl /Wo) supposed to
represent the logarithmic growth beginning after the ini-
tial transient "roll-down" phase, which lasts for a confor-
mal time of order Rp ~ After this correction the agree-
ment with the scaling prediction for both values of 8 p is
excellent. Our results again confirm the scaling solution

iIioln(g/Wo )

p —2 (radiation era) .
a

We have not quoted errors on these results, because to do
so might be misleading. Statistical errors are certainly
small, but it is likely that the largest source of error is
systematic and due to numerical inaccuracy. An estimate
of these errors would require more detailed comparisons
of the code run at different resolutions, whereas we have
so far only performed the few simple tests shown above.
Based on these tests, we believe that our results for the
density and pressure in texture are unlikely to be wrong
by more than 50%.

Our results conform with the scaling behavior expect-
ed, indicating that the power spectrum in the density
fluctuations should be approximately of the Harrison-
Zel'dovich form, i.e., constant amplitude at horizon
crossing.

wp = 2
I I I I I

0.5—

0. 1

—0.5—
0.01

—1

0 20 30 40
I I I I i I i I I i I I i I I I i

0.002 —
I

2
I i ) I I

10
FIG. 3. Average value of P/p as a function of conformal

time for two 60 runs in the matter era with different values of
Also shown is the value of the average potential energy

density V(P)/p, confirming the argument in the text that after a
short time this becomes negligible.

FIG. 4. Scaling with conformal time of the spatial average of
the effective source density for perturbations in nonrelativistic
matter in the radiation era for a 100' and a 60 simulation.
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FIG. 5. Same quantity as in Fig. 3, but for 60 runs in the ra-
diation era and including the logarithmic correction explained
in the text. Again, the results for 8'0 =2 and 4 are virtually in-

distinguishable at late times.

Since the characteristic scale is always the horizon
scale, the scaling solution predicts the number of knots
unwinding in the interval g to g+dg per unit comoving
volume should scale with g:

(10)

where v is a dimensionless constant related to the proba-
bility of winding around the three-sphere in a correlation
volume.

In the simulations we locate the collapsing knots at
every time step by identifying all disjoint grid points
where

I P I
& 0.5$p. The norm of the field deviates

significantly from Pp only in regions where the texture is
unwinding. Not counting knots that were identified in
the previous time step, we compute dN/dg, the number
of knots unwinding in each time step. Each texture knot
in the simulation spends approximately three time steps
unwinding. We only begin counting knots after three
units of conformal time to exclude initial transient behav-
ior.

We ran two 100 simulations with the same initial con-
ditions for both matter and radiation-dominated epochs.
In a 100 simulation beginning at g=1, around 10 knots
unwind after g =3, when we begin counting. In Fig. 6 we
plot d (rl), the cube root of the (comoving) volume of the
simulation V divided by the number of knots collapsed
after conformal time g:

—1/3

d (rl) = V'i I dil
dn

We chose to plot this quantity because the scaling solu-
tion implies that d(rl ) =(3/v)'~ (il+ilp), where alp is a de-
lay due to the initial "roll-down" stage, lasting a time of
order 8'p. d (il) actually measures the mean comoving
separation of knot centers for all knots produced after g.
Both simulations are remarkably similar in these units

FIG. 6. Quantity d(g)=n()t)) '~, the mean comoving
separation of knots unwinding after conformal time q vs g in
the matter and radiation eras. The slope is used to determine
the knot production rate in the scaling solution. Two runs were
100', the third 60' to check for finite-size eAects. The slope is
used to determine the knot production rate in the scaling solu-
tion.

and yield a slope corresponding to v=0.04. The small-
ness of v, implying the rarity of textures, is probably due
to geometric factors. Both runs are consistent with the
predicted straight-line behavior; the ofT'set go=2 is close
to 8'o, as expected. To further test this, we compared
two 60 runs with identical initial conditions, but with a
8'o of 2 and 4, respectively. As expected, the run with
8'o =4 had approximately twice as long a "delay" before
settling into the scaling solution.

We also performed a two-dimensional simulation of
textures for a three-component field with vacuum Vo a
two-sphere. In this case we had much better statistics
and could reliably compute the correlation between the
location of collapsing knots, well into the simulation, at
q=10.0. The results are shown in Fig. 7. Textures are
clearly anticorrelated on scales smaller than the horizon
scale. This is quite plausible: The texture field is corre-
lated on the horizon scale, and one is very unlikely to find
two knots closer than this.

The rarity of texture knots implies that there should be
very few microwave-background hot and cold spots. In
Ref. 5 we showed that photons that pass through a col-
lapsing texture knot are redshifted, while those that trav-
el through a region in which a knot has just collapsed are
blueshifted. The strongly peaked overdensities generated
by texture knots will produce significant early star and
quasar formation, certainly in a universe dominated by
cold dark matter. These objects are likely to re-ionize the
universe and shift the last scattering surface forward to
(1+z)„=50(Abh /0. 05), where Az is the contribu-
tion of baryons to the closure density of the Universe.
The number of hot and cold spots on the microwave sky,

p t depends on the number density of knots along the
line of sight back to the last scattering surface:
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FIG. 7. Two-point spatial correlation function of unwinding knots as calculated for two-dimensional texture. The knots are an-
ticorrelated on scales smaller than the horizon g and uncorrelated on larger scales. r is comoving separation, while g is conformal
time.

N spot 4wgo
~SC g

2
90—27TV
9SC

(12)

=2~v(1+z)„,
where go is the present conformal time. Most of these
knots will have angular size (1+z),, '~ rad. These num-
bers correspond to approximately ten hot and cold spots
with angular radius of order 8'. Thus texture models are
likely to produce a very small quadrupole distortion.

V. CONCLUSION

Our main conclusion is that evolution of global texture
is both conceptually simple and numerically tractable.
This makes the calculation of large-scale structure pre-
dicted from texture quite feasible. The dominant feature
of texture evolution and structure formation is knot col-
lapse: Once there is significant (=0.5) winding number
within the horizon, the region collapses inward, shrinks
to the inverse Higgs-boson mass scale, and then unwinds.
During the collapse, the texture appears to approach the
exact self-similar Oat-space solution described in Ref. 5.

The number of knots unwinding per unit comoving
volume in a conformal time interval dg scales with g:
dn /d g =vq . Our numerical simulations find that
v=0.04 during both the radiation- and rnatter-dominated
epochs. The energy density in texture Goldstone bosons

obeys a simple scaling, corresponding to the texture field
being correlated on the horizon scale.

The rarity of texture knots implies that the microwave
sky is likely to contain only —10 hot and cold spots, each
of angular radius —8. This implies that texture-seeded
galaxy formation would produce a very small anisotropy
quadrupole and suggests that even texture-seeded galaxy
formation in an 0=0,

b
=0.1 universe might be consistent

with the observational limits on the microwave back-
ground. The amplitude of the hot and cold spots depends
on the normalization of Po, which will be treated in Ref.
9.

Asyrnrnetries in the Goldstone-boson energy distribu-
tion seem to be damped as knots collapse, so that collaps-
ing knots appear to approach the spherical scaling solu-
tion. This suggests that the solution is an attractor. We
hope to address this issue in a subsequent paper. '

The collapsing knots produce nearly spherical overden-
sities with 5p/p ~ r '. The overdensities collapse and
could seed the formation of galaxies and clusters. In a
forthcoming paper we will describe the evolution of
large-scale structure using the texture simulations to gen-
erate the initial conditions in a cold-dark-matter-
dominated universe.
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