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Multifractal structure of multiparticle production in branching models
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A procedure is described for the multifractal analysis of data on multiparticle production ob-
tained at high energy either in experiment or in Monte Carlo simulation. It is shown how the spec-
trum f (a } of the rapidity-density index a can be determined from the multiplicity fluctuation of the

rapidity distribution, as the resolution is changed. The branching model is used to illustrate the
procedure. It is found that the P model has a narrower f (a) than the gluon model, suggesting that
multifractality is a useful arena for confrontation between theory and experiment.

I. INTRODUCTION

The study of multiplicity Auctuation in particle pro-
duction at high energy has revealed self-similar proper-
ties' conjectured by Bialas and Peschanski, who called
the phenomenon intermittency. This has, on the one
hand, opened up the possibility of more stringent tests on
the dynamical models describing multiparticle produc-
tion, while on the other provided a strong hint of the pos-
sible existence of fractal properties in such production
processes. The latter presents a new field of exploration
in particle physics. We report here the results of an ini-
tial quantitative probing into that field and show in the
framework of the branching model that the Auctuation in
rapidity distribution indeed has nontrivial multifractal
structure.

The mathematical procedure in which we carry out
this investigation is by means of Monte Carlo (MC) simu-
lation. The branching model used serves mainly as a con-
crete dynamical scheme that is simple yet sufficiently
close to reality to generate rapidity distributions whose
fractal properties can be analyzed in quantitative detail.
Apart from the intrinsically interesting multifractal
structure thus revealed, an important aspect of this study
is also the charting of a procedure for analysis that can be
adopted by experiments in their attempt to extract fractal
information from their data. In our opinion the richness
of that information has not come close to being fully re-
vealed in the study of intermittency thus far carried out.

Consider the rapidity distribution JV(y) of one event,
whether obtained in an actual experiment or by MC
simulation according to a particular theoretical model.
Assume that the energy is high enough so that JV(y) is
well distributed over a certain rapidity interval, though
not necessarily smooth. Indeed, it is the fluctuation of
JV(y) that is the focus of fractal analysis. While the Auc-
tuations themselves change from event to event, what we
want to extract are the properties of those fluctuations
that are universal. The degree of Auctuation, of course,
depends on the resolution in which JV(y) is examined.
Let Yo be an interval in which the multifractal analysis is
to be carried out. The result may depend upon the loca-
tion and range of Yo. If JV(y) has a pronounced peak, it
is sensible to choose Yo to straddle the peak but not to in-
clude the fringes. Subdivide Yo into M bins, each having

rapidity widths 5= Yo/M. As with intermittency, we
look for power-law dependences on 5 of appropriate
quantities so that the exponents can deliver information
about the self-similarity. Unlike intermittency, we aban-
don factorial moments FI, which are defined only for pos-
itive integers I, but work instead with the moments 6,
which are defined for all real q, positive or negative, and
not necessarily integral. Furthermore, a crucial point to
be stressed here is that the power-law behavior 6 is to
be analyzed event by event, and not for the event-
averaged (JV(y)), which suppresses the importance of
fluctuations in low-multiplicity events.

II. MULTIFRACTAL ANALYSIS

For a given partition of Yo into M bins, let k; be the
multiplicity of particles detected in the ith bin and n be
the total multiplicity within the Yo interval so that
n =g~,k;. When M is large, some bins may have no
particles. Let A, be the number of nonempty bins, which
constitute a set of bins that have fractal properties, when
M becomes large. This set contains many subsets, each of
which is characterized by an index a defined as follows.
Let p; be defined by

p =k/n (l)

for nonempty bins only, so that +1~ tp = l. Each bin has
its own 5 dependence, as 5 is decreased; let it be described
by a power-law behavior

(2)

Into every interval (a, a+da) can be mapped many bins
all having the same behavior as (2); the collection of all
such bins constitutes a fractal subset, which is therefore
labeled by the index o, . Let the number of bins of such a
subset be M, whose 5 dependence may be written as

(3)

We aim to determine this spectrum f (a) of all a indices,
which exhaust all bins in Yo through the mapping (2).
The collection of all subsets M of M constitutes the mul-
tifractal structure of the rapidity distribution. Thus by
decreasing the bin width 5, we map an erratically behav-
ing JV(y), rich in peaks and valleys, into a smooth func-
tion f(a). This line of analysis is useful only if upon
event averaging stable, average f (a) emerges, character-
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izing the nature of multiplicity Auctuations for all events.
For convenience, we shall refer to the determination of
f (a) using an increasing number of bins in the fixed in-
terval Yo for each event as the horizontal analysis, and to
event averaging as vertical averaging.

The execution of the horizontal analysis can be readily
carried out by using the G moments. Define

Jk
G —y q

j=1
(4)

where the sum is over all nonempty bins, and q is any real
value. For experimental convenience we can define (for a
given event) Ql, as the number of bins with k particles,
satisfying gi, &Qz

=JR. Then (4) may be rewritten as

q

G = gk~Q„
k=1 k=1

Note that because k ~ 1, q can be negative. G is
different from the normalized C& moments for horizontal
analysis:

C(= g k'PI, (6)
k=1

I

kPq
k=1

G ~ 56q) (8)

This behavior does not occur in the limit 5~0. In fact,
because gj, k~ =n, where n is a fixed number for a given
event, the lower limit of k. for a nonempty bin is 1, as
5—+0; consequently, by (1) and (4), G& approaches n '

Thus the power-law behavior in (8) cannot be achieved if
5—+0. However, we have found in our model calculation
to be discussed below that (8) can be used to describe the
behavior of G for a range of 5 not too small.

Once r(q) is determined, we apply the theory of mul-
tifractals to calculate f (a) by Legendre transform

f (a~ ) =qa~ —r(q),

a~ =dr(q)/dq .

(9)

(10)

Since a derivative is involved, it is necessary to determine
r(q) for small incremental changes of q, especially in the
neighborhood of q =0, where f (a) has its maximum. It
follows from the general theory that f (a) is a concave
function and that f (ao)=DO, the fractal dimension. In

where PI, =Q&l+P oQI„a normalization that includes
the k =0 empty bins. Usually, C& is defined in (6) with
k =0 included, since Po&0 in general; however, for I be-
ing a positive integer, it is equivalent to the sum with the
k =0 term excluded. Equation (6) permits the integral
value of l to be extended to all real values of q. Let the
corresponding moments be denoted by C . Since
QI", oQI, =M, G~ and C~ can be related by

G =Cm'
q q

for all real q.
For every event in an experiment or MC calculation,

G can be determined as a function of 5. The particle
production process exhibits self-similar behavior, when a
region of 5 can be found such that

where angular brackets denote event averaging, and hv is
the range of v in which self-similarity exists. (a~ & is
determined from d (r(q) &/dq, and then (f (a ) & is ob-
tained from q(a &

—(r(q)&. When no confusion can
arise, we shall, for brevity, use f (a) to denote the verti-
cally averaged (f (a ) & thus obtained.

It should be remarked that the type of horizontal
analysis and vertical averaging described above has not
been carried out so far in the study of intermittency, '
let alone the study of multifractals. The usual factorial
moments considered are

M MF= M ' k k —1 . . k —l+1 M ' k
j=l j=1

(12)
whose power-law behavior in small 5,

—alF, (13)

is examined for the determination of aI. We suggest in-
stead that F& without vertical averaging in (12) should
first be determined for each event and that the average
(a& & then be calculated according to

( &= —b. (1 F, &/b(1 5), (14)

in analogy with (11). The significance of this procedure is
that the unexhibited multiplicative factor in (13) denoted
by yl, say, becomes immaterial in the averaging; other-
wise, the yI, for events with smaller a&, are given less
weight. This may be important for hadronic and nuclear
collisions, where fluctuations due to impact-parameter
variations from event to event should be minimized, if the
effects of Auctuations due to dynamical process of had-
ronization are to be identified. It is possible that the
weak intermittency observed in the hadronic and nuclear
collisions thus far' is due to the prevailing procedure in
which the intermittency indices have been determined.

III. BRANCHING MODELS

Before we describe the mulitfractal properties of the
branching model, let us consider two simple examples for
illustrative purpose. First, suppose that JV(y)=constant
for every event even for arbitrarily small 5. Then M =AS
and k =n/M, so p =1/M, and G =M' ~. From (8) we
get r(q)=q —1. It then follows from (9) and (10) that
f (a)=5

&
for every event, and therefore so also after

vertical averaging. This is the trivial result when there
are no Quctuations. It may also be remarked parentheti-

our model calculation our results for f (a) satisfy the gen-
eral properties, even though the self-similarity in our
problem is not always in the limit of vanishing 5, as is as-
sumed in the theory of multifractals.

To determine the average (f (a) & by vertical averag-
ing, it is essential that the procedure guarantees the
determination of the average (r(q)&. That means that
the averaging should not be performed on G, but on
lnGq. In practice, we let M =2, and calculate

& (q) &
= —

& ~ I G, /~ I 5 &

= —(ln2) 'b, (lnG &/b. v,
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cally that the uniform triadic Cantor set has
f (a)=a5 where ao=ln2/ln3. The absence of a

width for f (a) is an indication of the lack of randomness
in the problem, despite the presence of self-similarity.
Consider next an example in which p has a peak rising
above a uniform background. Take, for instance,
p =NI 1+2exp[ —(y —yo) /o ][, where N is fixed by

g~p~ =1, y is the rapidity at the center of the jth bin,
and yo Auctuates randomly from event to event so that
the single-particle rapidity distribution after event
averaging is uniform. The Gaussian width o provides a
scale in the problem; its exact relationship to the pair-
correlation length is not immediately clear, although the
existence of some correlation is obvious. This mathemat-
ical example illustrates the existence of self-similarity in a
finite range of M (i.e., 5 does not ~0), and that the corre-
sponding f (a), which can readily be calculated, has a
narrow peak situated at ao=1 with f (ao)=1, having a
width that decreases with increasing o.. The full width
Aa at half-maximum is about 0.2, if o. =2 and Y0=6.
Here we see that although p is a smooth function of y,
the existence of correlation (and therefore also multiplici-
ty fiuctuation) results in a nontrivial f (a) for an ap-
propriate range of resolution. It should further be noted
that, because p is an analytic function, the spectrum is
trivial [f(a) =5 &], if the limit 5~0 is taken.

We now consider the branching model to explore fully
the multifractal structure of multiparticle production.
The model has been described in detail in Ref. 8, where
intermittency is investigated. Briefly stated, the model
specifi~ s the successive branchings of partons, as their
virtua)sties degrade from the initial value Q to the final
value;. q ~qo, at which point a parton is identified as a
final-state particle. At each vertex a mother parton splits
into two daughter partons with momentum fractions z
and 1 —z according to the probability function P (z). We
consider here two forms of P(z): (a) P model P(z)=
6z (1—z); and (b) gluon model P (z) =c [(1—z)/z +z/
(1—z)+z(1 —z)]. The rapidity of a final particle with
momentum fraction x is determined by
y =arcsinh(xQ/mT), where mT=qo/2. The kinematic
range of y is therefore between 0 and I' =arcsinh(Q /m T).
The reader is referred to Ref. 8 for details of how the
model is applied to the MC simulation of particle produc-
tion.

For the P model the peak of JV(y) is around y =3 at
Q =2 TeV, so we choose I'0 =2 straddling the peak. For
the gluon model A'(y) is sharply peaked at y =0; thus the
range between 0 and Yo=0.5 has been chosen so that a
substantial fraction of the final partons are included. As
Q is varied, the overall Y range changes; thus we change
Yo accordingly in order to keep Yo/Y fixed. A discus-
sion of the dependence on Yo/Y is deferred to a longer
paper later, since it is not central to our problem at hand.

In Fig. I we show for the gluon model the results on
the event-averaged lnG vs v for some typical values of q.
For each q, a range of v can be identified in which there is
not only approximate linearity but also universality, i.e.,
independence on Q. It is in those ranges that we deter-
mine (r(q)) by use of (11). In practice we imagine the

asymptotes for each q to be the straight lines drawn be-
tween v= 1 and 3 for Q =20 TeV and determine ( r(q) )
accordingly. The result after averaging over 500 events,
which include more than 50000 final particles, is shown
by the solid line in Fig. 2(a), together with that for the P
model shown by the dashed line. (r(q) ) contains all the
information that is conveyed by intermittency. It follows
from (7) that, for positive q, '

(r(q))+(a(q)) =q —1, q =1=1,2, . . . , (15)
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FICx. 1. Plots of the event-averaged lnG vs v for some typi-
cal values of q.

assuming that FI and Cl have the same intermittency in-
dices. We have calculated (a& ) from (14) in the two
branching models and verified the validity of (15). It
should be pointed out that the (a&) indices here are not
identical to the ones determined in Ref. 8, because it is
the horizontal analysis that is studied here, not the verti-
cal analysis considered there. Figure 2(a), however, gives
also (r(q)) for q (1; consequently, it goes beyond inter-

mittencyy.

From (r(q)) we have calculated (a ), which, when
used in conjunction with (r(q) ) in (11), yields the spec-
trum function f (a). In Fig. 2(b) is shown f (a) for both
models. Evidently, the fractal properties of the two mod-
els are quite different. Both curves are obtained by MC
calculation at various values of q, which are densely
spaced near the peaks. The curves satisfy the general
properties that the peaks occur at ao and that they are
tangent to the 45' line at a&. In the case of the gluon
model the peak is not exactly for q =0, an artifact due to
our procedure for selecting a tangent that exhibits self-
similarity. The portion to the left of a curve is for q & 0,
that to the right being for q (0. The points correspond-
ing to q =0, 1, and 2 are denoted by special symbols in
the figure. The corresponding dimensions
D~—:r(q)/(q —1) can be determined accordingly;" in
particular, we have the fractal dimension Do =f (ao), the
information dimension D&=f(a&), the correlation di-
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FIG. 2. (a) Event-averaged ~(q) at various q values deter-
mined at small hq apart, especially for 0&q &2. {b) The spec-
trum f(a) of a for two branching models. The dotted line
represents a 45' line, tangent to f (a) at a =a, .

mension D2 =2a2 —f (a2). We note that the information
conveyed by the intermittency analysis for q ~ 2
represents, for the gluon model say, only the very small
region of f (a) near a =0.2, since (r(q) ) is very nearly a
straight line for q )2. Clearly, the fractal analysis re-
veals much more.

IV. COMMENTS

The fact that f (ao) in Fig. 2(b) is very close to I means
that for the range of resolution in which there is universal
self-similarity, there are not too many empty bins since—f (ao
the number of nonempty bins JM, behaves as 5 ' . The
wider spectrum for the gluon model implies that its rapi-
dity distribution deviates more from homogeneity, which
is hardly surprising, since we already know that it is

sharply peaked at y =0. More importantly, f (a) gives a
quantitative description of the multiplicity fluctuation in
both the dense and sparse regions in rapidity space, cor-
responding to the a (ao and a )ac regions of f (a), re-
spectively. The difference in the shapes of the two curves
is due not only to the dissimilarity in the two models, but
also to the different values of Yo chosen for the two cases.
Thus in a comparison between theory and experiment it
is necessary to have the same Yo intervals. Since for the
calculation that we have done the values of Yo have been
chosen somewhat arbitrarily, the absolute shapes of the
f (a) curves are not to be taken seriously without specific
data in mind to be compared with. Phenomenology is
not the purpose of this paper. Our aim has been to de-
scribe a method of multifractal analysis in multiparticle
production and to demonstrate it by use of two models in
MC simulation. Our result shows that the proposed mul-
tifractal analysis can be a fertile ground for the study of
multiparticle production. Although other investigations
of fractal structures have also been suggested, ' ' the
quantitative study by MC simulation here renders the ap-
proach concrete as well as directly accessible to phenom-
enology.

The issue of statistical Auctuation has been addressed
in Ref. 2 and can be raised here with regard to the G mo-
ments and the spectrum f (a). The reader interested in
the subject is referred to Ref. 14 for an extensive discus-
sion. It is shown there how the statistical contribution to
the multiplicity fIuctuation can be filtered out.

To summarize, we have demonstrated that the mul-
tifractal analysis discussed here can extract the crucial
properties of multiplicity fluctuation and present the re-
sult in the form of a smooth function f (a). The method
should apply equally well to both experimental data and
MC simulation in the framework of a model. Thus this
field of study has the potential of becoming an arena for
effective confrontation between theory and experiment on
the physics of multiparticle production.
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