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Field-theory calculations of the pion mass to one-loop order
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We compute the pion mass to one-loop order in the SU(2) linear o and four-fermion model field

theories both in terms of the nonstrange current-quark mass m, „,. The answers in these two chiral-
symmetry schemes are the same and predict m, „,=34 MeU for two quark flavors.

Thirty years ago our first understanding of the result-
ing Nambu-Goldstone theorem for (almost) massless
pions' began with apparently independent chiral field
theories: The SU(2} linear o model (LSM} and the four-
fermion Nambu —Jona-Lasinio (NJL} model. These
chiral-invariant field theories demonstrate in different
ways how chiral symmetry may be broken spontaneously
or dynamically while still keeping the pion massless in
the chiral limit (CL). Such CL mechanisms were initially
worked out in the tree order for the LSM and to all or-
ders for the NJL model.

In this paper we study the SU(2) LSM and NJL models
to one-loop order, first demonstrating that the pion
remains massless in the CL as expected. By requiring the
otherwise general cr mass in the LSM to be fixed at the
NJL value m =2mqk (where mqi, is the quark mass), we
in fact show that the models become essentially
equivalent through one-loop order. Away from the CL
each model then gives the same value for the average
nonstrange current-quark mass in terms of the pion mass,
m, „,= —,', m „/m q„=34 MeV for two quark fiavors

Nf =2.
We begin with the SU(2) LSM, but first shift the cr field

vacuum expectation value from the spontaneously broken
value (o,iz) = f„%0 to—0 =o',id+f„. Then (tr) =0
signals the true vacuum and the new CL Lagrangian den-
sity has the interacting part

X;„,=g'o(tr +sr ) (g'l4f )(—tr +sr )

+g 4(~+t

rsvp

~)4 gfA4—
In (1) we take the fermion fields as quark operators. At
this quark level the CL couplings in (1) are

g =m klf =3.5, g'=m /2f =2.2 GeV, (2)

where f„=90MeV, m „=MN /3 =313 MeV, and we in-

voke the NJL value ' m =2mqk =626 MeV.
In the CL one requires m =0, not only to tree order in

the Lagrangian, but in higher-loop orders as well. This
null result in fact holds for the quark loop graphs in one-
loop order. For the quark "vacuum polarization" (VP)
and tadpole (qktad) pion self-energy graphs of Fig. 1, the
corresponding CL amplitudes M as q ~0 are

Mvp = —&4N. Nfg
o z

p
2 m 2

i4N, NI2g'g d p mq„
qktad 2 2m~ P mqk

(3a}

(3b)

+ g' 6g' . d p (4)

Using (2) and the partial fraction identity

mzp z(pz —m } =(p —m ) —p

the first integral in (4) contributes equally (but with oppo-
site sign) to the second and third integrals in (4). Then
again the coeScients of these latter two integrals
( —4+10—6,4+2 —6) both identically vanish and the
pion remains massless in the CL: M ]p p

0.
The vanishing of (3a} plus (3b} and (4) in the CL em-

phasizes the importance of the quark (and meson) o tad-
pole graphs in Figs. 1 and 2. They ensure chiral symme-
try of the theory, keeping m =0 to one-loop order.
Some texts on the LSM stress that o tadpoles signal a
clumsy expansion around the wrong (false) vacuum and
that these tadpoles can be eliminated by shifting to the
true vacuum with (tr ) =0. This statement refers only to
tree-level tadpoles generating an X-ao term, which in
our CL case automatically vanishes when m =0. These
latter tree-level tadpoles must not be confused with the
one-loop tadpoles of Figs. 1 and 2, which exist even after
the shift to the true vacuum.

For future reference one sets the scale of the formally

where d p =d p/(2n ) . With the Lagrangian couplings
(2), it is indeed clear from (3) that the pion remains mass-
less in the CL: Mvp+Mqktad=

Likewise the meson-loop graphs of Fig. 2 "conspire" to
keep the pion massless in the CL. More specifically,
these one-loop order graphs, respectively, give the CL
amplitudes

0
4

meson loops
p (p rn )—

+ 5g' 6g' . p
f m' p'
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FIG. 1. LSM quark loop contributions to the pion mass.

cur qk

m cur+4NN
p m k m

2m

2m

m (8b)

divergent loop graphs in (3) and (4}by introducing an ul-

traviolet cutoff A in the LSM determined by the CL
spontaneous chiral-symmetry-breakdown scale f =90
MeV. The latter is found from the quark loop of Fig. 3,
which leads to the decay constant f =mq„/g and the ex-
act gap equation

g41= i4N g—f
(p —m k)

(5)

g4
m 2 j4N g~2

p —m qk

(6)

We will make use of the gap equations (5) and (6) shortly.
Away from the CL for general N„Nf, the LSM self-

energy amplitudes (3) representing Fig. 1, but for

q =m %0, are

With g =3.5 given by (2), the cutoff A in (5) is found to be
A=2. 45m i, =767 MeV for N, =3, reasonably close to
A-m~=2mqk. Also for the latter cutoff, an approxi-
mate gap-type equation numerically holds for the squared
cr mass with Nf =2:

4m +4mcurmqk (10)

Identifying this net chiral-breaking mass shift with the
entire squared pion mass (the mass shift is the mass}
5Mt sM

=m, Eq. (10) then implies for Nf =2,

(1+—,')m~ =4m, „,rn „,
m, „,= —,', me/mq„=34 MeV .

The expression (8a) is worked out in the Appendix. Note
that the m, „, coefficient in (Sb) vanishes due to the ap-
proximate gap equation (6). In a similar manner one can
compute the meson-loop amplitudes of Fig. 2 for
q =m . The incremental shift of (4) again using
2f g'=m —m„and cutoff A-700 MeV is

0 2
5Mmeson loops (M M }meson loops (9)

The sign change of the m contributions in (8) relative to
(9) is due to the Feynman rule for fermion versus boson
loops.

Adding the amplitudes (8) to (9), we then obtain the net
pion self-energy shift in the LSM away from the CL to
one-loop order with m =2mqk and Nf =2,

5MLsM ™vp™qktad+5Mmeson loops

Mvp = —i4N, Nfg

d p(p —m rn„/4)—
[(p+ —,'q) —m ][(p—

—,'q)2 —m ]

i4N, N/ g4p m
Mqktad 2

2g'g
2 ~ 2m p —m

(7a)

(7b)

Note that the km factors in (Sb) and (9) essentially can-
cel [even if we do not employ the approximate gap equa-
tion (6)], leaving the —

—,'rn term due to the VP quark
loop in (8a) as controlling the nonstrange current-quark
mass scale in (11).

In order to support the above LSM results, we now
turn to the four-fermion NJL chiral model with the La-
grangian density

where now ' 2f g'=m2 —m guarantees that there is
no linear cr field term in the chiral broken Lagrangian (1).
Also the chiral-broken nonstrange quark mass is
m =m k+m, „, with m,„, being the nonstrange current-
quark mass. Then subtracting Eqs. (3) from Eqs. (7), and
using the gap equations, it is straightforward to show
that the incremental self-energy shifts for massive pions
are, for quark loops with Nf =2,

(12)

Unlike the LSM with elementary quark, pion, and o.

meson fields coupled in a chirally invariant manner, the
NJL theory treats only quarks as elementary. The m and
o mesons are then bound states with m =0 and
m =2mqk in the CL following from the NJL nonpertur-
bative gap equation depicted in Fig. 4:
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FIG. 2. LSM meson loop contributions to the pion mass.
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FIG. 3. Quark loop representation off„.
FIG. 5. NJL representation of the LSM coupling g' in one-

loop order.

mqk =i 2gN, N&4mqk
d p (13)

p mqk

quite similar to Eq. (6) in the LSM, but with g /m in (6)
replaced by 2g in (13). However, the LSM gap equation
for f„, Eq. (5), remains unchanged in the NJL model.
The two fit NJL parameters g and the invariant cutoff
A-700 MeV are fixed to yield the chiral-limiting quark
mass m k=313 MeV and pion decay constant f„=90
MeV as supported by the gap equation (5).

In order to link this NJL theory to the LSM, we first
point out that one-loop-order NJL graphs should be
identified with tree-order LSM couplings g and g'. More
specifically, Fig. 3 is a one-loop-order N JL graph
representing (5) which for the cutoff'of A=2. 2mqk =700
MeV requires

g =2m/QN, =3.6 . (14a)

Likewise g' in the NJL picture is the loop graph of Fig. 5,
which in the q ~0 chiral limit has the value

g'= —&4N, 2g m k
d p

(~' —m', k
}'

Xi y s(li —
g /2 —m )

' ] (17)

for q =m . Carrying out the trace in (17}and compar-
ing with the LSM VP amplitude (7a), one sees that

Mvp =g'J(m'„) .

The inverse of the pion propagator (15) is then

D„'(q —)=(g /2g)[1+2gJ(q )]

=(g /2g)+g J(q ) .

(18)

(19)

To extract the self-energy part away from the CL, we
associate (19}with the Schwinger-Dyson inverse propaga-
tor D„'(q )=D '(q') —II(q2). Hence, in this chiral

theory, the pion mass shift is the entire pion mass

—2gJ(0)=1. Then the pion propagator (15) has a pole
as q ~0, signaling m =0 in this (chiral) limit.

This Goldstone equivalence of m =0 between the
LSM and the NJL model also extends away from the CL.
Then the NJL bubble of Fig. 6 corresponds to the ampli-
tude

J(q ) = iN, N—If d p Tr[i y5( Ji+g /2 m—)

=2g f =2.2 GeV, (14b)
II(q =m )= 5D '=D —'(q =Q) —D„'(q =m )

2zD( z) g
1+2gJ(q )

(15)

where the quark loop representing J(q ) is depicted in

Fig. 6. In the CL with q ~0 one obtains, for general N,
and N~,

J(0)= i4N, NI f-
p mqk

(16)

Comparing (16) with the gap equation (13), one finds

where we have used the gap equation (5) with (2) to arrive
at (14b). We see that the NJL one-loop level g and g' in
(14) are quite close to the LSM tree-level couplings (2).
In fact, setting (14b) equal to m /2f from (2) gives
m =2mqk, so indeed the NJL model and the LSM are
intimately related.

Next we examine the pion mass in the NJL model.

Since now pions and o. mesons are bound states in the
NJL model one "sums bubbles*' to all orders. The pion

propagator in the NJL picture is then

=m
7r (20)

Since both g and g are constant in the NJL model, g2/2g
subtracts out when we apply the incremental shift (20) to
(19), giving, by virtue of (18) and the Appendix,

m' =g'5J(m' ) =5Mvp = --,'m'+4m, „,m „. (21a)

Solving (21a) for the nonstrange current-quark mass, we
are again led back to the LSM value (11):

&&m /mqk 34 MeV . (21b)

Our analysis is along the same lines as Ref. 6, which ties
the pion mass to a quark condensate that is somewhat
elusive in the NJL model. Instead we have linked the
NJL model closely to the LSM via Eq. (20), which is con-
sistent with LSM shift 5M =m

The important observation for the calculation of the
pion mass in these two models is that the o meson quark
tadpole negative contribution to the self-energy —m in
(Sb) almost exactly cancels the positive meson loop con-
tribution +m„ in (9). This leaves the quark vacuum-

Alqk

q

FIG. 4. NJL representation of quark mass. FIG. 6. NJL quark bubble Jwith pseudoscalar coupling.
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polarization (VP) contribution (8a) to control the net pion
self-energy in the LSM. But this VP amplitude Mvp is

directly related to the NJL quark bubble J in (18). Thus
the squared pion mass in the four-fermion NJL model is
also proportional to the same current-quark mass in (21)
as the LSM gives in (11}.

Second, we comment on the physical pion mass now
converted into the nonstrange current-quark mass scale
m, „,=34 MeV in (11) and in (21). It has long been ap-
preciated that current-quark mass scales are model
dependent. In the combined LSM-NJL model, the quark
masses do not "run" with momenta as they do in QCD.
Nonetheless we can make contact with the "physical"
constituent nonstrange quark mass which is typically
taken as 350 MeV. In our picture we can express this
constituent quark mass as the sum of the dynamical
(Mtv/3) part and the (nonrunning) SU(2) XSU(2) chiral-
breaking current mass just obtained:

con ~qk cur 313 MeV+34 MeV=347 MeV .

(22)

In our opinion, all proposed models for current-quark
masses should pass a constituent quark mass test analo-
gous to (22}.

A third point in favor of this combined LSM-NJL
chiral-symmetry theory is its compatibility with experi-
mental data. In particular, g-3. 5 in (2) and (14a) is
what one expects based on mN scattering with

g zz =3g& g —13.2, near the experimental value

13.4+0.08. Also g'=2. 2 GeV from (2) and (14b) is close
to the magnitude extracted from 5~rim. decay with the
measured width I =57 MeV suggesting ~g' -2.7 GeV
for a singlet-octet mixing angle 8- —15'. Finally, there
have been many measurements over the past decade of
the cr meson mass and width, finding m -600—700
MeV, I -400-800 MeV. These measurements must not
be ignored even though I —m . Indeed, we have shown
that such a scalar cr(600) particle is necessary to satisfy
the requirements of chiral symmetry.
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APPENDIX

P2 m2k
(Al)

Since m =(mqk+m«„) =mq„+2m, „„mqk, the partial
fraction difference in (Al) has one power of p —m qz can-
celing in the resulting numerator, with the denominator
in (Al) then reduced to (p —m k ) in the leading order.
The incremental VP self-energy can thus be expressed as

5Mvp = i 4N, Nf—g

pX
2 2 2

2W cur qk
(p —m „)

dpm „im~—,Nfg 2 z 3
(p —m &)

2m„

(A2)

The first integral in (A2) is evaluated from the exact gap
equation (5), while the second integral in (A2) coming
from the (p q) term in (Al) is (

—i32tr ). The latter can
be further simplified using g =4' /N, from (14a). Then
(A2) becomes, for Nf =2,

5Mvp ~ 2 2' cur 77l qk
] 2
4 7T' (A3)

which is equivalent to Eq. (8a).

Given the vacuum-polarization (VP) amplitude away
from the CL, (7a), and its chiral-limiting value (3a}, the
self-energy shift is

SMvp =Mvp —~vp0

= —i4N, Nfg

(p —m —m /4)
-z z

(p —m z+ m „/4) —(p q )
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