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Hadronic part of the muon anomalous magnetic moment: An improved evaluation

Lubomir Martinovic and Stanislav Dubnicka
Joint Institute for Nuclear Research, P.O. Box 79, 101000Moscotv, U.S.S.R.

and Institute ofPhysics, Electro Ph-ysical Research Center, Slovak Academy ofSciences, 84228 Bratislava, Czechoslovakia
(Received 15 June 1989; revised manuscript received 22 January 1990)

We have done a new evaluation of the lowest-order hadronic vacuum-polarization contribution
a„"" to the anomalous magnetic moment of the muon. The result is a„""=(7052+76)X10 " or
a„""=(7048+115)X 10 "depending on the way in which the experimental systematic errors of the
dominant two-pion contribution to a„""are taken into account. The more pessimistic error, though
numerically equal to the earlier result of Casas, Lopez, and Yndurain, is still an improvement over
the latter since it includes also the model error omitted in the previous analysis. The increased ac-
curacy of a„""has been achieved through the use of global analytic models of the pion and kaon
form factors for the two-pion and the two-kaon contributions as well as due to new experimental in-
formation mainly for the three-pion channel.

I. INTRODUCTION

Anomalous magnetic moments of leptons are tradition-
al quantities for an extremely detailed confrontation of
QED predictions with experimental results. Unlike the
electron g —2 factor, which to the precision so far
achieved is a pure leptonic effect, the consequence of a
relatively large muon mass is that the interactions of a
non-lepton-photon origin contribute to the total muon
anomaly a„at the level of 6 X 10 %. Because of precise
QED calculations up to four loops, ' yielding

a„(QED ) = ( 116584 800+30)X 10

as well as highly accurate measurements

a + =(116591000+1200)X 10
P

a = (116593 600&1200)X 10
(2)

this number is by far not negligible. In fact it is about six
times larger than the experimental uncertainty in the a„
value. The non-QED part of the muon anomaly is dom-
inated by the lowest-order hadronic vacuum-polarization
contribution a„""(Fig. 1). In spite of the gradual dimin-
ishing of the error of this component in recent years, ' it
is still known with an error four times larger than the er-
ror of the pure QED part. As has been stressed in Ref. 2,
making the theoretical value of the hadronic part of a„
more precise is crucial for the possibility of detecting in a
measured anomoly the one-loop weak-interaction contri-
bution evaluated as

(GWS) electroweak gauge theory.
In the present work we describe an attempt to diminish

the error of the lowest-order hadronic vacuum-
polarization contribution to a„. There are a few reasons
one could hope to achieve this goal. First, we have
developed global analytic models for pion and kaon form
factors' ' in recent years. The models formulated in
terms of physical parameters reproduce the data simul-
taneously in the spacelike and timelike regions. We use
these parametrizations for the evaluation of the two-pion
and two-kaon contributions to a„""including in this way
also the experimental information from the spacelike re-
gion. Another reason for a possible accuracy improve-
ment of the theoretical value of a„""is that, in addition to
the new data on pion and kaon form factors, significantly
better data on the three-pion e e annihilation have be-
come available recently due to new measurements in No-
vosibirsk. ' Last but not least, we believe that there are
possibilities to perform the error analysis in the individu-
al channels contributing to a„"" in a more quantitative
and systematic way than has been done in the previous
works. '"

We describe our treatment of a„""and the correspond-
ing error analysis in Sec. III, while the final results with
their discussion are given in Sec. IV. In the following

a„(weak) =(195+1)X 10 (3)

Since a new generation of g —2 experiments with consid-
erably improved precision is under consideration, it is
desirable to come up with a value of a„""as accurate as
possible in relation to the accuracy level of the QED con-
tribution, enabling one in this way to perform an impor-
tant independent test of the Glashow-Weinberg-Salam

FIG. 1. The lowest-order hadronic vacuum-polarization con-
tribution to the anomalous magnetic moment of the muon.
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section the results of the earlier calculations ' are brieAy
summarized.

a„""=(7070+60+170)X 10 " (KNO),

a„""=(7100+105+49)X 10 " (CLY),

(4a)

(4b)

where the first error is statistical, the second is systematic
and the abbreviations refer to Kinoshita et al. and Casas
et al." In what follows we characterize the main features
of both the analyses.

The first group of authors has calculated the contribu-
tions from individual channels of the reaction
e+e ~hadrons separately. The four-parameter
modified Gounaris-Sakurai pararnetrization of the pion
form factor has been used for the dominant two-pion
part. While the statistical error has been evaluated by
the covariance matrix of the fit (y /NDz =1.85), the sys-
ternatic error has been assessed from the deviation of the
found mean value of a„and the mean value obtained by
the trapezoidal-rule integration over the experimental
points. The result 150X 10 " is the main contributor to
the total error in (4a). The low-energy three-pion and
two-kaon parts of a„""were treated by the Breit-Wigner
formula for the co and P resonances. The statistical error
was estimated from the statistical errors of the measured
total and e+e widths. The systematic error has been
taken equal to the systematic error of both the widths.
The same error estimates were done also for the contribu-
tions of the J/P and f resonances, treated in the
narrow-width approximation. The contributions of other
channels have been obtained by the trapezoidal-rule in-
tegration over the experimental data for

II. PRESENT KNOWLEDGE OF
HADRONIC CONTRIBUTIONS TO 08

The hadronic part of a„has been known with gradual-
ly higher precision in connection with the improvement
of information on the cross section o(e+e ~hadrons)
from the experiments on e+e colliders in Frascati, No-
vosibirsk, and Orsay. The relevance of e+e annihila-
tion measurements to a„"" is based on the fact that
o(e+e ~hadrons) enters into the integral representa-
tion which serves as a basis for all calculations of a„""[see
Eq. (5) below]. The last two evaluations of a"„"have been
done in 1985 and read

4m, 5~, 6m, K+K, and K, Kz channels. The largest sta-
tistical error (-17%) was found for the three-pion con-
tribution and attributed to experimental uncertainties in
the P region. The total systematic error from this region
was given implicitly in the overall systematic error of the
a„""value (4b).

A great deal of Ref. 4 is devoted to the thorough nu-
merical study of the dominant low-energy two-pion con-
tribution to a„. It is performed in terms of a 15-
parameter pion form-factor representation written as a
product of the Omnes function and the inelastic part with
correct analytic properties, normalization and the asymp-
totic behavior. The inelastic part is parametrized in
terms of higher vector-meson contributions, a three-
parameter background function and a function providing
the asymptotic behavior of F (s). The equality between
the form-factor phase and the phase 5&(s) of I=J=1
partial mm scattering wave for s ~0.8 GeV is used in the
integrand of the Omnes function. Two methods for the
evaluation of the two-pion part a based on different pa-

1rametrizations of 5~(s) were applied to assess the sys-

tematic error of a „'. The value 27 X 10 " (compared to
150X 10 "of KNO) is an essential source of diminishing
the total error of a„ in Ref. 4. The mean value of a„and
its statistical error were obtained by the variational
analysis of the experimental data on the form-factor in-
elastic part.

Closing this section we note that though KNO have
found smaller statistical errors than CLY in all channels,
the latter authors were able to diminish the total error of
a"" for essentially two reasons: the use of QCD in the

P
high-energy region and due to taking the deviation of the
mean values of a„ in two methods as a measure of the
systematic uncertainty of the dominant two-pion part of
ap.

III. CALCULATION OF THE LOWEST-ORDER
HADRONIC VACUUM CONTRIBUTION TO a„

All calculations of a„""are based on the integral repre-
sentation

R =o(e+e ~hadrons)/o(e+e ~p+p, )
a 0 "(s)K (s)ds,

4+a 4
(5)

whose errors were taken as an error estimate for this part
of a vac

P
The second group of authors has reduced the essential

part of the errors coming from the region s & 2 GeV by
employing the 0 (a, ) QCD expression for the quantity R.
The error in this treatment comes from the uncertainty in
the value of the QCD scale parameter A and from the
neglected higher-order terms in R. The J/g and 7 reso-
nances were evaluated in the narrow-width approxima-
tion and regions of cc and bb thresholds by the experi-
rnental data on R.

The integration over experimental points has been used
also in the region 0.8 GeV &s ~2 GeV for the 2m', 3m,

where a is the fine-structure constant, o "(s) stands for
the cross section cr(e+e ~hadrons), and K„(s) is the
function coming from the triangle Feynman diagram for
a„corresponding to the exchange of a "particle" with the
propagator ig„„(q ——s )

a & x (1—x)dx
0 x +(1—x)s/m„

(6)

A decomposition of the integrand to partial fractions
leads to the explicit form
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a 1K (s)=-
m- Sy

—(1+S)—y 1 ——(1+S) ln 1—y 2

2 2 y (1+S)

(1—S)—y 1 ——(1—S) In 1—y y 2 Sy 2+ —y S
2 2 y(1 —S) 2

(7)

where S =&1—4/y, y =s/m„
As can be seen from Eq. (6), IC„(s) behaves as

am „/3ns for s » m „,suppressing in this way the contri-
butions from the higher-energy region.

Formula (5) can be derived by replacing the free pho-
ton propagator in the O(a) amplitude for a„by the exact
photon propagator, defined in terms of the (hadronic) po-
larization operator II"(s}. Writing a dispersion integral
for the latter and isolating the invariant function at the
tensor structure o„„k',which at k =0 defines the anom-
alous magnetic moment (k is the four-momentum of the
external photon), one obtains a„""as a superposition of
the amplitudes K„(s) with the weight function
ImII (s)/ms. The usefulness of this representation for
a„""follows from the well-known relation

ImII "(s)= = R (s),so "(s) 1

16m a
providing the possibility to employ rich experimental in-
formation from the reaction e+e ~hadrons for the cal-
culation of a„""via relation (5). As a consequence, the ac-
curacy of the result depends primarily on the precision of
the measured cross section for individual annihilation
channels. However, as we shall try to demonstrate, one
can non-negligibly reduce the errors of a„""by choosing
more realistic and adequate models for the cross sections
a "(s}.

In our calculation of a„""we have divided the integral
in (5) into the low-energy (s &so=2 GeV ) and high-
energy (s &so) parts. Following CLY we have used QCD
in the latter, including, however, the O(a, ) term to the
perturbative expansion of the ratio

R =o(e+e ~hadrons)/o(e+e ~p+p )

and confronting this calculation with the result obtained
by integration over experimental data on R (Sec. III B).
As to the chosen position of the point sp, it is dictated
from one side by the validity of perturbative QCD and
from the other side by the fact that we are able to esti-
mate the two-pion and the two-kaon contributions by
means of the reliable form-factor models in the whole re-
gion 4m &s ~sp in which the corresponding integrals
are saturated almost completely.

A. The low-energy region

We treat each channel in this region separately. In or-
der to achieve realistic and quantitative error estimates,
we include in our analysis the uncertainties coming from
the experimental input as well as the ones induced by the
models used for the cross section o."(s). The first type of
error consists of the statistical and systematic ones which

I

we combine in quadrature (see a discussion in the Intro-
duction of the Particle Data Group ). The total experi-
mental error of a„ is then computed from the covariance
matrices of the corresponding fits and represents in fact
an optimistic estimate. This point has negligible
significance for all channels except the two-pion one since
the latter contributes to a„""at the level of 70%. For this
reason we have calculated the systematic uncertainty for
the two-pion part also by another method which led to
the more pessimistic estimate (see Sec. IV}.

As already mentioned, we evaluate the model errors,
too. Their actual value in each channel will be deter-
mined from the deviation of the a„value obtained by in-

tegration over experimental points using trapezoidal rule
and by the integration based on the model parametriza-
tions.

According to the remark after Eq. (7) it will be the con-
tribution of the process e+e ~~+~ which will dom-
inate in a„"". Its cross section is given by

2 2
7TCK m„

o "(s)= F„(s}+ge'&
3s " m2 —s —im I

where P=(1—4m /s)'~ is the velocity of an outgoing
pion in the c.m. system (c.m.s.) and the second term in (9)
describes the part of the vr+m final state due to the
isospin-nonconserving e-meson decay. Parameters g and

P are the modulus and the phase of the p-co interference
amplitude. '

It turns out that it is of crucial importance to find suit-
able and adequate parametrization of the complex func-
tion F„(s). For example, the modified Gounaris-Sakurai
formula used by KNO which takes into account the in-
elastic p-e channel by the effective factor with three pa-
rameters fixed by hand does not give a fully satisfactory
description of the data. It manifests itself in a rather
large deviation of the final result for the two-pion part
a „ from the value obtained by direct integration over the
data points of cr . Problems with a simultaneous
description of the spacelike and timelike pion-form-factor
data (and data on 5,') indicate a possible inconsistency
also in the model of the CLY caused probably by the
choice of the parametrization of the inelastic part of
F (s). The nonadequate description of the data above 1

GeV is likely the reason why the authors compute the
contribution from the region 0.8 ~ s ~ 2 GeV directly by
means of the data instead of the model.

For our calculation of a„we choose the analytic
pion-form-factor model' which incorporates all well-
established properties of F„(s), particularly the analytic
ones, as precisely as possible. The model is formulated in
the conformally mapped cut-free variable 8':
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)1/2 ( )1/2
%=i

)1/2+( )1/2

q =
—,'(s —4m )', q,:—q(s, ),

(10)

where s, is the position of the square-root branch point
which together with the elastic branch point at s =4m,
corresponding cuts and complex-conjugated pairs of reso-
nance poles define the pion-form-factor analytic structure
in the complex s plane. As shown in Figs. 2(a) —2(c), the
conformal mapping s~8' transforms the first and the
second sheet inside of the unit disc and the third and the
fourth sheet outside of it with the simultaneous removal
of both the elastic and inelastic cuts. The only remaining
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FIG. 2. (a) The analytic structure of the pion form factor in

our model. In addition to the pairs of the p-meson poles also
the pole tp and the zero tz simulating the left-hand cut are
shown. (b) The interconnection of individual sheets on crossing
the real t axis: (I) below 4m', (II) between the elastic threshold
at 4m' and the inelastic threshold, (III) above the inelastic
threshold. (c) The W plane free of cuts with p, p', p" poles and
with Wp, 8 z simulating the left-hand cut.

singularities are the four poles corresponding to every
resonance and the pole at Wz =0.23 which, together with
a zero at 8 z =0.21, simulates the left-hand cut from the
second Riemann sheet. " Consequently, one can write a
formula for F (s) (Taylor series) refiecting its analytic
structure in the 8'plane, as

4

( W —1) ( W —Wz) gA„W"
0

F (W)=
( W —Wp )D ( W)D ( W)Dp ( W)

where the unknown coe%cients A„are real due to the
reality condition, the extracted factor (W —1) ensures
the asymptotic behavior —I /s, and

D ( W)=( W —W )( W —W* )( W —
Wp

'
)( W —

Wp
' ),

D, (W) =( W —W„)( W+ W„)( W —W„')( W+ Wb'),

U=p ~p

with W, (v =p, p', p" ) being the positions of the reso-
nance poles. Five coefficients A„can be expressed in
terms of the resonance masses m„widths I „and
coupling-constant ratios g„=f„ /f, (f„„and f„corre-
spond to the transitions v ~~+a and U ~y, respective-
ly) by requiring the correct normalization F (0)=1 and
the threshold behavior 5I-q for q~0 together with
taking into account a connection of vector-meson-
dominance (VMD) pion-form-factor representation with
formula (11) in the limit I,~0 separately for p, p', and
p" resonances (for a more complete treatment of the
model see Refs. 10).

Formula (11) has been compared with 245 data on F
(see Ref. 12, references therein, and Refs. 13 and 14) from
the spacelike and timelike regions. The fitted parameters
A, (i =1, . .. . , 9) were ReW, ReW ... ImW, ImW ~,
the coupling-constant ratios g, g, g, the position of
the effective inelastic threshold s„and the modulus of
the p-co interference amplitude g. The interference phase

P can be expressed by m, I, and m . ' ' The parame-
ters ReW and ImW of the resonance p'(1250) have
been fixed at the values corresponding to m ~

—1310
P

MeV, 1 -400 MeV which are typical for a few fits with
small modifications of formula (11). The presence of the
resonance p' is important for the quality of the fit; howev-
er, fixing its parameters is necessary due to the fact that
data points are rather scattered in this region and making
m ~ and I ~ free would introduce rather strong correla-
tions to the covariance matrix.

The results of the best fit (transformed to the s plane)
are shown in Table I(a). A good simultaneous description
of the spacelike and timelike data has been achieved with

y /HFDF=1. 16. Numerical evaluation of the integral (5)
with K, o, and F given in (7), (9), and (11)yields

a„"= (4989+41)X 10 (12)

where the total experimental error 41X10 " has been
obtained by the formula

Ba
o. =gC;,DD, , D;=

EJ I
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TABLE I. (a) The results of the fit of the pion-form-factor model (11). (b) The results of the fit of the kaon-form-factor model (15).
s,'„,t and s,'„,

&
are the effective inelastic thresholds. (c) The results of the fit of the cross section (20). Note: In this table only the sta-

tistical errors are shown.

m =760+4 MeV
mz- =1743+110 MeV
s& =1.42+0.06 GeV

m+ =1019.4%0.7 MeV

m+ =1660+21 MeV

m~ =1315+183 MeV

mz- =2114+140 MeV

s,'„,~ =1.6820.03 GeV

m„=781.8+0.3 MeV
m+ =1019.6%0.3 MeV

(a)

I =143%3 MeV
I -=280+96 MeV
/= 0.0146+0.0006

(b)

I @=4.3+0.8 MeV
I q, =158+37 MeV
I =245+167 MeV
I ~-=150+104 MeV
s joe] 1 7220 04 GeV

(c)

I „=9.5%0.8 MeV
I @=4.3%0.7 MeV

gp
= 1.19+0.03

gp
= —0.06+0.02

gp
= —0.40+0.06

f~Kg/fg =0.33+0.01

f„Kg/f „=0.2020.01

f „g/fr=0. 57+0.01

f -Kg/f p- = —0.04+0.01

o(co)=1519+120 nb
0(4)=623+92 nb

a„"=(4906+24) X 10 (14)

From the difference between (12) and (14) we estimate the
model error to be about 42X10 ". We recall that the

I

C,J is the nine-by-nine external covariance matrix of the
fit as given by the Hesse subroutine of the MINUIT pro-
gram (with the parameter UP adjusted to nine parame-
ters). The values of diagonal matrix elements have been
checked by the MINOS subroutine. Evaluating the same
integral by the trapezoidal rule (the CERN program
TRAPER} we find

same method has been used by KNO to estimate the sys-
tematic experimental error with the result 150X10
Adding our two errors in quadrature gives for the total
error of the dominant two-pion part of a„""a value of
59 X 10 " (see a discussion in Sec. IV, however).

In principle the same procedure can be applied to the
two-kaon contributions. A suitable generalized VMD
model for the charged and neutral kaon form factors with
correct analytic properties has been derived in Ref. 16.
The final formulas for the isoscalar (s) and isovector (v)

parts read

p2
FK( V)=

p2

f„KK ( W~ —W„)( W~ —W„')( W~ —W, )( W~ —W,')
. .. f. (w —w„)(w —w,')(w —w, )(w —w,")FK(w)=

fgKK ( VN V, )( V~ —V, )( VN
—V, )( VN

—V,')
fs (V —V, )(V —V,')(V —V, )(V—V;)

1 —W

(15a)

(15b)

fUKK 1

2
' (16)

which are the consequences of the normalization of Fz,
FK. As can be seen from Eqs. (15a) and (15b), each reso-
nance is represented by four poles lying in the complex
V, W planes (i.e., I „%0,1,%0) with

V, =V, ', W„=W„' or V, = —V„W„=—W„(17)

The variable W is the same as in (10); the variable V is
defined in a similar way by means of the three-
momentum r =

—,'(s —9m )' . An effective inelastic
threshold in the r plane is assumed analogously to q& in
the q plane. The points VN and WN correspond to the
normalization point s =0. The factors in front of the
sums in Eqs. (15a) and (15b) give the asymptotic behavior
-s ' to the form factors. The ratios of the VMD cou-
pling constants are restricted by the conditions

depending on the relative position of the resonance and
the effective threshold. Finally, the form factors of the
charged and neutral kaons are given by linear combina-
tions of Fz and Fz.

Fg+Fg F+0—Fg +g (18}

The number of free parameters of the model can be re-
duced to 14 by Eq. (16) and by fixing m, I, m„, 1 at
their table values as p(770) and co(783) lie in the unphysi-
cal region and one could hardly expect to be able to
determine them with a su%cient accuracy from the fit.
The optimal values of the fitted parameters (two inelastic
thresholds, four ratios of coupling constants and posi-
tions of four resonances in complex V and W planes}
from the analysis of all 138 available data (see Ref. 16) of
the charged and neutral kaon form factor are given in
Table I(b). The data are reproduced very well
(g /NDP = 1.02) for s )0 as well as for s (0. Since kaons
are pseudoscalars, the cross section of the reactions
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2

z in
m~I ~

m&
—s is' I—&(s)

(20)

where o (co) and o (P) are the cross-section values in the co

and P peaks and I,(s}=I';s ~ m;, i =ai, P. To take
into account the co-P interference with negative relative
sign is important for the correct description of the data in
the region between the two resonances and above P. '

We have used essentially the same data above 0.81 GeV
as KNO and CLY with the addition of the 17 data points
from Ref. 19. On the other hand, for s &0.81 GeV new

e+e —+%+K, EsKL is completely analogous to (9)
(without the second term, of course} and the rest of the
analysis goes as for the pion contribution. The results are

a =(223+21+3)X 10
(19)

a =(185+19+3)X 10P

Since the data on F 0 do not cover the whole P-meson re-
K

gion, the model error of the K+KL contribution has been
estimated by the corresponding error of the K+K one.
The model error is very small reflecting the reliable
description of the data by the parametrization [(15a}and
(15b)].

Further important contribution to a„"" is the three-
pion one. It is this portion which is determined in our
work with substantially improved precision and contrib-
utes significantly to the reduction of the total error of
a„"". The improvement comes from the two sources:
new precise measurements' of the e+e ~a+m. m.

cross section in the ~ region performed recently in Novo-
sibirsk and, to some extent, from the use of Breit-Wigner
formulas to fit the data on o ". Though KNO have also
used Breit-Wigner parametrizations for the co and P reso-
nances, they have performed error estimates by means of
the statistical errors of the measured total and e+e
widths of co and P and not by fitting the experimental
cross sections. On the other hand, CLY integrate over
experimental data with a large resultant statistical error
of -17%.

For our calculation of the three-pion contribution we

employ the Breit-Wigner parametrization of the form

m I„
cr (s)= &o'(co)

z i&&m —s —is'~ I „(s)

high-quality data from the experiment with cryogenic
magnetic detector in Novosibirsk have become available
recently. ' In the experiment a new method of resonance
depolarization for the beam energy calibration has been
applied for the first time. This procedure led to
significant suppression of the systematic errors. Since the
statistical errors of the measurement have also been re-
duced in comparison with earlier experiments and the re-
sults' are fully compatible with the world averages, we
take only these data for s &0.81 GeV . The optimal
values of the fitted parameters obtained by comparing
formula (20} with 76 data points from the interval
9m s 2 GeV are shown in Table I(c). Evaluation of
the three-pion portion of the integral (5) by means of the
CERN program RIWIAD using the Breit-Wigner cross
section (20) with resonance parameters from Table I(c)
yields

a„"=(569+22+18)X 10 (21)

The first error is obtained from the covariance matrix of
the fit based on data with combined errors and is dom-
inated by the statistical uncertainties. The model error is
rather large because we have included in it the contribu-
tion coming from our ignorance of the experimental be-
havior of 0. "below 0.5 GeV . The value 16X10 "was
estimated from the difference of a„values obtained by
extrapolating the model curve (20) to the three-pion
threshold and by the TRAPER integration over the experi-
mental cross section starting at the point s =(0.7502
GeV).

The last contributions to a„""from the region below 2
GeV come from the processes e+e ~4m, sm. , 6m. We
perform TRAPER integration for these components of
a„"". One could in principle try to fit the data by the
Breit-Wigner functions in 2m+2m and m. ~ m. +m. chan-
nels, but the intermediate resonance states are not com-
pletely clear for these processes' ' ' and, moreover, for
our purposes we need only a part of the corresponding
cross sections below the peak. We use the same data as
in Refs. 2 and 4, supplemented, however, by important
new measurements' for both the four-pion channels.
The results are displayed together with all other low-

energy contributions in Table II where the combined ex-
perimental errors for the multipion channels are given.
The systematic error of 10% has been added in quadra-
ture to the statistical TRAPER error.

TABLE II. Contributions from the region s (2 GeV' to 10"a„.
Channel

Kso HALO

m'7T+7T

m'm'%+AT

m+7T %+der

5m. , 6m.

Mean value

4989

223

185

569

140

55

Experimental error

41

21

19

22

14

6

2

Model error

42

3

3

18

Total 6168 46
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B. High-energy region

As noticed by CLY, one can considerably reduce the
errors of the integral (5) coming from the region s) 2
GeV by considering the QCD expression for the quanti-
ty R instead of experimental data from individual chan-
nels. Really, KNO, who have used data, quote a rather
large systematic error, for example, for the contribution
of more than two hadrons (43X10 "). On the other
hand, there is no systematic error if one uses QCD. In
our opinion, however, it is necessary in this case to check
that the results obtained with the help of the QCD ex-
pression for the quantity R and by integrating over exper-
imental data on R really coincide. In this section we de-
scribe our work in this direction.

The experimental information on R (s) is rather rich.
In the analysis we use data from 21 different experiments
published during the last ten years as collected by
Marshall. The author has performed a simultaneous fit
of these data sets to reliably determine the strong cou-
pling constant a, . One of his conclusions is that three
data sets should be renormalized modestly in order
to be consistent with the remaining sets. We follow this
prescription in the evaluation of the high-energy contri-

bution to a„"" by means of data on R. The result of
TRAPER integration is

a„"=(817+13)X 10-"

and the effect of the downward renormalization is to de-
crease the a„value by 55 X 10 ". Of course, the above
result concerns only the continuum. The contributions
from the J/g and T resonance families should be added.
In the narrow-width approximation they are expressed as

+ res
3I „

E„(m„,), (23)

where I „is the e+e width of a given resonance, whose
statistical and systematic errors induce the corresponding
errors of a„'". The total contribution from the J/f and Y
resonances is 71X10 "(see Table III).

In the QCD calculation of the continuum contribution
we have excluded the threshold regions 9.61-20.21 GeV
(cc ) and 81.0-196.0 GeV~ (bb ) where the data have to be
used. The systematic error of a„ from these regions can
be taken equal to the systematic uncertainties of the mea-
surements, i.e., approximately 8%. The QCD expression
for R (s) calculated recently to 0 (a, ) is

2
a, (s) a, (s)

R (s)=3+ Qf 1+ +(1.986—0. 115n )
f m'

3
a, (s)

+(70.985 —1 200nf . 0 005—nf .)

'3.
a, (s)

g Qf X 1.679
'll

(24)

where Qf is the electric charge of the quark of Savor f.
It is interesting that the coefficient of the 0 (a, ) correc-
tion is unexpectedly large, affecting significantly the value
of the extracted QCD scale parameter AMs, where MS
denotes the modified minimal-subtraction scheme. The
effect of this next-next-to-leading term on the value of a„"
may therefore also be non-negligible. Indeed, we have
found, for example, for the contribution from the region
2&s (9.61 GeV~,

O(a2):a PR =(562~8) X 10-11

O(a, ):a„=(586+17)X 10
(25)

As can be seen the inclusion of the 0 (a, ) correction into
R increases t~ice the error induced by the uncertainty of
the parameter A (for the latter we took A=150%50
MeV). Sumniing up all contributions from Table III, we
find

TABLE III. Contributions from the region s & 2 GeV' to 10"a„.
Interval (GeV )

and method

2 s (9.61
QCD
9.61 ~s (20.21
cc thres. , data

20.20~s ~ 81.0
QCD
81.0~ s ~ 196.0
bb thres. , data
s) 196, QCD

g, Y resonances

Mean value

586

90

19

20

71

Stat. error

17

Syst. error Model error

Total 884 18
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a„"=(88421829+2)X 10 (26)

where the first error is statistical and is dominated by the
contribution induced by the uncertainty in the parameter
A [see Eq. (25)]. The second error comes mainly from the
cc and bb threshold regions. Its magnitude is estimated
from the systematic errors of the data on R which are
about 8%. The model error is negligible, since after the
slight renormalization of three R data sets and the in-
clusion of the third-order term in (24} both the methods
used yield the same value of a„".

We would like to finish this section by a few comments.
First, notice that the statistical error in (26) comes from
the QCD evaluation and is larger than the error of (22)
obtained by means of data. The real advantage of using
QCD rests in eliminating systematic error of the high-
energy part of a„. As already mentioned, the coefficient
of the O(a, ) term of R (s) is unexpectedly large and it
would be of crucial importance to know also the next
term in the perturbative expansion to be sure that the
QCD prediction for the quantity R is reliable. However,
it has been argued in Refs. 26 and 22 that the coefficient
is large not because the asymptotic nature of the QCD
series has started to manifest itself but, rather because the
second-order coefficient was accidentally small. This
conjecture is supported by the fact that the fits with the
inclusion of the 0 (a, ) term gave more consistent results
for the parameter A than the second-order fits. This is in
accord with our finding that the integration over the
third-order QCD expression (24} and the integration over
data yield almost identical results. A more prudent point
of view is that the QCD calculation is unreliable. In this
case one should forget the QCD result (24) and include
also the systematic errors of the data which induce the
systematic error of a„ofabout 60X 10

tion to a„""gives the two-pion part. Consequently, its er-
ror dominates in the total error. We have used a stan-
dard prescription of the Particle Data Group to add the
statistical and systematic errors of the data in quadrature
before the fitting procedure. This has led to experimental
uncertainty in the a„"value equal to 41 X 10 ". A more
prudent procedure of taking into account the systematic
errors of the F measurements would be, for example, to
shift the data upwards and downwards by their systemat-
ic error and to estimate a „"from the two fits to the shift-
ed data. We have obtained in this way for a systematic
part of the uncertainty of a„a symmetric value
91 X 10 ". The more pessimistic result is therefore

a„""=(7048+105+46)X 10 (28)

a„(HH) =( —41+7)X 10 (29)

the new value of the total anomalous magnetic moment
of the muon will be

We have done independent integrations directly over
experimental data in the channels where models have
been used. It was possible in this way to use the devia-
tions of the two methods as a measure of possible model
dependence of our results. The fact that the model errors
are sufficiently small gives a certain credit to the final re-
sults on a„"". Further diminishing of the errors of the
two-pion and three-pion components of a„""will be possi-
ble when the recently proposed precise measurement of
a(e+e ~hadrons) at low energies will be realized.

Taking into account the QED and weak contributions
as quoted in the Introduction together with the new value
of higher hadronic (HH} contributions

IV. SUMMARY AND CONCLUSIONS

Our final result obtained by summing up all entries in
Tables II and III is

a ""=(7052+60%46) X 10

or

a„=(116592 006+82) X 10 (30)

where the errors have been added quadratically. The first
error in (27) is induced by the combined uncertainties of
the data used in our analysis and the second one is our es-
timate for the total model error. Comparing (27) with the
previous results (4a) and (4b) we see that while our cen-
tral value is very close to them confirming thus the
overall consistency of all three results, the real improve-
ment over the last analysis rests in diminishing the total
error by 30% down to the value 76 X 10. " The increase
in the accuracy of a„""comes from the low-energy region.
First, the statistical errors of the two-pion and two-kaon
contributions have been reduced by a factor of 1.5 and 2,
respectively, due to the use of rather accurate global ana-
lytic models of the pion and kaon electromagnetic form
factors. Second, new precise experimental data on the
cross section o(e+e ~m n+~ ) analyzed by means of
the interfering co and P Breit-Wigner amplitudes led to a
significant reduction of the errors of this channel.

As has been stressed several times, the main contribu-

a„=(116592002+119)X 10 (31)

where the latter corresponds to the more pessimistic esti-
mate as described above. The total error is 42% (or 61%)
of the one-loop effect of the weak interactions. This
creates a real chance to detect this contribution (and also
the possible one of the same order of magnitude predicted
by some superstring-inspired models ) in the experimen-
tal value of a„after the improved g —2 measurements
will be accomplished.
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