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Unitarity constraints on CP nonconservation in Higgs-boson exchange
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Bounds are derived for the dimensionless factors that enter in the violation of CP invariance in
Higgs-boson exchange. In particular, for the class of theories with two scalar SU(2) XU(1) doublets
[plus any other scalars whose expectation values do not break SU{2)X U(1)], the magnitude of the
parameter Im Z&, which appears in the dominant neutral-Higgs-boson-exchange contribution to the
neutron electric dipole moment, is bounded by 2 (r + r )', where r is a ratio of the magnitudes of
scalar vacuum expectation values. It is shown that this bound can actually be reached in realistic
models.

I. INTRODUCTION

It was recently pointed out' that there is a mechanism
in all but the simplest versions of the standard model that
can produce an observable value for the neutron electric
dipole moment even if the Higgs particles are quite
heavy. This is because integrating out the heavy particles
(such as the top quark and neutral or charged Higgs bo-
son) in such theories can produce a dimension-six CP-
and P-nonconserving term in the effective Lagrangian,
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[Here G,„„is the gluon field-strength tensor, d'P " is the
usual totally antisymmetric tensor with e ' =+1, and

f,b, is the totally antisymmetric Gell-Mann SU(3} ten-
sor.] Unlike other CP- and P-nonconserving operators
that arise in this way, the coeScient C is suppressed by
only two inverse factors of heavy-particle masses, and not
at all by factors of light-quark masses or small mixing an-
gles. At 5rst it was thought that the effects of this
operator at low energy are enhanced by QCD renormal-
ization efFects, and it was concluded on this basis that if
CP and P were maximally violated in Higgs-boson ex-
change, then the contribution of (1) to the neutron elec-
tric dipole moment would be 4-5 orders of magnitude
greater than present experimental bounds. Similar re-
marks were made regarding the effects of possible new
gauge bosons, sparticles, or singlet quarks. Since then
several independent calculations have shown that apart
from the running of the strong coupling-constant g, in
the factor g, in C, what had been thought to be an
enhancement is actually a suppression. Questions have
also been raised regarding the validity of such one-loop
calculations of the QCD correlation factor. It now seems
clear that one cannot use present limits on the neutron
electric dipole moment to rule out a maximal CP noncon-
servation in scalar propagators for Higgs-boson masses in
the range of several hundred GeV, but that such a mech-
anism acting through the operators (1) can produce a
neutron electric dipole moment at a level that could show
up in the next round of experiments. Although QCD
correction factors have not yet been calculated for all

competing operators, it seems that the largest contribu-
tion to the neutron electric diple moment from Higgs-
boson exchange still arises from the operator (1},because
this is the only operator that is only suppressed by two
factors of heavy-particle masses.

Of course, the coefficient C in any model will be pro-
portional to whatever imaginary parts of amplitudes pro-
duce the CP and P violation in the heavy-particle ex-
change. For instance, in Ref. 1 it was found that the con-
tribution to C of the neutral-Higgs-boson-exchange dia-
gram of Fig. 1 is proportional to an unknown dimension-
less quantity ImZ2. Therefore, in order to say what we
mean by maximal CP violation" and to get an idea of
the likely value of the neutron electric dipole moment
produced by these heavy-particle exchanges, we need to
ask what is the best upper bound that can be set on quan-
tities such as ~ImZ2~.

We shall first discuss scalar exchange in a general con-
text, and will then turn to the special case of theories
with two scalar SU(2) XU(l) doublets, and with arbitrary
numbers of scalar singlest and/or scalars with zero vacu-
um expectation values. In such theories, CP nonconser-
vation can occur in the propagators only of the neutral
Higgs bosons. Actually, the contribution to C from
charged-Higgs-boson exchange is less suppressed' by
QCD-correction factors than for neutral-Higgs-boson ex-
change, so the two-doublet models are not those that pro-
duce the largest neutron electric dipole moments. How-
ever, the two-doublet model is still interesting as an ex-
ample of CP nonconservation. For instance, it has re-

FIG. 1. Contribution of neutral-Higgs-boson exchange to the
three-gluon CP-violating operator (1), involving Im A2.
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cently been pointed out that, through effects analogous to
(1), neutral-Higgs-boson exchange can produce surpris-
ingly large contributions to the electric dipole moment of
the electron. " The results for the two-doublet model ob-
tained here can be usefully applied to these effects. In
any case, the methods described here can serve as a guide
to the analysis of more general models.

II. SCALAR EXCHANGE: THE GENERAL CASK

+

2
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FIG. 2. Contribution of neutral-Higgs-boson exchange to the
quark electric dipole moment operator, involving Im A.

We start with a general SU(2) XU(1} electroweak
theory, involving an arbitrary number of scalar multiplets
belonging to arbitrary SU(2)XU(1) representations. In
order to prevent excessive rates of K,E or D,D os-
cillation in a natural way, we assume' that there is some
discrete symmetry that only allows all charge —

—,
' quarks

to get their masses from interaction with just one scalar
doublet, say P&, and that likewise only allows all charge —,'
quarks to get their masses from just one scalar doublet,
say Pz. The interactions of quarks with scalars is then

1 +~ Oe+ Y (DR mD V UL )41 (DR mDDL )41
1 1

tion to the coefficient of the quark electric dipole moment
operator involving ImA (q }, while the Feynman dia-
grams' of Figs. 3—6 yield contributions to the coefficient
of the four-gluon operator GGGG involving ImAo(q ),
ImAo(q ), ImA, (q ), and ImAz(a ), respectively, and,
of course, Im A &(q 2) also enters into the coefficient of the
three-gluon operator (1) through the Feynman diagram
of Fig. I.

We see immediately that if P, and P2 are proportional,
then the amplitudes A and Ao are real, while the other
amplitudes are all equal:

1 o 1 +
( UR m U UL )p2+ ~

( U„m U VDL )tI 2 +c.c. ,
2 2

ImA ImAO 0

Ao= A1=A2 .

(10)

(3)

At this point, we leave it an open question whether P,
and $2 are proportional or independent scalar doublets.

With this interaction between quarks and scalars, CP
violation will show up in scalar exchange between quarks
through imaginary terms in one or more of the quantities

1 (y'y+" ) = A (q')
1 2

(4)

(2)

where U and D are the quark triplets (u, c, t) and (d, s, b),
respectively; m U and mD are the corresponding real diag-
onal quark mass matrices; V is the unitary Kobayashi-
Maskawa matrix; and A, ; are the scalar vacuum expecta-
tion values

A(q )=g

Ao(q )= g

v'ZGF Z„
2 2

q +mH. „
&ZG,Z,„
q +m&„

(12)

(13)

In this case, charged-Higgs-boson exchange automatical-
ly conserves CP, but CP and P nonconservation can still
arise in neutral-Higgs-boson exchange through imaginary
terms in the amplitude Ao. On the other hand, if P& and

Pz are independent, then in general CP and P nonconser-
vation can arise in charged- and/or neutral-scalar ex-
change, through imaginary terms in any or all of the five
amplitudes (4)—(8).

The tree-approximation amplitudes (4)—(8) may in gen-
eral be expressed as sums over mass eigenstates:

1 2

(5) Ao(q )= X

A, (q )= g

~ZG, Z,„
q +mHn

&ZG,Z,„
+ H

(14)

(8)

where (yg) is for any pair of scalar fields g, g an abbre-
viation for the momentum-dependent quantity

&qq), —= J d'x & T[~(x)q(O)])„„e-'~"

yo 4,0

evaluated in the zeroth order of perturbation theory. For
instance, the Feynman diagram of Fig. 2 gives a contribu-

FIG. 3. Contribution of neutral-Higgs-boson exchange to the
CP-violating four-gluon operator GGGG, Im Ao.
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FIG. 4. Contribution to GGGG involving Im Ao.
FIG. 6. Contribution to GGGG involving Im A2 ~

~2G,Z,„
A2(q )= g

n q™Hn

(16)

where mH „and mH„are, respectively, the nth char ed-
and neutral-scalar mass eigenvalues, and the factor 26+
has been inserted to make the coefficients Z„, etc., dimen-
sionless. The contribution of scalar exchange to any ob-
servable will then be given by a corresponding sum. For
instance, the exchange of a neutral scalar makes a contri-
bution to the coefficient C in Eq. (1) of the form'

C =(4n ) '+26Fg g h (m, /mH„)lmZ2„, (17)

where h is the function~

h( )= p' id id u'x'(1 —x)
[o x(1—ux)+(1 —u)(l —x)]

(18}

QZO„= gZ, „=QZ2„=0. (19)

Also, if P, and Pz are distinct then the equal-time com-
mutators [$2+,P,+'] and [Pz, P i'] also vanish, so the
same applies to Z„and Zp„.

g Z„=g ZO„=O .
n n

(20)

Equation (20) is not true if P, and P2 are proportional,

yO yO

FIG. 5. Contribution to GGGG involving Im A &.

and (=10 is a @CD factor. ' (For charged-Higgs-
boson exchange h is somewhat larger~ and g is an order
of magnitude larger. '

)

The Z coefficients in (12)—(16} satisfy important sum
rules. Invariance under SU(2) X U(1), together with what-
ever discrete symmetry enforces Eq. (2), tell us that the
kinematic part of the scalar Lagrangian is a linear corn-
bination of a„p,a"p, and a„/zan'$2, plus terms depending
only on any other scalars. It follows that the equal-time
commutators [Pz,P, ], [P,, P, ], and [Pz, $2] all vanish, so
that

but in this case Eq. (10}tells us that there is no CP viola-
tion in A or Ap anyway.

From these sum rules, we see that if all charged or neu-
tral scalars have equal mass, then there is no CP violation
in charged- or neutral-scalar exchange. There is no
reason to expect such a degeneracy. Instead, we will later
consider the simplifying assumption used in earlier
work, ' that one mass eigenstate (presumably the light-
est} dominates the effects of Higgs-boson exchange. In
this approximation, we can drop the sums and the indices
n, with m&. and m& then understood to be the masses of
the dominant-charged and neutral-mass eigenstates, and
Z Zp Zp Z, , and Z2 to be the coefficients of the dom-
inant terms in (12)—(16).

III. TWO-DOUBLET THEORIES

If the electroweak SU(2) XU(1) symmetry were broken
by the vacuum expectation value of a single SU(2) XU(1)
doublet, then in unitarity gauge there would be just a sin-
gle real scalar coupled to the quarks, and CP would be
automatically conserved in Higgs-boson exchange. We,
therefore, turn immediately to the next-simplest case, in
which SU(2}XU(1) is broken by the vacuum expectation
values of just two independent scalar doublets. In addi-
tion to these two doublets, the theory may involve any
other scalars whose vacuum expectation values do not
participate in breaking SU(2) XU(1), either because they
are gauge singlets, or because for one reason or another
they have vanishing vacuum expectation values.

We must distinguish between two subcases, in which
the doublets P, and Pz that give mass to the charge —

—,
'

and charge —', quarks are or are not independent. We
shall concentrate on the case where P, and $2 are in-

dependent, and then briefly describe the results found for
the other case.

If Pi and $2 are independent, then these are also the
only two scalar doublets whose vacuum expectation
values break SU(2)XU(1). We will normalize then so
that the kinetic Lagrangian reads

a„yta~y, a„y,'a~—y,+— (21)

where the ellipsis refers to fields other than P, and P2.
[Recall that whatever discrete symmetry enforces Eq. (2)
will also rule out any off-diagonal terms a $t2a"pi orp 2 1

a„Q,a"p2, or any kinematic terms connecting p, or p2 to
other scalar doublets. These kinematic terms are all
"hard, " so the form of (21) would be unaffected if the
discrete symmetry are allowed to be softly broken, by
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ignore the presence of possible cuts in the q plane, along
which these propagators would be complex, because we
will eventually be evaluating the propagators in the tree
approximation. ) Evidently the four CP-violating ampli-
tudes are subject to two linear relations, which may be
written as

terms of dimensionality 3. ] For fields normalized in

this way, the Fermi coupling constant is given by

v'ZG, =
l~g I'+ 1~21'

(22)

The unitarity gauge condition here reads'

o'
Im g ~ t ~p =0

n=1 n

2

[ImAO(q }+ImAO(q )], (34)
1

ImA, (q )=—
(23}

2

ImA2(q )= [ImAO(q ) —ImAO(q )] .
i2

for all SU(2) XU(1) gauge generators t In.detail, this is (35)

~i 0i++~2 42+ =o

lm(z;yo, +X;y', ) =O .

(24)
We will now apply the approximation discussed in the

previous section of taking the effect of scalar exchange to
be dominated by a single neutral-scalar particle of mass
mH. In (30)—(33},we then replace

(25)

We see immediately that in this sort of theory the
charged-Higgs-boson amplitude (4) is real,

A (q2) (y+y+e )2 (c.c, ),=
q +mH

(36)(26)

with u, real. This gives the A amplitudes in the form as-
sumed earlier:

and so there is no CP violation in the exchange of a single
charged Higgs boson between quarks. On the other
hand, Eq. (25}provides us with just one constraint on two
complex neutral fields, so it leaves us with three degrees
of freedom, and plenty of opportunity for CP violation.
This condition allows us to write the complex neutral sca-
lars in terms of three real scalars 4„:

&I~, I2+l~, l'
' '

Ql~ I'+l~ I'

&2GFz,

q +m

~2G,Z,
+m

&zG,z,
q +m

v'zG, z,
q +m

Ao(q )= (37)

Ao(q )= (38)

A, (q )= (39)

A2(q )= (40)

These new fields are canonically normalized, in the sense
that the kinematic Lagrangian (21) in unitarity gauge is
just

Using (36) in (30)—(33), and comparing with (13)—(16)
and (22), we see that the CP-violating amplitudes in
(13)—(16) are

3

g (B„4„)(&"4„)+ (29) 2 '1/2
1 1

ImZ = —1+
2

n=1
Q1Q3

as usual for real scalars. Inserting (27) and (28) in Eqs.
(5)—(8) gives the CP-nonconserving parts of the neutral-
Higgs-boson-exchange amplitudes as

2 '1/2

+—1+1 2

2
(41)Q2Q3

Ix, l(e,e, &, +la, l(c,e, &,
ImAO(q )=

21 ~t~21 v'I ~( I'+1~2I'
2 1/2

1
(30)

1
ImZ = —1+

2

2'1/2
1 21+
2

Q Q2 3 7

1

Ix, l& e,c,&,
—Ix, l& e,c,&,

ImAO(q )=
21~ ~ lv'l~ I'+l~ I'

(31)
(42)

—Ix, l&c,e, &,
ImA, (q )=

I~, I'v'l~, I'+ I&,l'
2 2+ Q]Q3
1 1

(32)
(43)

Ix, l(e,e, &,
ImA~(q )=

1~21'v'l~) I'+ l~, l'
1 1+ Q 1Q3
2 2

(33)
ImZ2 =

(We are using the fact that (4,4~) is real and sym-
metric in a and b, which follows from the reality of the
4, Lorentz invariance, and translation invariance. We

Also, because the fields are chosen to give the kinematic
Lagrangian the form (29), the u's are subject to the in-
equality

UNITARITY CONSTRAINTS ON CP NONCONSERVATION IN. . .
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(u, )2+(uz) +(uz) &1 . (45)

(This is an inequality, because in general other neutral-
mass eigenstates can contribute to the 4 commutators. )

Using this, it is elementary to show that the quantities
(41}—(44) are subject to the upper bounds

llmz, l

& — +'-4
llmz, l

&— 1 ~2
(47)

lImZ l

&—1
1

2
1 ~2

4 '1/2

4 '1/2
1

(49)

Zzi/2GF
Ao(q )=A, (q )=Az(q )=

q +m
(50)

3 3
ImZ2 = + Q2Q3

2 2

(51)

From (45},we then find

llmZz I

&
—,'( 1 ~2/~2 1'+ 1~3/~214}'" . (52)

Here the CP violation in neutral-scalar exchange is small
if lk, zl « lk, zl, again because in this limit the model ap-
proaches the minimal standard model.

IV. REACHING THE BOUND

We will now show that the bounds (46)—(49) are in gen-
eral the best that can be derived, by showing that there
are physically allowed models that realize these bounds.
Specifically, we will consider a model in which the only
scalar fields are the two doublets, p, and $2. Any such
model with an exact discrete symmetry that distinguishes

and $2 and enforces Eq. (2) (such as

2

llmz, l

& — +& 1

Note that if lA, , l
» lkzl or lkzl » lA, , l, then, respectively,

lImZ, l or lImZzl must be small. This no surprise, be-
cause in these limits SU(2) XU(l) is effectively broken by
only one scalar doublet, respectively, p, or $2, and the
only neutral field left from the Higgs mechanism in this
doublet is a single real scalar.

Now let us briefly consider the other case mentioned
earlier, where the doublets p, and $2 in the Yukawa in-
teraction are proportional, and there is another doublet

$2 that does not couple to quarks but whose vacuum ex-
pectation value also participates in breaking SU(2) —U(1).
As already remarked in Sec. II, with p, and $2 propor-
tional, there is only one independent CP-violating ampli-
tude, A 0

= A, = A 2. we can use the unitarity gauge con-
dition here to express the two complex neutral scalars Pz
and ((}3 in terms of three real scalars, just as in Eqs. (27)
and (28). Following the same procedure as before, and
assuming the dominance of a single-mass eigenstate, we
now find

Dx ~ D—zi, $2~+$2, Ux ~Ux, QL ~QL ) will rule out
CP violation in renormalizable Lagrangians, but CP non-
conservation can be introduced by letting this discrete
symmetry be broken by soft terms in the Lagrangian. '

We, therefore, take the Lagrangian for the P fields in the
form

a„y—ta~y, a„y—',a~y, v(—y, ,y, ),
V = m, P,P,™2$2$2+ vlg~igz+v

+ zgi(0101) +Ygz 42~2 +g(~1~1 (~2( 2

+g ly', y, l'+-' (~'~ )'+-' '(((}'~ )'

(53}

(54)

where m 1, rn z, g„gz, g, and g' are real, but 2) and h may
be complex. Aside from the soft $,$2 and /zan, terms,
this respects the symmetry ((},~—p, , $2~$2, which can
be used to enforce the assumed form (2) of the hard Yu-
kawa interactions. This Lagrangian conserves CP if and
only if h /2) is real; we will allow it to be complex.

With arbitrary values of the hard couplings g„g2,g,g',
and h, we can always adjust the soft couplings m, , m2,
and g to make the vacuum expectation values A, , and A,2

anything we like. To see this, note that (54) may be
rewritten

v= —,'g (4'0 —l~ l'}'+-,'g (((»'4 —l~ l'}'

+g(y', y, —lz, lz}(y',y, —[X,lz)

+g'lyt(I}2 —~1 ~zl'+Re[h (pt$ —g'A )2]

(('2 41 42

)( 1

(55)

where g is an arbitrary real quantity, and )1,, and A, z satis-
fy the conditions

m 1
= —g 1 I~i I' —g i ~2 1'+g/I ~1I',

m 2
= —

gz i~21' —gl~il'+4/i~21',

(56)

(57)

rl = g'A. p, 1
—hk, 1 A.z

—g/A. 1 A.z
—. (58)

It is obvious from the form of (55} that V is stationary
when $1=1,1, pz=l z, and ((}1+=((}2+=0. Instead of taking
the independent parameters of the theory to be all the
couplings in (54},we will work with Eq. (55), and take the
independent parameters to be the hard couplings g1, g2,
g, g', and h, plus the soft coupling g and the vacuum ex-
pectation values A, i and )1,2. (That is, we replace the four
real parameters m 1, m 2, Rezl, Impel with the set g, lk.il,
lAzl, and ArgA, 1 kz. ) The mark of CP violation (intrinsic
or spontaneous) will now be an imaginary term in h)1, 1 A,z.

We will now work in unitarity gauge, using Eqs. (27)
and (28) to express the neutral components of p, and $2
in terms of the three real canonically normalized fields
4, . (The charged components of p, and $2 are set equal
to zero here, since our concern is with the propagator of
the neutral scalars. ) Shifting the 4, by their expectation
values and expanding (55) to second order in the shifted
fields, we find the N mass matrix:
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Re(hk. t A2)+g
M'„=g l~ I'+g'l~ I'+

1

Re(hk, *
A, )+g

M22 =g2I A2I +g IA, tl +

Re(g ge2g2
M33=(lk, l +IA2I ) g'+

Re(g g"2/2 )
—

g
M)2= A, )A2I(g+g')+

) 2

V'l~ ) I'+ I
~21'

M' = — Im(hk, '
A, ')

(59)

(60)

(61)

(62)

(63)

with equal diagonal elements have components with
u2=+u3=1/&2, thus reaching the bound (49). Note
that this is accomplished without imposing any sort of
degeneracy on the scalar masses; the eigenvalues of M
here are infinity and M22+M z&, which can be as different
as we like.

It is easy to show in the same way that the bound on
llmZ, I can also be reached; simply reverse the roles of
the 1 and 2 axes in the above argument. The bounds on
IImZol and llmZt)l can be examined in the same way
after first changing the basis for the 4 fields, but we shall
not bother with this here.

V. CONCLUSIONS

V'l~) I'+ I~2I'
M2 — Im( Pg pe 2/2)

1 2 (64)

In order to show that the bound (49) on IImZ2 I
can be

realized for any vacuum expectation values A, &, A.2, we

need to show that we can adjust the parameters in the
Lagrangian (with fixed A,

&
and A2) to make ltt2tt3I

where u, is the normalized eigenvector of M with the
smallest eigenvalue. One convenient choice of parame-
ters that obviously satisfies all positivity conditions is

g, ~+ oo, g2=g', (=0, Re(hl, ; Az)=0 . (65)

M22 M33 —( IA, , I
+ IA2I )g2

V'l~g I'+ I~21'
lm(gg+ g )

(66)

(67)

The normalized eigenvectors of any such 2 X 2 matrix

[This is not unique; we only need to impose one linear re-
lation among g2, g', g, and Re(hk, ; Az).] Taking g, ~ ~
makes the largest eigenvalue of M go to infinity and
gives it an eigenvector in the one-direction. The remain-
ing eigenvectors and eigenvalues can be found by di-
agonalizing the remaining 2X2 matrix, which here has
elements

We have found a bound on the CP-nonconservation pa-
rameter ImZ2 of Ref. 1 in models where SU(2) XU(1) is
broken by the expectation values of two scalar doublets,
and we have shown that this bound can actually be
reached for physically reasonable values of the parame-
ters of the models. Of course, there is no reason to expect
that these parameters will be fine tuned so as to maximize
IImZ2I. The point here is that, unless new physical con-
straints on the models are discovered, ' it would require
an unnatural fine tuning to make the value of IImZ2I
very much less than its upper bound (49). Therefore, this
bound provides a plausible rough estimate of the value of

I ImZ2 I to be expected in these nonminimal models.
The bound (49) is of order unity if the two scalar vacu-

um expectation values A, &, X2 are of the same order of
magnitude. On the other hand, it is possible that
lt(, , l ((IA,2I, in which case (49) can be considerably less
than unity. Indeed, the fact that the charge +—', quarks
of the second and third generations are both much
heavier than their charge —

—,
' counterparts suggests that

this may actually be the case.
Of course, if SU(2) X U(1) were broken by the vacuum

expectation values of three or more doublets, then the
bound (49) would not apply. Still, in the absence of new

physical constraints, the most plausible value for IImZ2I
would be of order unity.

'S. Weinberg, Phys. Rev. Lett. 63, 2333 (1989).
2D. Dicus, Phys. Rev. D 41, 999 (1990).
J. Dai and H. Dykstra, Phys. Lett. B 237, 256 (1990).

4K. F. Smith et al. , Phys. Lett. B 234, 191 (1990); I. S. Altarev
et al. , Pis'ma Zh. Eksp. Teor. Fiz. 44, 360 (1986) [JETP Lett.
44, 460 (1986)].

5P. Roy, Phys. Rev. Lett. 64, 812 (1990);D. Chang, C. S. Li, and
T. C. Yuan, Phys. Rev. D 42, 867 (1990).

J. Dai, H. Dykstra, R. G. Leigh, S. Paban, and D. A. Dicus,
Phys. Lett. B 237, 216 (1990); W. Fischler and J. Polchinski
(unpublished). For a reassessment, taking into account the
work of Ref. 8, see R. Arnowitt, J. L. Lopez, and D. V. Nano-
poulos, Texas A&M Report No. CTP-TAMU-23/90 (unpub-
lished); R. Arnowitt, M. Duff, and K. Stelle, Texas A&M Re-
port No. CTP-TAMU-2/90 (unpublished).

7B. Mukhopadhyaya and S. Nandi, Oklahoma State Report No.
OSU-239 (unpublished).

~E. Braaten, C. S. Li, and T. C. Yuan, Phys. Rev. Lett. 64, 1709
(1990);N-P. Chang and D-X. Li, Phys. Rev. D 42, 871 (1990);
A. De Rujula, M. B. Gavela, O. Pene, and F. J. Vegas, CERN
Report No. TH-5735/90 (unpublished).

M. Dine and W. Fischler, City College —Texas Report No.
CCNY-HEP-89/21-UTTG-63-90 (unpublished); V. Ka-
plunovsky (private communication); R. Peccei (private corn-
munication).

' G. Boyd, A. K. Gupta, S. P. Trivedi, and M. B. Wise, Caltech
Report No. CALT-68-1614 (unpublished).

' S. M. Barr and A. Zee, Phys. Rev. Lett. 65, 21 (1990).
S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).

' These diagrams (with gluons attached to quark lines) produce
the contribution to the neutron electric dipole moment stud-
ied by A. A. Anselm, V. E. Bunakov, V. P. Gudkov, and N.
G. Uraltsev, Phys. Lett. 152B, 116 (1985).

~S. Weinberg, Phys. Rev. D 7, 1068 (1973).



866 STEVEN WEINBERG 42

5The possibility of spontaneous CP violation in two-doublet
models with a softly broken discrete symmetry was pointed
out by G. C. Branco and M. N. Rebelo, Phys. Lett. 160B, 117
(1985); J. Liu and L. Wolfenstein, Nucl. Phys. B289, 1 (1987).
(I thank H. Haber and P. Roy for these two references. ) Here
we are allowing the CP violation to be either intrinsic or
spontaneous.

' For instance, a "custodial" SO(4) symmetry, under which
Img„+, Re/„+, Img„, and Re/„rotate as a four-vector, would
automatically rule out CP violation in the scalar potential for
arbitrary numbers of scalar doublets. Such a symmetry is not
respected by quark-scalar interactions, so it seems unnatural
to impose it in the scalar potential, just as for CP itself.


