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Multiplicity moments anti nuclear geometry in relativistic heavy-ion collisions
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The energy, target-mass, and rapidity-window independence or approximate independence of the
multiplicity moments in high-energy nucleus-nucleus collisions are analyzed. It is pointed out that
all of these properties are due to nuclear geometry. It is proved under general conditons that, when
the target mass is not extremely light and the rapidity window not very narrow, the normalized mo-
ments of multiplicity are approximately equal to that of the number of participating nucleons. The
calculated results for both minimum-bias and central events agree with recent experimental data.

I. INTRODUCTION

A lot of data have been obtained from the successful
acceleration of oxygen and sulphur ions to 60 and 200A
GeV at the CERN Super Proton Synchrotron, among
which are the following observations on the charged-
particle multiplicity distribution (MD}.

(i) The multiplicity distribution in terms of the Kuba-
Nielsen-Olesen normalized variable n/(n ) (KNO MD)
scales with respect to the incident energy. '

(ii) The KNO MD is independent of the target mass. '

(iii) The normalized multiplicity moments Cz —C~ are
approximately independent of the rapidity window.

(iv) The ratio of dispersion D = ( ( n ) —( n ) )' to
mean multiplicity ( n ), and S, the slope of C2 ( n ) vs

( n ), are constants and independent of the energy and the
target mass. ' '

Many authors ' have considered some of these proper-
ties, especially that about the KNO MD, using phenome-
nological models. According to popular opinion, ' ele-
mentary nucleon-nucleon collision and nuclear geometry
are two main ingredients of nuclear collision. Obviously,
the nuclear geometry does not depend on incident energy,
and in the presently available energy region, the KNO
MD of the nucleon-nucleon collisions scales with respect
to energy also. " A combination of both these properties
naturally results in the energy scaling of the KNO MD of
the nucleus-nucleus collisions. The question is as follows:
When the incident energy becomes so high, e.g., at the
colliding energy 2003 GeV of the planned Brookhaven
Relativistic Heavy Ion Collider (RHIC), ' that the scal-
ing of the KNO MD at the corresponding energy is
violated for nucleon-nucleon collisions, does the KNO
MD of the nucleus-nucleus collision still keep energy
scaled? In addition, why are the KNO MD and the nor-
malized multiplicity moments also independent of the
target mass and the rapidity window? All of these prob-
lems need further discussions.

As is well known, the multiplicity moments are impor-
tant characteristics in multiparticle production. The
properties of the KNO MD can be fully described by the
normalized moments

C =, q=2, 3, . . . .
(n')

n
q'

In this paper, we will concentrate our attention to the
study of the independence or approximate independence
of Cq on energy, the target mass, and rapidity window.
We will see that all of these properties are due to the fol-
lowing fact: The nuclear geometry dominates the nuclear
collisions provided that the target mass is not too light
and the rapidity window not very narrow. As a result, all
of the above-mentioned independences do not depend on
the concrete behavior of elementary nucleon-nucleon col-
lisions. W'e will prove this statement in the next section
under very general conditions.

II. DOMINANCE OF THE NUCLEAR GEOMETRY
IN THE MULTIPLICITY MOMENTS

The current models of heavy-ion collision are all based
on the following hypothesis: The experimental data of
nucleus-nucleus collisions are the geometrical average of
the corresponding data for the colliding processes at a
fixed impact parameter, and the straight-line trajectories
of the colliding nuclei determine their participating nu-
cleons at a fixed impact parameter. On the other hand,
on how these nucleons contribute to the final state of the
collision process different models have different assump-
tions. For simplicity, we will assume that every partici-
pating nucleon can be regarded as a secondary particle
source. In fact, such kind of assumption has been used in
some models such as FRtTtoF (Ref. 9) and the multisource
model in the central rapidity region. '

If the average contribution of each participating nu-
cleon to the MD is g (n'), the MD at fixed b is the super-
position of the contributions of N(b) participating nu-
cleons:

N 1V

G~ '(n}= g 5 n —gn gg(n ).

The number N(b) is determined by

N(b)=Np(b)+NT(b),

Np(b)= f d rpp(r)0(RP —(x +y2)'~2)

X 0(R T
—[(x —b)2+y2]'r~),

Nr(b)= fd rpT(r)8(RT —(x +y2)'~2)

XO(Rp —[(x b) +y ]' ), —
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where p~, pz- are the nuclear densities of the beam and
the target, respectively. A Wood-Saxon distribution (WS)

K4~r
p r

]+exp[(r r—oA
' )Ico]

(4)

The meaning of this equation is that there is just one nu-
cleon in the cylinder whose radius is ro and whose center
is R, away from the axis passing through the center of
the nucleus a (a =P, T} and perpendicular to the cross
section being considered.

Putting N =2 in Eq. (2), we can determine g (n') from
the multiplicity distribution G(n") of the nucleon-
nucleon collisions. (In this paper, the physical variables
marked with primes and double primes represent those
variables of a single participating nucleon and a nucleon-
nucleon collision, respectively. ) A possible form of g (n')
in the energy range of the CERN Intersecting Storage
Rings has been given in Ref. 5. Bu the results in this pa-
per are not concerned with its concrete form.

Taking into account all the processes with different b,
the final-state multiplicity distribution of nucleus-nucleus
collision is

P(n)= gp(N)G' '(n) .
N

(6)

The distribution p (N) of the participating nucleons can
be obtained from Eq. (3) as

p (N)-b (N)
db

(7)

The curves for ' O-Cu, Ag, Au collisions are shown in
Fig. 1.
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will be used provided A ) 8. ' In Eq. (4) K is a normali-
zation constant; the values of the parameter co and the
radius ro of the participating nucleons are taken from
Ref. 13. The radii R~ and Rz of the maximal geometri-
cal cross sections for the beam and the target are deter-
mined by

f d rp, (r)8(ro —[(x —R, } +y ]' )=1,
a =P, T . (5)

Fg(8) = g g (n')8", —1 ~ 8~ 1 .
n'

Differentiating Eq. (8) with respect to 8 and making use
of

Fp(8) =(n ), Fg(8) =(n'),
8=1 8=1

B2
F (8) =(n(n —1)&,

g2
(9)

ae' 'F (8) =(n'(n' —1)),

the average multiplicity (n ) and the normalized multi-
plicity moments C can be written as

&n & =&N &(n'& = ,'(N )(n"—), (10)

&N')
(N)'

C3= +
3

((N ) —(N))d2+ 2d3, (11)

C4= + (N(N —1) )d2
(N')

+ (N(N —1))d2
N

+ (N(N —1))d3+ d~,
4, 1

N N

where

d =,—1, (N') = gp(N)N' .
(n")
(n'&'

(12)

Equation (10) can be directly tested against the existing
data. In all the discussions above, the effects of leading
particles are not included; therefore, from the conserva-
tion of isospin we have

&n& &N)

( ") (n") 2

The results for different targets are compared with the
data in Fig. 2.

In Eq. (11), the first term of C is completely due to nu-
clear geometry. Now, let us prove that when the collid-
ing nuclei are not too light and the rapidity window of
final-state particles not very narrow, the first term dom-
inates C~. This means

Similar to Ref. 14, we introduce generating functions
F~(B) and Fg(8) for nucleus-nucleus and nucleon-nucleon
collisions, respectively. From Eq. (6),

F (8}=g P(n)8"= gp(N)[F (8)]

FIG. 1. The normalized distributions of the number of parti-
cipating nucleons for ' 0-A collisions.

&")
&n&q &N&~

In order to do this, we first rewrite Eq. (11)as

(14)
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FIG. 2. The ratio R of the average multiplicity of negative
particles observed in ' 0-gas (80% Ne, 20% He}, Cu, Au col-
lisions to that in nucleon-nucleon collisions at the same energy.
Our results (6 } from Eq. (13}are compared with the data (X,
603 GeV;0, 2003 GeV} from Ref. 1.

(N ) + 1 (N)
(N)' &» (N')

(N') 1 3(N)(N') „,
(N )' &» &N')

1 (N)+
( )2 ( 3) (d3 —3dq)

(15)

is always satisfied (cf. Table I), regardless of whether we
use the Wood-Saxon distribution or, in the first approxi-
mation, use the step function

p(r) =po4m. r 5(r Ao' r)— (17)

as the nuclear density distribution. The reason is that
p (N) is a smooth function for both of these two distribu-
tions in a wide region of N (cf. Fig. 1), and if we put
p(N)=const, the left-hand side of Eq. (17) is equal to
(q+I)/g~. (q +1)&1. In addition, d,' is completely
determined by the normalized multiplicity moments Cq'
of the nucleon-nucleon collisions:

The terms in the square brackets of Cq are an expansion
in terms of 1/(N). The factors d (2&i &q) and

(N ')/(¹) (q. ~1, g q =q) are involved in all
the coefficients of this expansion except for the first term.
It is ready to see that the inequality

g &N")/&N ) &1 q, 1, yq, =q

FIG. 3. The ratio of the dispersion to the average multiplici-
ty for negative particles. Our results (6 } are compared with the
data C, X, 603 GeV; , 200A GeV) from Ref. 1.

d2 =2(C~' —1),
d3 =2(2C3' —3C~ +1),
d 4 =4(2C4 —3C2' —4C3'+9C2 —4), . . . .

If the rapidity window is not very narrow, d,'-1. Hence,
when the colliding nuclei are not too light and the peri-
pheral interactions are not considered alone, so that
(N) ))1, the first term of Cq in Eq. (11) [or Eq. (15)] is
much more important than the other terms and Eq. (14)
is a good approximation.

III. INDEPENDENCE OF NORMALIZED
MULTIPLICITY MOMENTS ON ENERGY, TARGET

MASS, AND RAPIDITY WINDOW

(i) Equation (11) shows that the contribution of elemen-
tary nucleon-nucleon collisions to the nucleus-nucleus
ones is sharply suppressed by the nuclear geometry. The
normalized moments of the final-state particles for
nucleus-nucleus collision are approximately equal to that
of the participating nucleons. Hence, the energy scaling
of the multiplicity moments remains valid for nucleus-
nucleus collision, no matter how the MD's of the elemen-
tary nucleon-nucleon collisions vary with the incident en-
ergy. The D /n for different targets are calculated us-
ing the formulas given above and compared with the data
in Fig. 3. It shows clearly this energy scaling.

(ii) If the pseudorapidity window hei is symmetric
around the pseudorapidity g, of the center of mass of two
colliding nucleons in the laboratory frame, the final-state
particles come from all of the X particle sources. There
is no restriction on the position and width of the rapidity
window in deriving Eq. (11) in Sec. II. The inliuence of

TABLE I. g,. (X ' ) /(N~) of ' 0-Cu collisions (qj ~ 1, g, q~ =q).

Distribution

%S
Step func.

(N&'
&N')
0.56
0.67

q =2

&N&&N'&

&N')
0.47
0.60

q =3
(N&'
&N')
0.26
0.40

&N &&N')
&N4)
0.44
0.57

q=4
(N')' (N)'&N'&
(N'& &N')
0.37 0.21
0.50 0.34

(N')
0.12
0.23
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(N)»
=1 [p(N)=5m(w&] (19)

the value of C is determined by the terms involving d in
Eq. (11). Because the contribution of these terms de-
creases with the increasing of N as mentioned above, we
have

TABLE II. The values of (n )/D, C2, C3, C4, and S in
di6'erent intervals of pseudorapidity (Ag) for nearly central
' 0-emulsion collisions at 2003 GeV. The data (in parentheses)
are from Ref. 3.

C2

0.25

0.50

1.00

1.50

2.00

2.50

1.60
(1.58)
1.69

(1.72)
1.75

(1.77)
1.77

(1.82)
1.79

(1.86)
1.80

(1.88)
1.81

(1.91)

1.39
(1.40)
1.35

(1.34)
1.33

(1.32)
1.32

(1.30)
1.31

(1.29)
1.31

(1.28)
1.31

(1.27)

2.23
(2.40)
2.07

(2.12)
1.98

(2.02)
1.95

(1.96)
1.92

(1.92)
1.91

(1.90)
1.90

(1.87)

3.97
(4.86)
3.46

(3.80)
3.18

(3.43)
3.08

(3.26)
3.02

{3.13)
2.98

{3.07)
2.95

(3.02)

1.32
(1.33)
1.31

{1.31)
1.31

(1.30)
1.30

(1.29)
1.30

(1.28)
1.30

(1.27)
1.30

(1.26)

phase space on C is just reflected in d and is determined
only by the normalized multiplicity moments of nucleon-
nucleon collisions, as shown in Eq. (18}. When the win-
dow is not very narrow (hq) ( 1),d —1, Eq. (14) is always
satisfied. Only when the window is so narrow that C,

" in-
creases sharply, ' is Eq. (14) no longer eff'ective. So, C is
rapidity window independent provided that the window
is not very narrow. Using the pp data' as input, accord-
ing to Eq. (11), Tables II and III give the fiuctuation of
C moments in pseudorapidity windows together with
the experimental data for nearly central collision events.

(iii) Similar to other popular models, ' in this paper,
for the dynamical aspects of nucleus-nucleus collision,
the properties of nucleon-nucleon collisions are used as
input. On the basis of this, the nuclear geometry is add-
ed.

The influence of geometry is twofold. First, when the
impact parameter b is not too large, the number N of the
participating nucleons is much larger than 1, (N) »1,
for both minimum-bias and central events and dominates
the collision. It is this property that was used in deriving
Eq. (14). Therefore, the energy and rapidity-window in-

dependences of the normalized multiplicity moments are
based on this property.

On the other hand, the number N of the participating
nucleons will fluctuate around (N). This fiuctuation is
the second influence of the nuclear geometry. It directly
effects the value of C .

Let us consider two extreme cases.
First, we discuss the case with no fluctuation,

N = (N ). It corresponds to a collision at fixed b In this.
case,

TABLE III. The same as Table II for 2003-Gev ' S-
emulsion collisions.

0.25

0.50

1.00

1.50

2.00

2.50

3.00

(n)
D

2.13
(1.99)
2.24

{2.22)
2.31

(2.31)
2.34

(2.40)
2.36

(2.46)
2.37

(2.51)
2.38

(2.54)

C2

1.22
(1.25)
1.20

(1.20)
1.19

(1.19)
1.18

(1.17)
1.18

(1.16)
1.18

(1.16)
1.18

(1.15)

C3

1.62
(1.80)
1.54

(1.62)
1.50

(1.56)
1.48

(1.52)
1.47

{1.49)
1.47

(1.48)
1.46

(1.46)

C4

2.30
(2.89)
2.10

(2.39)
1.99

(2.20)
1.95

(2.11)
1.92

(2.04)
1.91

(2.01)
1.90

(1.98)

1.18
(1.21)
1.18

(1.18)
1.18

(1.18)
1.17

(1.16)
1.17

(1.15)
1.17

(1.15)
1.17

(1.15)

C,"=Cq(2})Cq(N)=1 . (20)

For central events, N &) 1, C (N) =1, D /n
=QC2 —1 =0, as shown in Fig. 3.

We now turn to another extreme case: The probability
for different participating nucleons is the same:
p(N}=const. This means that there is no peak at
N =(N). From simple deduction, we have

(Nq) 2»
[p(N)=constant] .

N q q+1 (21)

For minimum-bias samples, there is a wide plateau in
the middle part of N (cf. Fig. 1). As a rough approxima-
tion, p (N) can be treated as a constant, and

(N )
(N)q q+1 (22}

is independent of the target mass. But in the region
where N is small, p(N) increases rapidly with the de-
creasing of N as shown in Fig. 1. Physically this is be-
cause, when b is so large that the collision approaches
peripheral interaction, the corresponding geometrical
cross section is very large. This increase of p (N), on one
hand, violates the strict target mass independence of Cq
[cf. Fig. 3, values of D =QC2 —1 are roughly equal to
0.8 for ' O-gas, Cu, Au collisions], and, on the other
hand, makes (Nq) /(N ) q larger than that in Eq. (21):

2q
C ) (minimum bias) .q+1 (23)

For example, C, )4/3, D /(n ) & I/&3, as shown in
Fig. 3.

For nearly central events, the fluctuating range of N
around (N ) is neither so small as for central events nor
so wide for minimum-bias samples. Therefore, the values
of C in Tables II and III are larger than that in central
events and smaller than that in minimum-bias samples.

From the above discussions, we see that when the num-
ber of participating nucleons is large enough and the ra-
pidity window is not too narrow, the characteristics of
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the normalized moments are mainly determined by nu-
clear geometry. To analyze dynamical fluctuations
beyond geometry, Hwa' expressed the correlation be-
tween C2 moments and average multiplicity ( n ) as

C &n ) =1+S&n ) . (24)

Substituting Eq. (10) into Eq. (24), the local slope S can
be written as

and dynamics. On the basis of the dual parton model, if
qq chains are neglected, ( v) can be calculated by purely
geometry of the target nucleus and interpreted as the
average number of hadron-nucleon collisions experienced
by the hadron when it passes through the target. This
simple geometrical treatment agrees approximately with
the data. ' Obviously, the average number ( v ) of
hadron-nucleon collisions and the average number (NT )
of participating nucleons in the target are of the same for
hadron-nucleus collisions

2S =C2 —
( )

(n") . (25) R =-,'(1+(N, )) . (27)

In Tables II and III, the agreement of our results with
the data indicates that if there exists collective dynamics
beyond that involved in nucleon-nucleon collisions, it is
not sensitive to multiplicity distributions.

IV. SUMMARY

As mentioned in Sec. II, in this paper, we have used
the following two hypotheses to calculate the multiplicity
distribution G (n) in the process with fixed participating
nucleons N. First, the number of secondary particle
sources is just equal to N, calculated from purely geome-
trical consideration. Second, each source contributes to
the process independently. In fact, the latter has been
tested by experiments and is popularly used in the models
treating high-energy nucleon collisions. For example, in
hadron-nucleus collisions, one feature of the data' is that
R = ( n ) /( n" ) may be parametrized as

This means that there is no difference whether the ele-
mentary hadron-nucleon collisions or the participating
nucleons are treated as the particle sources.

For high-energy nucleus-nucleus collisions, the dom-
inant part played by the nuclear geometry in the deter-
mination of normalized multiplicity moments C is dis-
cussed in some detail in this paper. It manifests itself in
two respects: The hugeness of the average number of
participating nucleons in minimum-bias and central
nucleus-nucleus collisions, ( N ) )) 1, results in the energy
and rapidity-window independence of C . The fluctua-
tion of N around (N ) determines the value of Cq and its
approximate target-mass independence. The agreement
of our results with the experimental data shows that the
nuclear geometry can really reproduce the global
features, such as multiplicity distribution, of high-energy
nuclear collisions.

R =
—,'(1+(v) ) . (26) ACKNOWLEDGMENTS
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