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We calculate to first order in classical perturbation theory the divergent part of the self-force of
a radiating string coupled to gravity, an antisymmetric tensor, and a dilaton in four dimensions.
While this divergence can be absorbed into a renormalization of the string tension, demanding
that both it and the divergence in the energy-momentum tensor vanish forces the string to have
the couplings of compactified N =1, D=10 supergravity. In effect, supersymmetry cures the clas-

sical infinities.

The classical treatment of radiating charges has a
venerable history,' and from it much useful information
can be gained, such as the Larmor formula for radiation
damping. The analogous problem for a classical string
also has important applications: for example, the back re-
action on a radiating cosmic string.> Without back reac-
tion, the metric in weak-field perturbation theory develops
singularities along null lines originating at cusps, points in
spacetime where the string tangent vector vanishes and it
moves at the speed of light.> It is reasonable to expect
that radiation reaction must modify this somehow by
slowing down the string, but as yet the question of what
really happens at a cusp remains unanswered. Attempts
have been made to include back reaction by calculating
the decay rates of highly excited quantum strings,* but
the connection with the classical problem remains ob-
scure. In any case, a cosmic string is really a classical ob-
ject, and the question should be resolvable within the
framework of the classical theory. Some headway has al-
ready been made: Quashnock and Spergel? have investi-
gated how the trajectory of a radiating loop changes with
time. In this Rapid Communication we examine the
first-order corrections to the equations of motion of the
string paying particular attention to the divergent parts of
the self-force and the energy-momentum tensor. To
remain general, we consider the string coupled to gravity,
an antisymmetric tensor field, and to the dilaton. This en-
ables us to make contact with the work by Dabholkar and

2

Quashnock® and Dabholkar and Harvey. ¢

Our theory is a classical bosonic string in 3+ 1 dimen-
sions, which may be considered as a truncated version of a
higher-dimensional theory. We allow arbitrary couplings
to “the” dilaton (which is a linear combination of the
higher-dimensional supergravity dilaton and that resulting
from the compactification of the extra dimensions) and
the antisymmetric tensor (AST). We show that there is a
logarithmic divergence in the equations of motion when
back reaction is included, which can be absorbed into a re-
normalization of the mass per unit length [this was previ-
ously shown for the AST (Ref. 5) and for a gauge field].
When the couplings of the string to gravity (u) and to the
AST field () satisfy u2=A2exp[(8 —2a)®], where e and
B are the dilaton couplings (defined below) and ® is the
dilaton expectation value, the divergence vanishes. This is
intringuingly similar to the calculation of the self-energy
of a straight superstring,® where logarithmic divergences
conspired to cancel between all the fields. Generalizing
these results to arbitrary couplings, we find that requiring
the energy-momentum tensor to vanish as well as the
self-force constrains a to equal one. These cancellations
are no accident: they occur for precisely those couplings
for which the action is the bosonic part of a dimensionally
reduced N=1, D=10 supergravity theory. Thus we
might say that the classical divergences cancel because of
supersymmetry.

With the conventions of Landau and Lifshitz,' our clas-
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sical action is the sum of a string action S, and the action for the massless four-dimensional fields S4:

S1=—4 [ a*aVyya, 59, X gue =2 [ d%0 e®a,x40,X°8, . )

Sy=

16 Gfd4
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where g = | det(g,,) |, H,,,=8,B.,+9,B,,+9,B,, is the AST field strength, and X*(o) are the world-sheet coordinates.
This is part of the bosonic sector of the conformally rescaled and dimensionally reduced V=1 supergravity action® with

string sources when ¢ =1 and g =2.

The equations of motion for the string that follow from this action are

18, (Vyy®a,X*) + (Tl + 2649,0) L] = —re ~*®g#99 B, H (3)
where y=|det(y,) | and where £*" and #*" are given by
LY =Syy®9, X 8p X", HH' =9, X 3pX" . 4
The equations of motion for the massless fields g, B,,, and ® are
Ryv_ lfgpvR -8”GT;4V! (5)
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The energy-momentum tensor is the sum of a string piece x0(x°—y?)&((x—y)?) (Jackson'):
v v,a l
1t = [ d% L1 59— X(0)) ® A =— [d%d%026)G (PG —X(0)). (2)
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and the field pieces

Ty = (0" P3 "D —
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We expand around a constant field background, g,
=Nyt hy(x), ®(x) =®+¢(x), B,,(x) =B,,+b,,(x) to
first order in the dimensionless couplings Gu and GA with
an arbitrarily moving string as a source. Choosing the
gravitational harmonic gauge g*'T5, =0, and the antisym-
metric tensor analogue of the Lorentz gauge 9,B*" =0, we
obtain the weak-field equations of motion:

aZh#V- - 16”G#fd20(.£yv_ % an‘C)
xe™®5W(x— X (o)) s

azb,,v---16szfd207{"w”$6(4)(x—X(a)), (10)

9% = —a82Gu fdzo.Ce“s&(‘”(x—X(o)) .

L is defined to be L. These equations are of the form

924G = - [ d%0x(@)sVx-x(), (1)

where the potential A represents the gravitational, an-
tisymmetric tensor, or dilaton perturbations and X
is  162Gu(L,,— ¥, L)e™,  162GAH e, or
8nGuaLe®®, respectively. Equation (11) is easily solved
using the retarded Green’s function G(x,y)=(Qrx) !

Introducing A* =x* — X*(o), we may perform all but one
of the integrations to obtain

A== [do : (13)

T™=r,

AX

where the integrand is to be evaluated at the retarded
proper time, given by A2(z,06)|,=,=0. Each of the
quantities in (13) is logarithmically divergent as x
— X(o). However, we will see that these divergences are
not fatal. In order to calculate the self-forces due to the
various fields requires an expression for the derivative of
A(x). Generalizing a similar expression for the electron'
we find

a,,A(x)-——f X ~ at

The divergence is extracted by taking the field point on
the string and expanding the integrand around it. It is
convenient to fix the world-sheet coordinates by using the
conformal gauge

X-X'=0,

AL

- (14)
XA

™1,

. , (15)
X2+ x2=(,

To order Gpu it is irrelevant whether we use g,, or n,, to
contract the spacetime vectors. Changing the world-sheet
variables in the mtegrand to primed quantities, taking

x=X*"(c) and t'=1, (the retarded proper time) so that
At=1,—1=—|Ac| = —|o'— o], and using the gauge
conditions, we find that the divergent part of 8,4 (X(c)),
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which we denote by D,(X), is

L1
|ac| E

1 )
2,00 = [ do

Z " __ vy _a__
2% T 5

where E =X 2. _
(a) Dilaton. In this case £ =16xGuae®E so that

1

ﬁp(X) - —ZGueaaafdG'm%(Xp_X:) . a7

The divergent piece in the force per unit length f¥4;, exert-
ed by the dilaton field on the string is, by Eq. (3), given by
Sodiv=—aud, L™ =0 18)

by the gauge conditions.
(b) AST. Here X is a tensor quantity, X°
=167Ge’®re?9,X°9, X", and the divergent part of theI
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l
self-force f§ giv is
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(c) Graviton. For the graviton, in the conformal gauge,

T=IH = 162Gue®®(X* X — XXV —n*"X?) and we find

¥ aiv=+4Gu 20" (XH — X )f li;‘tﬂ . (20)

Putting (18)-(20) together, we arrive at our first result.
The classical equations of motion for a string including
back reaction are, in the conformal gauge,

@n

where R is an infrared cutoff provided by the curvature of the string and & an ultraviolet cutoff which, for a cosmic string
(see, e.g., Vilenkin®), is its width. This is to be compared with the result for a charged point particle: !

2
m[l— €

..“__z_e_Z Sy (2
4”m6]X 3 4”LX +X*(X9)].

(22)

There is no simple local expression for the self-force for a string because the self-interactions are nonlocal, and the string

divergence is only logarithmic because it is an extended object.

We note that in general it is not correct to deduce the divergent part of (21) from the divergent part of the effective ac-
tion, which is obtained by substituting back into .S, the fields for which the string is a source. To first order,

SV = u(SnGu)ez""_’fd20dZG'L”V(U)G(U,G')L,,V(G') +X(8nGk)e"$fdzcdzo'ﬂf“"(a)G(0,0")7(,”(0')

+u(a?— 1) @rGle® [ d%0d%' L(6)Glo,0') L(c)

where

G(5,6') =Q2n) ~'6(X%6) —X°(6"))6(IX (0) — X(c)]1?) .

(23)

Performing the integration over 7’ the & function leaves behind a factor [2|A- X(o')] !, which when expanded in powers
of Ac=¢"— o becomes 2vm |Ac|) ~!, where ma, =8,X" 8,.X is the induced metric on the world sheet. Thus

_ 2 -
sg iv-4cu2e2"°1n(R/5)fdzo—J‘: [.C“V.Cyv+)‘—2e(ﬁ_2“)°7{“"7{yv+%(az—l)Lz .
m u

Using the equation of motion for 7, it is easy to show
that y,, = Q “mg, where Q is an arbitrary conformal fac-
tor, but the variation of (24) with respect to X* vanishes.
The reason for this discrepancy is clear: Varying (23)
with respect to X* produces terms involving derivatives of
the Green’s function, which are not included in (24). We
now turn to T*', which diverges quadratically as the
string is approached. This divergence can be found by ex-
tracting the highest (linear) divergences in the relevant
versions of 8,4 and substituting into (9) and the weak-
field gravitational energy-momentum pseudotensor. This
has already been done for the straight superstring, from
which it is easy to show that in the case of arbitrary cou-

(24)

f
plings the divergence is proportional to u%e?*®(a?/2—1)
+1%P%/2. Taken together with (21), the divergences
cancel in both the self-force and the energy-momentum
tensor only if A2=yu%exp[(2a —B)®] and a=1. When
B =2 the cancellation occurs independently of the value of
the background field, and we have precisely the parame-
ters in the classical action for a fundamental string cou-
pled to the background fields g,,, B,., and ® in four di-
mensions.®!® Interestingly enough, this cancellation
occurs for the fundamental string in d =4, where d is the
number of “large” dimensions, irrespective of the
compactified dimensions. The classical action in D=d +n
dimensions, where n is the dimension of the compact
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space, is'!
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So long as the curvature of the world sheet is much less
than u, the last term in S, can be ignored. We choose
coordinates x?=(x*y’), where u=0,...,d—1 and
i=1,...,n. Rewriting the D-dimensional metric g5 as

e °[-RP—4(V®)2+ 5 H?].

248 (x,y)dx dxB m ¢ 40 =2)/@=2)g ()gxhdx

+e2°g,dy'dy’, (25)
with o =o(x), we find that the dimensionally reduced ac-

tion becomes, upon defining ¢=a(2®—nos) with
a=[2/(d—2)1""?,

-—f‘-fd%y( 7L"g,.6%+H"'B,.) |

—R@D+ 1 (v9)2+n(Vs)?

+re "H2+U(9,0)],

where V is the volume of the internal space and U an
effective potential whose form depends on the particular
compactification.!' A massive dilaton will not, however,
affect the divergence structure which is a short-distance
result. We have dropped the vectors and scalars that re-
sult from the compactifications of the massless D-
dimensional fields, for if the string moves in only the non-
compact dimensions [X‘(c) =const] it will not generate
any of these fields. Thus our results do not depend on the
original number of dimensions of the theory. Although
they are classical results and not obviously connected .to
the quantum string theory, it is nevertheless intriguing
that the divergences in T*" could cancel between fields of
different spin when the graviton and antisymmetric tensor
couplings are equal. It was previously shown that there
was no renormalization of the string tension to one loop in
the quantum superstring theory and argued that super-
symmetry was to blame.® Here we can see explicitly how
the supersymmetry works; the theory is the bosonic part of

an N=|] supergrav:ty theory only when u=\ and
a=[2/(d—2)1""

Our extraction of the divergent part of the self-force
(21) is of interest for cosmic string back-reaction calcula-
tions. Quashnock and Spergel? developed a perturbation
theory which evolved the string along a Nambu trajectory
for one period, and then calculated the change in X* +X *
and X* — X" from (21). No infinities appeared, which we
can now see is because the divergence is proportional to
X* —X"*, which always vanishes with this technique.

Fmally, we discuss the relation between the divergences
in the classical theory to those in the quantum theory.
When a charged spinless point particle, whose classical
divergence in the self-mass is linear, is quantized the
divergence becomes worse— quadratic, in fact. This di-
vergence can be canceled by making the theory supersym-
metric, so that the quadratic divergence from gauge-boson
bubbles on the scalar propagator is canceled by fermion
loops. Similarly, quantizing the bosonic string theory
makes the divergence in the self-mass worse, and super-
symmetry sorts the problem out. Classically, there is no
divergence in the self-energy as we have seen, provided
u=X and a=p/2=1, but upon quantization, which can
only be done consistently, for these values of the parame-
ters (and with an extra 22 bosonic degrees of freedom) it
is found that the one-loop correction to the self-mass is
again divergent.'> The divergence comes from parts of
moduli space corresponding to parts of the torus becoming
long thin tubes, down which only massless modes (and ta-
chyons) can propagate. If we ignore the tachyon, the
divergence is logarithmic and proportional to the dilaton
one-loop expectation value: The geometrical picture is
that conformal invariance enables us to deform the thin
handles down which the massless modes are propagating
into a sphere attached by a stalk to a torus with no exter-
nal legs. For the closed superstring, the dilaton expecta-
tion value vanishes at one loop, supersymmetry again re-
moves the divergence, and the self-mass is finite. These
arguments are, of course, far from rigorous, but they are
intended only to highlight the intriguing relationships be-
tween quantum and classical string theory and the role
that supersymmetry plays in both.
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